A Novel Tool for Supervised Segmentation Using 3D Slicer
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BraTS | Brain-Tumor Segmentation |
FL | Fluid-Attenuated Inversion Recovery |
LGG | Low-Grade Glioma |
MCS | Multiple Classifier System |
OOB | Out Of Box |
RVM | Relevance Vector Machine |
RF | Random Forest |
SVM | Support Vector Machine |
References
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [PubMed]
- Mehrtash, A.; Sedghi, A.; Ghafoorian, M.; Taghipour, M.; Tempany, C.M.; Wells, W.M.; Kapur, T.; Mousavi, P.; Abolmaesumi, P.; Fedorov, A. Classification of Clinical Significance of MRI Prostate Findings Using 3D Convolutional Neural Networks. Proc. SPIE Int. Soc. Optical Eng. 2017, 10134. [Google Scholar]
- Zhang, Y.; Dong, Z.; Wang, S.; Ji, G.; Yang, J. Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 2015, 17, 1795–1813. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Phillips, P.; Dong, Z.; Ji, G.; Yang, J. Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomed. Signal Process. Control 2015, 21, 58–73. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Shao, Y.; Cattani, C.; Zhang, Y.; Du, S. Detection of dendritic spines using wavelet packet entropy and fuzzy support vector machine. CNS Neurol. Dis.-Drug Targets 2017, 16, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Z.; Lu, H.; Zhou, X.; Phillips, P.; Liu, Q.; Wang, S. Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation. IEEE Access 2016, 4, 8375–8385. [Google Scholar] [CrossRef]
- Zheng, Q.; Wu, Y.; Fan, Y. Integrating semi-supervised and supervised learning methods for label fusion in multi-atlas based image segmentation. Front. Neuroinform. 2018, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Amiri, S.; Mahjoub, M.A.; Rekik, I. Tree-based Ensemble Classifier Learning for Automatic Brain Glioma Segmentation. Neurocomputing 2018, 313, 135–142. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Chalupa, D. Supervised Segmentation Toolbox for 3D Slicer. Source Code Available Under the GNU General Public License v3.0. Available online: https://github.com/chalupaDaniel/slicerSupervisedSegmentation (accessed on 14 October 2018).
- King, D.E. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. [Google Scholar]
- Igel, C.; Heidrich-Meisner, V.; Glasmachers, T. Shark. J. Mach. Learn. Res. 2008, 9, 993–996. [Google Scholar]
- Kapás, Z.; Lefkovits, L.; Szilágyi, L. Automatic Detection and Segmentation of Brain Tumor Using Random Forest Approach. In Modeling Decisions for Artificial Intelligence; Springer: New York, NY, USA, 2016; pp. 301–312. [Google Scholar]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.; Graña, M.; Corchado, E. A survey of multiple classifier systems as hybrid systems. Inf. Fusion 2014, 16, 3–17. [Google Scholar] [CrossRef]
- Termenon, M.; Graña, M. A two stage sequential ensemble applied to the classification of Alzheimer’s disease based on MRI features. Neural Process. Lett. 2012, 35, 1–12. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Geremia, E.; Menze, B.H.; Ayache, N. Spatial Decision Forests for Glioma Segmentation in Multi-Channel MR Images. MICCAI Chall. Multimodal Brain Tumor Segmentation 2012, 34. [Google Scholar]
- Bauer, S.; Nolte, L.P.; Reyes, M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In Medical Image Computing and Computer-Assisted Intervention—MICCAI; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Criminisi, A.; Zikic, D.; Glocker, B.; Shotton, J. Context-sensitive classification forests for segmentation of brain tumor tissues. Proc MICCAI-BraTS 2012, 1, 1–9. [Google Scholar]
- Festa, J.; Pereira, S.; Mariz, J.; Sousa, N.; Silva, C. Automatic brain tumor segmentation of multi-sequence MR images using random decision forests. Proc. NCI-MICCAI BRATS 2013, 1, 23–26. [Google Scholar]
Parameters | Sensitivity | Specificity | Acc. | Prec. | DICE | Jaccard | |
---|---|---|---|---|---|---|---|
C-SVM | γ = 1.0, C = 1.0 | 0.72 | 0.98 | 0.99 | 0.96 | 0.80 | 0.66 |
N-SVM | γ = 10.0−3, N = 0.1 | 0.77 | 0.97 | 0.99 | 0.96 | 0.82 | 0.70 |
RF | 0 % OOB, 0 random attributes, 1200 trees, node size 2 | 1.00 | 0.95 | 1.00 | 0.96 | 0.94 | 0.89 |
Paper | Approach | DICE |
---|---|---|
This paper | RF | 0.43 |
Geremia [21] | Spatial decision forests with intrinsic hierarchy | 0.32 |
Kapás [16] | RF | 0.58 |
Bauer [22] | Integrated hierarchical RF | 0.48 |
Zikic [23] | Context-sensitive features with a decision tree ensemble | 0.47 |
Festa [24] | RF using neighborhood and local context features | 0.50 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalupa, D.; Mikulka, J. A Novel Tool for Supervised Segmentation Using 3D Slicer. Symmetry 2018, 10, 627. https://doi.org/10.3390/sym10110627
Chalupa D, Mikulka J. A Novel Tool for Supervised Segmentation Using 3D Slicer. Symmetry. 2018; 10(11):627. https://doi.org/10.3390/sym10110627
Chicago/Turabian StyleChalupa, Daniel, and Jan Mikulka. 2018. "A Novel Tool for Supervised Segmentation Using 3D Slicer" Symmetry 10, no. 11: 627. https://doi.org/10.3390/sym10110627
APA StyleChalupa, D., & Mikulka, J. (2018). A Novel Tool for Supervised Segmentation Using 3D Slicer. Symmetry, 10(11), 627. https://doi.org/10.3390/sym10110627