# Dispersion Interactions between Neutral Atoms and the Quantum Electrodynamical Vacuum

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Atom-Field Interaction Hamiltonian: Minimal and Multipolar Coupling

## 3. Effective Hamiltonians

## 4. Vacuum Fluctuations

## 5. The Van Der Waals and Casimir–Polder Dispersion Interaction between Two Neutral Ground-State Atoms

## 6. The Three-Body Casimir–Polder Interaction

## 7. Two- and Three-Body Dispersion Interactions as a Consequence of Vacuum Field Fluctuations

#### 7.1. Dressed Field Energy Densities

#### 7.2. Vacuum Field Correlations

## 8. Casimir–Polder Forces between Atoms Nearby Macroscopic Boundaries

## 9. Casimir–Polder and Resonance Interactions between Uniformly Accelerated Atoms

## 10. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Casimir, H.B.G.; Polder, D. The Influence of Retardation on the London–van der Waals Forces. Phys. Rev.
**1948**, 73, 360. [Google Scholar] [CrossRef] - Milonni, P.W. The Quantum Vacuum. An Introduction to Quantum Electrodynamics; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Power, E.A. Casimir–Polder potential from first principles. Eur. J. Phys.
**2001**, 22, 453. [Google Scholar] [CrossRef] - Barnett, S.M.; Aspect, A.; Milonni, P.W. On the quantum nature of the Casimir–Polder interaction. J. Phys. B
**2000**, 33, L143. [Google Scholar] [CrossRef] - Axilrod, B.M.; Teller, E. Interaction of the van der Waals type between three atoms. J. Chem. Phys.
**1943**, 11, 299. [Google Scholar] [CrossRef] - Aub, M.R.; Zienau, S. Studies on the retarded interaction between neutral atoms I. Three-body London–van der Waals interaction of neutral atoms. Proc. R. Soc. A
**1960**, 257, 464. [Google Scholar] [CrossRef] - Milton, K.A.; Abalo, E.; Parashar, P.; Shajesh, K.V. Three-body Casimir–Polder interactions. Nuovo Cimento C
**2013**, 36, 183. [Google Scholar] [CrossRef] - Brevik, M.; Marachevsky, V.N.; Milton, K.A. Identity of the van der Waals Force and the Casimir Effect and the Irrelevance of These Phenomena to Sonoluminescence. Phys. Rev. Lett.
**1999**, 82, 3948. [Google Scholar] [CrossRef] - Barcellona, P.; Passante, R. A microscopic approach to Casimir and Casimir–Polder forces between metallic bodies. Ann. Phys.
**2015**, 355, 282. [Google Scholar] [CrossRef] - Buhmann, S.Y.; Welsch, D.-K. Dispersion forces in macroscopic quantum electrodynamics. Prog. Quantum Electron.
**2007**, 31, 51. [Google Scholar] [CrossRef] - Scheel, S.; Buhmann, S.Y. Macroscopic quantum electrodynamics—Concepts and applications. Acta Phys. Slov.
**2008**, 58, 675. [Google Scholar] [CrossRef] - Compagno, G.; Passante, R.; Persico, F. Atom-Field Interactions and Dressed Atoms; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Power, E.A. Introductory Quantum Electrodynamics; Longmans: London, UK, 1964. [Google Scholar]
- Power, E.A.; Thirunamachandran, T. On the nature of the Hamiltonian for the interaction of radiation with atoms and molecules: (e/mc)
**p**·**A**, −**μ**·**E**, and all that. Am. J. Phys.**1978**, 46, 370. [Google Scholar] [CrossRef] - Craig, D.P.; Thirunamachandran, T. Molecular Quantum Electrodynamics; Dover Publ.: Mineola, NY, USA, 1998. [Google Scholar]
- London, F. Zur Theorie und Systematik der Molekularkräfte. Z. Phys.
**1930**, 63, 245. [Google Scholar] [CrossRef] - Power, E.A.; Zienau, S. On the radiative contribution to the van der Waals Force. Nuovo Cim.
**1957**, 6, 7. [Google Scholar] [CrossRef] - Power, E.A.; Zienau, S. Coulomb gauge in non-relativistic quantum electrodynamics and the shape of spectral lines. Philos. Trans. R. Soc. A
**1959**, 251, 427. [Google Scholar] [CrossRef] - Woolley, R.G. Molecular quantum electrodynamics. Proc. R. Soc. Lond. A
**1971**, 321, 557. [Google Scholar] [CrossRef] - Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Photons and Atoms: Introduction to Quantum Electrodynamics; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Atkins, P.W.; Woolley, R.G. The interaction of molecular multipoles with the electromagnetuc field in the canonical formulation of non-covariant quantum electrodynamics. Proc. R. Soc. Lond. A
**1970**, 319, 549. [Google Scholar] [CrossRef] - Babiker, M.; Loudon, R. Derivation of the Power–Zienau–Woolley Hamiltonian in quantum electrodynamics by gauge transformation. Proc. R. Soc. Lond. A
**1983**, 385, 439. [Google Scholar] [CrossRef] - Andrews, D.L.; Jones, G.A.; Salam, A.; Woolley, R.G. Perspective: Quantum Hamiltonians for optical interactions. J. Chem. Phys.
**2018**, 148, 040901. [Google Scholar] [CrossRef] [Green Version] - Salam, A. Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Bykov, V.P. Radiation of Atoms in a Resonant Environment; World Scientific: Singapore, 1993. [Google Scholar]
- Biswas, A.K.; Compagno, G.; Palma, G.M.; Passante, R.; Persico, F. Virtual photons and causality in the dynamics of a pair of two-level atoms. Phys. Rev. A
**1990**, 42, 4291. [Google Scholar] [CrossRef] - Compagno, G.; Palma, G.M.; Passante, R.; Persico, F. Relativistic causality and quantum-mechanical states in the Fermi problem. Chem. Phys.
**1995**, 198, 19. [Google Scholar] [CrossRef] - Buhmann, S.Y. Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals forces; Springer: Berlin, Germany, 2012. [Google Scholar]
- Buhmann, S.Y. Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction; Springer: Berlin, Germany, 2012. [Google Scholar]
- Salam, A. Molecular quantum electrodynamics in the Heisenberg picture: A field theoretic viewpoint. Int. Rev. Phys. Chem.
**2008**, 27, 405. [Google Scholar] [CrossRef] - Salam, A. Non-Relativistic QED Theory of the Van Der Waals Dispersion Interaction; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Passante, R.; Power, E.A.; Thirunamachandran, T. Radiation-molecule coupling using dynamic polarizabilities: Application to many-body forces. Phys. Lett. A
**1998**, 249, 77. [Google Scholar] [CrossRef] - Passante, R.; Power, E.A. The Lamb shift in non-relativistic quantum electrodynamics. Phys. Lett. A
**1987**, 122, 14. [Google Scholar] [CrossRef] - Craig, D.P.; Power, E.A. The asymptotic Casimir–Polder potential from second-order perturbation theory and its generalization for anisotropic polarizabilities. Int. J. Quantum Chem.
**1969**, 3, 903. [Google Scholar] [CrossRef] - Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wet.
**1948**, 51, 793. [Google Scholar] - Power, E.A.; Thirunamachandran, T. Casimir–Polder potential as an interaction between induced dipoles. Phys. Rev. A
**1993**, 48, 4761. [Google Scholar] [CrossRef] - Power, E.A.; Thirunamachandran, T. Quantum electrodynamics in a cavity. Phys. Rev. A
**1982**, 25, 2473. [Google Scholar] [CrossRef] - Ford, L.H.; Svaiter, N.F. Vacuum energy density near fluctuating boundaries. Phys. Rev. D
**1998**, 58, 065007. [Google Scholar] [CrossRef] [Green Version] - Bartolo, N.; Passante, R. Electromagnetic-field fluctuations near a dielectric-vacuum boundary and surface divergences in the ideal conductor limit. Phys. Rev. A
**2012**, 86, 012122. [Google Scholar] [CrossRef] - Bartolo, N.; Butera, S.; Lattuca, M.; Passante, R.; Rizzuto, L.; Spagnolo, S. Vacuum Casimir energy densities and field divergences at boundaries. J. Phys. Condens. Matter
**2015**, 27, 214015. [Google Scholar] [CrossRef] [Green Version] - Butera, S.; Passante, R. Field Fluctuations in a One-Dimensional Cavity with a Mobile Wall. Phys. Rev. Lett.
**2013**, 111, 060403. [Google Scholar] [CrossRef] [PubMed] - Armata, F.; Passante, R. Vacuum energy densities of a field in a cavity with a mobile boundary. Phys. Rev. D
**2015**, 91, 025012. [Google Scholar] [CrossRef] - Armata, F.; Butera, S.; Fiscelli, G.; Incardone, R.; Notararigo, V.; Palacino, R.; Passante, R.; Rizzuto, L.; Spagnolo, S. Effect of boundaries on vacuum field fluctuations and radiation-mediated interactions between atoms. J. Phys. Conf. Ser.
**2017**, 880, 012064. [Google Scholar] [CrossRef] [Green Version] - Shahmoon, E. Van der Waals and Casimir–Polder dispersion forces. In Forces of the Quantum Vacuum. An Introduction to Casimir Physics; Simpson, W.M.R., Leonhardt, U., Eds.; World Scientific Publ. Co.: Singapore, 2015; p. 61. [Google Scholar]
- Margenau, H. Van der Waals forces. Rev. Mod. Phys.
**1939**, 11, 1. [Google Scholar] [CrossRef] - Babb, J.F. Casimir effects in atomic, molecular, and optical physics. In Advances in Atomic, Molecular, and Optical Physics; Arimondo, E., Berman, P.R., Lin, C.C., Eds.; Elsevier Inc.: London, UK, 2010; Volume 59, p. 1. [Google Scholar]
- Spagnolo, S.; Passante, R.; Rizzuto, L. Field fluctuations near a conducting plate and Casimir–Polder forces in the presence of boundary conditions. Phys. Rev. A
**2006**, 73, 062117. [Google Scholar] [CrossRef] - Verwey, E.J.W.; Overbeek, J.T. Theory of the Stability of Lyophobic Colloids; Dover Publ.: Mineola, NY, USA, 1999. [Google Scholar]
- Przybytek, M.; Jeziorski, B.; Cencek, W.; Komasa, J.; Mehl, J.B.; Szalewicz, K. Onset of Casimir–Polder Retardation in a Long-Range Molecular Quantum State. Phys. Rev. Lett.
**2012**, 108, 183201. [Google Scholar] [CrossRef] [PubMed] - Béguin, L.; Vernier, A.; Chicireanu, R.; Lahaye, T.; Browaeys, A. Direct measurement of the van der Waals Interaction between Two Rydberg Atoms. Phys. Rev. Lett.
**2013**, 110, 263201. [Google Scholar] [CrossRef] - McLachlan, A.D. Retarded dispersion forces in dielectrics at finite temperatures. Proc. R. Soc. Lond. A
**1963**, 274, 80. [Google Scholar] [CrossRef] - Boyer, T.H. Temperature dependence of Van der Waals forces in classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. A
**1975**, 11, 1650. [Google Scholar] [CrossRef] - Goedecke, G.H.; Wood, R.C. Casimir–Polder interaction at finite temperature. Phys. Rev. A
**1999**, 11, 2577. [Google Scholar] [CrossRef] - Barton, G. Long-range Casimir–Polder-Feinberg-Sucher intermolecular potential at nonzero temperature. Phys. Rev. A
**2001**, 64, 032102. [Google Scholar] [CrossRef] - Power, E.A.; Thirunamachandran, T. Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states. Phys. Rev. A
**1993**, 47, 2593. [Google Scholar] [CrossRef] - Rizzuto, L.; Passante, R.; Persico, F. Dynamical Casimir–Polder energy between an excited- and a ground-state atom. Phys. Rev. A
**2004**, 70, 012107. [Google Scholar] [CrossRef] - Berman, P.R. Interaction energy of nonidentical atoms. Phys. Rev. A
**2015**, 91, 042127. [Google Scholar] [CrossRef] - Donaire, M.; Guérout, R.; Lambrecht, A. Quasiresonant van der Waals Interaction between nonidentical atoms. Phys. Rev. Lett.
**2015**, 115, 033201. [Google Scholar] [CrossRef] - Milonni, P.W.; Rafsanjani, S.M.H. Distance dependence of two-atom dipole interactions with one atom in an excited state. Phys. Rev. A
**2015**, 92, 062711. [Google Scholar] [CrossRef] - Barcellona, P.; Passante, R.; Rizzuto, L.; Buhmann, S.Y. Van der Waals interactions between excited atoms in generic environments. Phys. Rev. A
**2016**, 94, 012705. [Google Scholar] [CrossRef] - Power, E.A.; Thirunamachandran, T. Dispersion interactions between atoms involving electric quadrupole polarizabilities. Phys. Rev. A
**1996**, 53, 1567. [Google Scholar] [CrossRef] - Salam, A.; Thirunamachandran, T. A new generalization of the Casimir–Polder potential to higher electric multipole polarizabilities. J. Chem. Phys.
**1996**, 104, 5094. [Google Scholar] [CrossRef] - Salam, A. A general formula obtained from induced moments for the retarded van derWaals dispersion energy shift between two molecule with arbitrary electric multipole polarizabilities: I. Ground state interactions. J. Phys. B
**2006**, 39, S651. [Google Scholar] [CrossRef] - Jenkins, J.K.; Salam, A.; Thirunamachandran, T. Retarded dispersion interaction energies between chiral molecules. Phys. Rev. A
**1994**, 50, 4767. [Google Scholar] [CrossRef] [PubMed] - Salam, A. On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules. J. Chem. Phys.
**2006**, 124, 014302. [Google Scholar] [CrossRef] [PubMed] - Barcellona, P.; Passante, R.; Rizzuto, L.; Buhmann, S.Y. Dynamical Casimir–Polder interaction between a chiral molecule and a surface. Phys. Rev. A
**2016**, 93, 032508. [Google Scholar] [CrossRef] - Power, E.A.; Thirunamachandran, T. The non-additive dispersion energies for N molecules: A quantum electrodynamical theory. Proc. R. Soc. Lond. A
**1985**, 401, 167. [Google Scholar] [CrossRef] - Salam, A. Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: Equilateral triangle and collinear configurations. J. Chem. Phys.
**2013**, 139, 244105. [Google Scholar] [CrossRef] [PubMed] - Salam, A. Dispersion potential between three-bodies with arbitrary electric multipole polarizabilities: Molecular QED theory. J. Chem. Phys.
**2014**, 140, 044111. [Google Scholar] [CrossRef] - Buhmann, S.Y.; Salam, A. Three-Body Dispersion Potentials Involving Electric Octupole Coupling. Symmetry
**2018**, 10, 343. [Google Scholar] [CrossRef] - Milonni, P.W. Casimir forces without the vacuum radiation field. Phys. Rev. A
**1982**, 25, 1315. [Google Scholar] [CrossRef] - Milonni, P.W. Different ways of looking at the electromagnetic vacuum. Phys. Scr.
**1988**, T21, 102. [Google Scholar] [CrossRef] - Power, E.A. Zero-point energy and the Lamb shift. Am. J. Phys.
**1966**, 34, 516. [Google Scholar] [CrossRef] - Compagno, G.; Passante, R.; Persico, F. The role of the cloud of virtual photons in the shift of the ground state energy of a hydrogen atom. Phys. Lett. A
**1983**, 98, 253. [Google Scholar] [CrossRef] - Passante, R.; Compagno, G.; Persico, F. Cloud of virtual photons in the ground state of the hydrogen atom. Phys. Rev. A
**1985**, 31, 2827. [Google Scholar] [CrossRef] - Passante, R.; Rizzuto, L.; Spagnolo, S. Vacuum local and global electromagnetic self-energies for a point-like and an extended field source. Eur. Phys. J. C
**2013**, 73, 2419. [Google Scholar] [CrossRef] - NIST Handbook of Mathematical Functions; Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST and Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Passante, R.; Power, E.A. Electromagnetic-energy-density distribution around a ground-state hydrogen atom and connection with van der Waals forces. Phys. Rev. A
**1987**, 35, 188. [Google Scholar] [CrossRef] - Compagno, G.; Palma, G.M.; Passante, R.; Persico, F. Atoms dressed and partially dressed by the zero-point fluctuations of the electromagnetic field. J. Phys. B
**1995**, 28, 1105. [Google Scholar] [CrossRef] - Feinberg, G.; Sucher, J. General theory of the van der Waals Interaction: A model-independent Approach. Phys. Rev. A
**1970**, 2, 2395. [Google Scholar] [CrossRef] - Passante, R.; Persico, F. Virtual photons and three-body forces. J. Phys. B
**1999**, 32, 19. [Google Scholar] [CrossRef] - Compagno, G.; Persico, F.; Passante, R. Interference in the virtual photon clouds of two hydrogen atoms. Phys. Lett. A
**1985**, 112, 215. [Google Scholar] [CrossRef] - Hinds, E.A.; Sandoghdar, V. Cavity QED level shifts of simple atoms. Phys. Rev. A
**1991**, 43, 398. [Google Scholar] [CrossRef] [PubMed] - Messina, R.; Passante, R.; Rizzuto, L.; Spagnolo, S.; Vasile, R. Casimir–Polder forces, boundary conditions and fluctuations. J. Phys. A
**2008**, 41, 164031. [Google Scholar] [CrossRef] [Green Version] - Barton, G. Frequency shifts near an interface: Inadequacy of two-level atomic models. J. Phys. B
**1974**, 29, 1871. [Google Scholar] [CrossRef] - Passante, R.; Rizzuto, R.; Spagnolo, S.; Petrosky, T.Y.; Tanaka, S. Harmonic oscillator model for the atom–surface Casimir–Polder interaction energy. Phys. Rev. A
**2012**, 85, 062109. [Google Scholar] [CrossRef] - Ciccarello, F.; Karpov, E.; Passante, R. Exactly solvable model of two three-dimensional harmonic oscillators interacting with the quantum electromagnetic field: The far-zone Casimir–Polder potential. Phys. Rev. A
**2005**, 72, 052106. [Google Scholar] [CrossRef] - Born, M.; Wolf, E. Principles of Optics; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- McLone, R.R.; Power, E.A. On the Interaction between two identical neutral dipole systems, one in an excited state and the other in the ground state. Mathematika
**1964**, 11, 91. [Google Scholar] [CrossRef] - Passante, R.; Persico, F.; Rizzuto, L. Spatial correlations of vacuum fluctuations and the Casimir–Polder potential. Phys. Lett. A
**2003**, 316, 29. [Google Scholar] [CrossRef] - Cirone, M.; Passante, R. Vacuum field correlations and the three-body Casimir–Polder potential. J. Phys. B
**1996**, 29, 1871. [Google Scholar] [CrossRef] - Cirone, M.; Passante, R. Dressed zero-point field correlations and the non-additive three-body van der Waals potential. J. Phys. B
**1997**, 30, 5579. [Google Scholar] [CrossRef] - Cirone, M.A.; Mostowski, J.; Passante, R.; Rza̧żewsi, K. The concept of vacuum in nonrelativistic QED. Recent. Res. Devel. Physics
**2001**, 2, 131. [Google Scholar] - Passante, R.; Persico, F.; Rizzuto, L. Vacuum field correlations and three-body Casimir–Polder potential with one excited atom. J. Mod. Opt.
**2005**, 52, 1957. [Google Scholar] [CrossRef] - Power, E.A.; Thirunamachandran, T. Dispersion forces between molecules with one or both molecules excited. Phys. Rev. A
**1995**, 51, 3660. [Google Scholar] [CrossRef] - Power, E.A.; Thirunamachandran, T. Two- and three-body dispersion forces with one excited molecule. Chem. Phys.
**1995**, 198, 5. [Google Scholar] [CrossRef] - Passante, R.; Persico, F.; Rizzuto, L. Causality, non-locality and three-body Casimir–Polder energy between three ground-state atoms. J. Phys. B
**2006**, 39, S685. [Google Scholar] [CrossRef] - Passante, R.; Persico, F.; Rizzuto, L. Nonlocal field correlations and dynamical Casimir–Polder forces between one excited- and two ground-state atoms. J. Phys. B
**2007**, 40, 1863. [Google Scholar] [CrossRef] - Rizzuto, L.; Passante, R.; Persico, F. Nonlocal Properties of Dynamical Three-Body Casimir–Polder Forces. Phys. Rev. Lett.
**2007**, 98, 240404. [Google Scholar] [CrossRef] - Vasile, R.; Passante, R. Dynamical Casimir–Polder force between an atom and a conducting wall. Phys. Rev. A
**2008**, 78, 032108. [Google Scholar] [CrossRef] - Shresta, S.; Hu, B.L.; Phillips, N.G. Moving atom-field interaction: Correction to the Casimir–Polder effect from coherent backaction. Phys. Rev. A
**2003**, 68, 062101. [Google Scholar] [CrossRef] - Hu, B.L.; Roura, A.; Shresta, S. Vacuum fluctuations and moving atoms/detectors: From the Casimir–Polder to the Unruh–Davies–DeWitt–Fulling effect. J. Opt. B Quantum Semiclass. Opt.
**2004**, 6, S698. [Google Scholar] [CrossRef] - Messina, M.; Vasile, R.; Passante, R. Dynamical Casimir–Polder force on a partially dressed atom near a conducting wall. Phys. Rev. A
**2010**, 82, 062501. [Google Scholar] [CrossRef] - Messina, R.; Passante, R.; Rizzuto, L.; Spagnolo, S.; Vasile, R. Dynamical Casimir–Polder potentials in non-adiabatic conditions. Phys. Scr.
**2014**, T160, 014032. [Google Scholar] [CrossRef] - Haakh, H.R.; Henkel, C.; Spagnolo, S.; Rizzuto, L.; Passante, R. Dynamical Casimir–Polder interaction between an atom and surface plasmons. Phys. Rev. A
**2014**, 89, 022509. [Google Scholar] [CrossRef] - Armata, F.; Vasile, R.; Barcellona, P.; Buhmann, S.Y.; Rizzuto, L.; Passante, R. Dynamical Casimir–Polder force between an excited atom and a conducting wall. Phys. Rev. A
**2016**, 94, 042511. [Google Scholar] [CrossRef] - Haakh, H.R.; Scheel, S. Modified and controllable dispersion interaction in a one-dimensional waveguide geometry. Phys. Rev. A
**2015**, 91, 052707. [Google Scholar] [CrossRef] - Dung, H.T. Interatomic dispersion potential in a cylindrical system: Atoms being off axis. J. Phys. B
**2016**, 49, 165502. [Google Scholar] [CrossRef] - Weeraddana, D.; Premaratne, M.; Gunapala, S.D.; Andrews, D.L. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror. J. Chem. Phys.
**2017**, 147, 074117. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Fiscelli, G.; Rizzuto, L.; Passante, R. Resonance energy transfer between two atoms in a conducting cylindrical waveguide. Phys. Rev. A
**2018**, 98, 013849. [Google Scholar] [CrossRef] - Passante, R.; Spagnolo, S. Casimir–Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions. Phys. Rev. A
**2007**, 76, 042112. [Google Scholar] [CrossRef] - Incardone, R.; Fukuta, T.; Tanaka, S.; Petrosky, T.; Rizzuto, L.; Passante, R. Enhanced resonant force between two entangled identical atoms in a photonic crystal. Phys. Rev. A
**2014**, 89, 062117. [Google Scholar] [CrossRef] - Notararigo, V.; Passante, R.; Rizzuto, L. Resonance interaction energy between two entangled atoms in a photonic bandgap environment. Sci. Rep.
**2018**, 8, 5193. [Google Scholar] [CrossRef] [Green Version] - Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in Casimir Physics; Oxford Science Publications: Oxford, UK, 2009. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Lifshits, E.M. The theory of molecular attractive fiorces between solids. Sov. Phys. JETP
**1956**, 2, 73. [Google Scholar] - Lifshits, E.M.; Pitaevskii. Landau and Lifshits Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- Babiker, M.; Barton, G. Quantum frequency shifts near a plasma surface. J. Phys. A
**1976**, 9, 129. [Google Scholar] [CrossRef] - McLachlan, A.D. Van der Waals forces between an atom and a surface. Mol. Phys.
**1964**, 7, 381. [Google Scholar] [CrossRef] - Cho, M.; Silbey, R.J. Suppression and enhancement of van der Waals interactions. J. Chem. Phys.
**1996**, 104, 8730. [Google Scholar] [CrossRef] - Marcovitch, M.; Diamant, H. Enhanced dispersion interaction in confined geometry. Phys. Rev. Lett.
**2005**, 95, 223203. [Google Scholar] [CrossRef] [PubMed] - Matloob, R.; Loudon, R.; Barnett, S.M.; Jeffers, J. Electromagnetic field quantization in absorbing dielectrics. Phys. Rev. A
**1995**, 52, 4823. [Google Scholar] [CrossRef] - Gruner, T.; Welsch, D.-G. Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics. Phys. Rev. A
**1996**, 53, 1818. [Google Scholar] [CrossRef] - Dung, H.T.; Knöll, L.; Welsch, D.-G. Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics. Phys. Rev. A
**1998**, 57, 3931. [Google Scholar] [CrossRef] - Buhmann, S.Y.; Butcher, D.T.; Scheel, S. Macroscopic quantum electrodynamics in nonlocal and nonreciprocal media. New J. Phys.
**2012**, 65, 032813. [Google Scholar] [CrossRef] - Scheel, S. The Casimir stress in real materials. In Forces of the Quantum Vacuum. An Introduction to Casimir Physics; Simpson, W.M.R., Leonhardt, U., Eds.; World Scientific Publ. Co.: Singapore, 2015; p. 107. [Google Scholar]
- Dung, H.T.; Knöll, L.; Welsch, D.-G. Intermolecular energy transfer in the presence of dispersing and absorbing media. Phys. Rev. A
**2002**, 14, 083034. [Google Scholar] [CrossRef] - Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D
**1976**, 14, 870. [Google Scholar] [CrossRef] - Fulling, S.A. Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D
**1973**, 7, 2850. [Google Scholar] [CrossRef] - Davies, P.C.W. Scalar production in Schwarzschild and Rindler metrics. J. Phys. A
**1973**, 8, 609. [Google Scholar] [CrossRef] - Crispino, L.C.B.; Higuchi, A.; Matsas, G.E.A. The Unruh effect and its applications. Rev. Mod. Phys.
**2008**, 80, 787. [Google Scholar] [CrossRef] - Audretsch, G.; Müller, R. Radiative energy shifts of an accelerated two-level system. Phys. Rev. A
**1995**, 52, 629. [Google Scholar] [CrossRef] [PubMed] - Passante, R. Radiative level shifts of an accelerated hydrogen atom and the Unruh effect in quantum electrodynamics. Phys. Rev. A
**1998**, 57, 1590. [Google Scholar] [CrossRef] - Audretsch, G.; Müller, R. Spontaneous excitation of an accelerated atom: The contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A
**1994**, 50, 1755. [Google Scholar] [CrossRef] [PubMed] - Zhu, A.; Yu, H. Fulling-Davies-Unruh effect and spontaneous excitation of an accelerated atom interacting with a quantum scalar field. Phys. Lett. B
**2006**, 645, 459. [Google Scholar] [CrossRef] - Calogeracos, A. Spontaneous excitation of an accelerated atom: (i) acceleration of infinite duration (the Unruh effect), (ii) acceleration of finite duration. Res. Phys.
**2016**, 6, 377. [Google Scholar] [CrossRef] - Moore, G.T. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys.
**1970**, 11, 2679. [Google Scholar] [CrossRef] - Dodonov, V.V. Current status of the dynamical Casimir effect. Phys. Scr.
**2010**, 82, 038105. [Google Scholar] [CrossRef] - Dodonov, V.V.; Klimov, A.B. Generation and detection of photons in a cavity with a resonantly oscillating boundary. Phys. Rev. A
**1996**, 53, 2664. [Google Scholar] [CrossRef] - Mundarain, D.F.; Maia Neto, P.A.M. Quantum radiation in a plane cavity with moving mirrors. Phys. Rev. A
**1998**, 57, 1379. [Google Scholar] [CrossRef] - Law, C.K. Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium. Phys. Rev. A
**1994**, 49, 433. [Google Scholar] [CrossRef] - Law, C.K. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys. Rev. A
**1995**, 51, 2537. [Google Scholar] [CrossRef] [PubMed] - Dalvit, D.A.R.; Maia Neto, P.A.; Mazzitelli, D. Fluctuations, dissipation and the dynamical Casimir effect. In Casimir Physics; Dalvit, D., Milonni, P., Roberts, D., Rosa, F., Eds.; Springer: Berlin, Germany, 2011; p. 419. [Google Scholar]
- Barton, G. On van der Waals friction. I. Between two atoms. New J. Phys.
**2010**, 10, 113044. [Google Scholar] [CrossRef] - Barton, G. On van der Waals friction. II: Between atom and half-space. New J. Phys.
**2010**, 10, 113045, Corrigendum in New J. Phys.**2012**, 14, 079502, doi:10.1088/1367-2630/14/7/07950. [Google Scholar] [CrossRef] - Intravaia, F.; Mkrtchian, V.E.; Buhmann, S.Y.; Scheel, S.; Dalvit, D.A.R.; Henkel, C. Friction forces on atoms after acceleration. J. Phys. Condens. Matter
**2015**, 27, 214020. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rizzuto, L.; Spagnolo, S. Lamb shift of a uniformly accelerated hydrogen atom in the presence of a conducting plate. Phys. Rev. A
**2009**, 79, 062110. [Google Scholar] [CrossRef] - Rizzuto, L. Casimir–Polder interaction between an accelerated two-level system and an infinite plate. Phys. Rev. A
**2007**, 76, 062114. [Google Scholar] [CrossRef] - Schützhold, R.; Schaller, G.; Habs, D. Signatures of the Unruh Effect from Electrons Accelerated by Ultrastrong Laser Fields. Phys. Rev. Lett.
**2006**, 97, 121302. [Google Scholar] [CrossRef] - Steinhauer, J. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nature Phys.
**2016**, 12, 959. [Google Scholar] [CrossRef] - Noto, A.; Passante, R. Van der Waals interaction energy between two atoms moving with uniform acceleration. Phys. Rev. D
**2013**, 88, 025041. [Google Scholar] [CrossRef] - Dicke, R.H. Coherence in spontaneous radiation processes. Phys. Rev.
**1954**, 93, 99. [Google Scholar] [CrossRef] - Rindler, W. Relativity. Special, General, and Cosmological; Oxford Univ. Press: Oxford, UK, 2006. [Google Scholar]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge Univ. Press: Cambridge, UK, 1982. [Google Scholar]
- Dalibard, J.; Dupont-Roc, J.; Cohen-Tannoudji, C. Vacuum fluctuations and radiation reaction: Identification of their respective contributions. J. Phys. (Fr.)
**1982**, 43, 1617. [Google Scholar] [CrossRef] - Dalibard, J.; Dupont-Roc, J.; Cohen-Tannoudji, C. Dynamics of a small system coupled to a reservoir: reservoir fluctuations and self-reaction. J. Phys. (Fr.)
**1984**, 45, 637. [Google Scholar] [CrossRef] - Menezes, G.; Svaiter, N.F. Radiative processes of uniformly accelerated entangled atoms. Phys. Rev. A
**2016**, 93, 052117. [Google Scholar] [CrossRef] - Zhou, W.; Yu, H. Spontaneous excitation of a uniformly accelerated atom coupled to vacuum Dirac field fluctuations. Phys. Rev. A
**2012**, 86, 033841. [Google Scholar] [CrossRef] - Marino, J.; Noto, A.; Passante, R. Thermal and Nonthermal Signatures of the Unruh Effect in Casimir–Polder Forces. Phys. Rev. Lett.
**2014**, 113, 020403. [Google Scholar] [CrossRef] - Noto, A.; Marino, J.; Passante, R. A fourth–order statistical method for the calculation of dispersion Casimir–Polder interactions.
**2018**. in preparation. [Google Scholar] - Rizzuto, L.; Lattuca, M.; Marino, J.; Noto, A.; Spagnolo, S.; Zhou, W.; Passante, R. Nonthermal effects of acceleration in the resonance interaction between two uniformly accelerated atoms. Phys. Rev. A
**2016**, 94, 012121. [Google Scholar] [CrossRef] - Zhou, W.; Passante, R.; Rizzuto, L. Resonance interaction energy between two accelerated identical atoms in a coaccelerated frame and the Unruh effect. Phys. Rev. D
**2016**, 94, 105025. [Google Scholar] [CrossRef] [Green Version] - Zhou, W.; Passante, R.; Rizzuto, L. Resonance Dipole–Dipole Interaction between Two Accelerated Atoms in the Presence of Reflecting Plane Boundary. Symmetry
**2018**, 10, 185. [Google Scholar] [CrossRef] - Menezes, G.; Kiefer, C.; Marino, J. Thermal and nonthermal scaling of the Casimir–Polder interaction in a black hole spacetime. Phys. Rev. D
**2016**, 95, 085014. [Google Scholar] [CrossRef] - Zhou, W.; Yu, Y. Resonance interatomic energy in a Schwarzschild spacetime. Phys. Rev. D
**2017**, 96, 045018. [Google Scholar] [CrossRef] - Zhou, W.; Yu, Y. Boundarylike behaviors of the resonance interatomic energy in a cosmic string spacetime. Phys. Rev. D
**2018**, 97, 045007. [Google Scholar] [CrossRef] [Green Version] - Senitzky, I.R. Radiation-reaction and vacuum-field effects in Heisenberg-picture quantum electrodynamics. Phys. Rev. Lett.
**1973**, 31, 955. [Google Scholar] [CrossRef] - Milonni, P.W.; Ackerhalt, J.R.; Smith, W.A. Interpretation of radiative corrections in spontaneous emission. Phys. Rev. Lett.
**1973**, 31, 958. [Google Scholar] [CrossRef] - Milonni, P.W. Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory. Phys. Rep.
**1976**, 25, 1. [Google Scholar] [CrossRef] - Adler, R.J.; Casey, B.; Jacob, O.C. Vacuum catastrophe: An elementary exposition of the cosmological constant problem. Am. J. Phys.
**1995**, 63, 620. [Google Scholar] [CrossRef] - Cree, S.S.; Davis, T.M.; Ralph, T.C.; Wang, Q.; Zhu, Z.; Unruh, W.G. Can the fluctuations of the quantum vacuum solve the cosmological constant problem? Phys. Rev. D
**2018**, 98, 063506. [Google Scholar] [CrossRef] - Solá, J. Cosmological constant and vacuum energy: Old and new ideas. J. Phys. Conf. Ser.
**2013**, 453, 012015. [Google Scholar] [CrossRef] - Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Pearson Education Limited: Harlow, UK, 2014. [Google Scholar]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Passante, R.
Dispersion Interactions between Neutral Atoms and the Quantum Electrodynamical Vacuum. *Symmetry* **2018**, *10*, 735.
https://doi.org/10.3390/sym10120735

**AMA Style**

Passante R.
Dispersion Interactions between Neutral Atoms and the Quantum Electrodynamical Vacuum. *Symmetry*. 2018; 10(12):735.
https://doi.org/10.3390/sym10120735

**Chicago/Turabian Style**

Passante, Roberto.
2018. "Dispersion Interactions between Neutral Atoms and the Quantum Electrodynamical Vacuum" *Symmetry* 10, no. 12: 735.
https://doi.org/10.3390/sym10120735