The Influence of Organs on Biochemical Properties of Tunisian Thuja occidentalis Essential Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Essential Oil Extraction
2.3. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
2.4. Determination of Total Antioxidant Activity
2.5. 2, 2′-diphenyl-1-picryl hydrazyl (DPPH) Free Radical Scavenging Assay
2.6. Antimicrobial Activity
2.6.1. Microbial Strains
2.6.2. Disk Diffusion Assay
2.6.3. Determination of minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3. Results and Discussion
3.1. Essential Oil Yields
3.2. Chemical Composition of Essential Oils
3.3. Antioxidant Activities
3.4. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peng, D.; Wang, X.Q. Reticulate evolution in Thuja inferred from multiple gene sequences: Implications for the study of biogeographical disjunction between easren Asia and North America. Mol. Phylogenet. Evol. 2008, 47, 1190–1202. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.C.; Song, L.L.; Park, E.J. Bioactive constituents of Thuja occidentalis. J. Nat. Prod. 2000, 63, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K. Contribution to anatomy of the central nervous system of the Japanese. Okajimas Folia Anatomica Japonica 1956, 28, 207–227. [Google Scholar] [CrossRef] [PubMed]
- Biswas, R.; Mandal, S.K.; Dutta, S.; Bhattacharyya, S.S.; Boujedaini, N.; Khuda-Bukhsh, A.R. Thujone-Rich Fraction of Thuja occidentalis Demonstrates Major Anti-Cancer Potentials: Evidences from In Vitro Studies on A375 Cells. Evid.-Based Complement. Altern. Med. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Mothana, R.A.; Alsaid, M.S.; Hasoon, S.S.; Al-Mosaiyb, N.M.; Al-Rehaily, A.J.; Al-Yahya, M.A. Antimicrobial and antioxidant activities and gas chromatography mass spectrometry (GC/MS) analysis of the essential oils of Ajuga bracteosa Wall. ex Benth. and Lavandula dentata L. growing wild in Yemen. J. Med. Plants Res. 2012, 6, 3066–3071. [Google Scholar]
- Zaouali, Y.; Chograni, H.; Trimech, R.; Boussaid, M. Changes in essential oil composition and phenolic fraction in Rosmarinus officinalis L. var. typicus Batt. organs during growth and incidence on the antioxidant activity. Ind. Crop. Prod. 2013, 43, 412–419. [Google Scholar]
- Mohammedi, Z.; Atik, F. Impact of solvent extraction type on total polyphenols Content and biological activity from Tamarix aphylla (L.) Karst. Int. J. Pharm. Biol. Sci. 2011, 2, 609–615. [Google Scholar]
- Svajdlenka, E.; Mártonfi, P.; Tomasko, I.; Grancai, D.; Nagy, M. Essential oil composition of Thuja occidentalis L. Samples from Slovakia. J. Essent. Oil Res. 1999, 11, 532–536. [Google Scholar] [CrossRef]
- Keita, S.M.; Vincent, C.; Schmidt, P.; Arnason, T. Insecticidal effects of Thuja occidentalis (Cupressaceae) essential oil on Callosobruchus maculatus [Coleoptera: Bruchidae]. Can. J. Plant Sci. 2001, 81, 173–177. [Google Scholar] [CrossRef]
- Tsiri, D.; Graikou, K.; Pobłocka-Oleh, L.; Krauze Baranowska, M.; Spyropoulos, C.; Chinou, I. Chemosystematic Value of the Essential Oil Composition of Thuja species Cultivated in Poland Antimicrobial Activity. Molecules 2009, 14, 4707–4715. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Co.: Carol Stream, IL, USA, 2009. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of complex: specific application to the determination of vit E. Anal. Biochem. 1999, 209, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effect. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef] [PubMed]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Ghazghazi, H.; Aouadhi, C.; Weslati, M.; Trakhna, F.; Sebei, H.; Maaroufi, A.; Hasnaoui, B. Chemical composition and in vitro antimicrobial activities of Mentha pulegium leaves extracts against foodborne pathogens. J. Food Saf. 2013, 33, 239–246. [Google Scholar] [CrossRef]
- Statner, B.; Jones, M.J.; George, W.L. Effect of incubation temperature on growth and soluble protein profiles of motile Aeromonas strains. J. Clin. Microbiol. 1988, 26, 392–393. [Google Scholar] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard, 4th ed.; CLSI Document Vet 01-A4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013. [Google Scholar]
- Al Hafi, M.; Arnold, N.; Bouez, J.; Fabrice, C.; Antoine, A.; Beyrouthy, M. Chemical composition of the essential oils from (berries, leaves and twigs) of Juniperus excelsa M. Bieb. growing wild in Lebanon. J. Essent. Oil. Bear. Pl. 2013, 18, 901626. [Google Scholar] [CrossRef]
- Vaičiulytė, V.; Ložienė, K. Variation of chemical and morphological characters of leaves and unripe cones in Juniperus communis. Bot Lith. 2013, 19, 37–47. [Google Scholar]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical composition and antibacterial activity of leaves essential oil of Laurus nobilis from Morocco. Aust. J. Basic Appl. Sci. 2009, 3, 3818–3824. [Google Scholar]
- Edward, P.C.; Varro, E.T.; Lynn, R.B. Pharmacognosy, 6th ed.; Philadelphia Lea & Febiger: Philadelphia, PA, USA, 1987; pp. 184–187. [Google Scholar]
- Nickavara, B.; Amin, G.; Parhami, S. Volatile Constituents of the Fruit and Leaf Oils of Thuja orientalis L. Grown in Iran. Z. Naturforsch. 2003, 58c, 171–182. [Google Scholar] [CrossRef]
- Guleria, S.; Kumar, A.; Tiku, A.K. Chemical composition and fungitoxic activity of essential oil of Thuja orientalis L. grown in the north-western Himalaya. Z. Naturforsch. C 2008, 63, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Jirovetz, L.; Buchbauer, G.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Schmidt, E. Chemical composition, antimicrobial activities and odor descriptions of various Salvia sp. and Thuja sp. essential oils. Eur. Renal Nutr. 2006, 30, 152–159. [Google Scholar]
- Müller-Riebau, F.; Berger, B.; Yegen, O.; Cakir, C. Seasonal variations in the chemical compositions of essential oils of selected aromatic plants growing wild in Turkey. J. Agric. Food Chem. 1997, 45, 4821–5825. [Google Scholar] [CrossRef]
- Riahi, L.; Ghazghazi, H.; Ayari, B.; Aouadhi, C.; Klay, I.; Chograni, H.; Ameur, C.; Zoghlami, N. Effect of environmental conditions on chemical polymorphism and biological activities among Artemisia absinthium L. essential oil provenances grown in Tunisia. Ind. Crop. Prod. 2015, 66, 96–102. [Google Scholar] [CrossRef]
- Alves, L.D.S.; Figueirêdo, C.B.M.; Silva, C.C.A.R.; Marques, G.S.; Ferreira, P.A.; Soares, M.F.R.; Silva, R.M.F.; Rolim-neto, P.J. Thuja occidentalis L. (Cupressaceae): Review of botanical, phytochemical, pharmacological and toxicological aspects. Int. J. Pharm. Sci. Res. 2014, 5, 1163–1176. [Google Scholar]
- Yogesh, K.; Jamshed, A. Potential of thuja (Thuja occidentalis) cones and peach (Prunus persia) seeds in raw chicken ground meat during refrigerated (4 ± 1 °C) storage. J. Food Sci. Technol. 2014, 51, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.K.; Batra, A. Antioxidant activities of Thuja occidentalis Linn. Asian J. Pharm. Clin. Res. 2009, 2, 73–76. [Google Scholar]
- Ololade, Z.S.; Fakankun, O.A.; Alao, F.O. Phytochemical and Therapeutic Studies of the Fruit essential oil of Thuja orientalis from Nigeria. Glob. J. Sci. Front. Res. B Chem. 2014, 1, 14. [Google Scholar]
- Das, S.; Rani, R. Antioxidant and gastroprotective properties of the fruits of Thuja occidentalis Linn. Asian J. Pharm. Clin. Res. 2013, 3, 80–87. [Google Scholar]
- Khubeiz, M.J.; Mansour, G.; Zahraa, B. Antibacterial and Phytochemical Investigation of Thuja orientalis (L.) Leaves Essential Oil from Syria. Int. J. Curr. Pharm. Rev. Res. 2016, 7, 243–247. [Google Scholar]
- Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 2008, 119, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Boukhebti, H.; Chaker, A.N.; Belhadj, H.; Sahli, F.; Ramdhani, M.; Laouer, H.; Harzallah, H. Chemical composition and antibacterial activity of Mentha pulegium L. and Mentha spicata L. essential oils. Pharm. Lett. 2011, 3, 267–275. [Google Scholar]
- Nikaido, H.; Vaara, M. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 1985, 49, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Hogg, S. Essential Microbiology; John Wiley and Sons Ltd.: Chichester, UK, 2005. [Google Scholar]
- Sah, S.N.; Regmi, S.; Tamung, M.K. Antibacterial Effects of Thuja Leaves Extract. Int. J. Appl. Sci. Biotechnol. 2017, 5, 256–260. [Google Scholar] [CrossRef]
- Shah, W.A.; Qadir, M. Chemical composition, Antioxidant and Antibacterial activity of Thuja orientalis essential oil. World J. Pharm. Sci. 2013, 2, 56–60. [Google Scholar]
- Rakesh, K.J.; Garg, S.C. Antimicrobial activity of the essential oil of Thuja orientalis L. Anc. Sci. Life 1997, 16, 186–189. [Google Scholar]
- Elaissi, A.; Rouis, Z.; Mabrouk, S.; Bel Haj Salah, K.; Aouni, M.; Larbi Khouja, M.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F. Correlation Between Chemical Composition and Antibacterial Activity of Essential Oils from Fifteen Eucalyptus Species Growing in the Korbous and Jbel Abderrahman Arboreta (North East Tunisia). Molecules 2012, 17, 3044–3057. [Google Scholar] [CrossRef] [PubMed]
N° | Compounds | Percentage (%) | |
---|---|---|---|
Leaves | Cones | ||
1 | α-Thujene | 1.76 | - |
2 | α-Pinene | 34.4 | 58.99 |
3 | α-Fenchene | 0.55 | 1.26 |
4 | β-Phellandrene | 8.04 | - |
5 | β-Pinene | 0.85 | 1.18 |
6 | β-Myrcene | 3.84 | 1.94 |
7 | α-Phellandrene | 2.2 | 1.61 |
8 | 3-Carene | 7.32 | 24.08 |
9 | 4-Carene | 0.68 | - |
10 | o-Cymene | 0.45 | - |
11 | Sabinene | 6.79 | 2.26 |
12 | α-Terpinene | 1.2 | - |
13 | α-Terpinolene | 3.22 | - |
14 | Bornyl acetate | 0.58 | 0.4 |
15 | Terpinolene | 4.27 | 3.73 |
16 | Geranyl acetate | 0.46 | - |
17 | Naphtalene | 0.47 | - |
18 | Caryophyllene | 3.26 | 1.62 |
19 | α-Caryophyllene | 2.69 | 1.03 |
20 | β-Cubebene | 1.15 | 0.75 |
21 | δ-Cadinene | 0.42 | - |
22 | α-Farnesene | 0.71 | - |
23 | Benzene,1 (1,1dimethylethy)-2-methoxy-4-methyl- | 0.95 | - |
24 | Cedrol | 13.17 | 1.13 |
25 | Decahydronaphtalene | 0.57 | - |
Total identified (%) | 100 | 99.98 |
Microorganisms | Test Zone Diameter of Inhibition (mm) | |||
---|---|---|---|---|
Cones | Leaves | Antibiotics | ||
Gram-negative bacteria | E. coli ATCC 8739 | 9 ± 0.5 | 13 ± 1 | 24 1 |
S. typhimurium NCTC 6017 | 8 ± 0.5 | 11 ± 0.6 | 23 1 | |
A. hydrophila EI | 10 ± 1 | 11 ± 0.6 | 23 1 | |
P. aeruginosa ATCC 27853 | 9 ± 0.5 | 13 ± 1 | 21 1 | |
Gram-positive bacteria | S. aureus ATCC 29213 | 10 ± 0.7 | 15 ± 2 | 20 1 |
L. monocytogenes ATCC 7644 | 10 ± 0.8 | 16 ± 0.7 | 18 1 | |
B. cereus ATCC 1247 | 9 ± 1 | 15 ± 1 | 21 1 | |
Fungi | A. flavus (foodborne isolate) | 8 ± 0.6 | 10 ± 0.9 | 11 2 |
A. niger CTM 10099 | 13 ± 1 | 11 ± 0.8 | 12 2 | |
Yeast | C. albicans | 10 ± 0.5 | 10 ± 0.5 | 17 2 |
Microorganisms | MIC (µg/mL) | MBC (µg/mL) | |||
---|---|---|---|---|---|
Cones | Leaves | Cones | Leaves | ||
Gram-negative bacteria | E. coli ATCC 8739 | 25 | 12.5 | 50 | 25 |
S. typhimurium NCTC 6017 | 25 | 25 | 50 | 50 | |
A. hydrophila EI | 12.5 | 25 | 25 | 50 | |
P. aeruginosa ATCC 27853 | 25 | 25 | 50 | 50 | |
Gram-positive bacteria | S. aureus ATCC 29213 | 25 | 25 | 50 | 50 |
L. monocytogenes ATCC 7644 | 25 | 12.5 | 50 | 25 | |
B. cereus ATCC1247 | 25 | 25 | 50 | 50 | |
Fungi | A. flavus (foodborne isolate) | 25 | 25 | 50 | 12.5 |
A. niger CTM 10099 | 6.25 | 3.12 | 12.5 | 6.25 | |
Yeast | C. albicans | 6.25 | 12.5 | 12.5 | 25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellili, S.; Aouadhi, C.; Dhifi, W.; Ghazghazi, H.; Jlassi, C.; Sadaka, C.; Beyrouthy, M.E.; Maaroufi, A.; Cherif, A.; Mnif, W. The Influence of Organs on Biochemical Properties of Tunisian Thuja occidentalis Essential Oils. Symmetry 2018, 10, 649. https://doi.org/10.3390/sym10110649
Bellili S, Aouadhi C, Dhifi W, Ghazghazi H, Jlassi C, Sadaka C, Beyrouthy ME, Maaroufi A, Cherif A, Mnif W. The Influence of Organs on Biochemical Properties of Tunisian Thuja occidentalis Essential Oils. Symmetry. 2018; 10(11):649. https://doi.org/10.3390/sym10110649
Chicago/Turabian StyleBellili, Sana, Chedia Aouadhi, Wissal Dhifi, Hanene Ghazghazi, Chaima Jlassi, Carmen Sadaka, Marc El Beyrouthy, Abderrazak Maaroufi, Ameur Cherif, and Wissem Mnif. 2018. "The Influence of Organs on Biochemical Properties of Tunisian Thuja occidentalis Essential Oils" Symmetry 10, no. 11: 649. https://doi.org/10.3390/sym10110649