Some Inequalities of Čebyšev Type for Conformable k-Fractional Integral Operators
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Čebyšev, P.L. Sur les expressions approximatives des intégrales définies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 1882, 2, 93–98. [Google Scholar]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Qi, F.; Cui, L.-H.; Xu, S.-L. Some inequalities constructed by Tchebysheff’s integral inequality. Math. Inequal. Appl. 1999, 2, 517–528. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Set, E.; Akdemir, A.O.; Sarıkaya, M.Z. Some new Chebyshev type inequalities for functions whose derivatives belongs to Lp spaces. Afr. Mat. 2015, 26, 1609–1619. [Google Scholar] [CrossRef]
- Set, E.; Dahmani, Z.; Mumcu, I. New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Pólya-Szegö inequality. Int. J. Optim. Control. Theor. Appl. IJOCTA 2018, 8, 137–144. [Google Scholar] [CrossRef]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Edited and with a Foreword by S. M. Nikol’skiĭ; Translated from the 1987 Russian Original; Revised by the Authors; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Nisar, K.S.; Qi, F.; Rahman, G.; Mubeen, S.; Arshad, M. Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function. J. Inequal. Appl. 2018, 2018, 135. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Guo, B.-N. Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2017, 111, 425–434. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 86. [Google Scholar]
- Shi, D.-P.; Xi, B.-Y.; Qi, F. Hermite–Hadamard type inequalities for (m,h1,h2)-convex functions via Riemann–Liouville fractional integrals. Turkish J. Anal. Number Theory 2014, 2, 22–27. [Google Scholar] [CrossRef]
- Shi, D.-P.; Xi, B.-Y.; Qi, F. Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals of (α,m)-convex functions. Fract. Differ. Calc. 2014, 4, 33–43. [Google Scholar] [CrossRef]
- Wang, S.-H.; Qi, F. Hermite–Hadamard type inequalities for s-convex functions via Riemann–Liouville fractional integrals. J. Comput. Anal. Appl. 2017, 22, 1124–1134. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Díaz, R.; Pariguan, E. On hypergeometric function and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Qi, F.; Akkurt, A.; Yildirim, H. Catalan numbers, k-gamma and k-beta functions, and parametric integrals. J. Comput. Anal. Appl. 2018, 25, 1036–1042. [Google Scholar]
- Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Băleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Set, E.; Mumcu, İ.; Özdemir, M.E. Grüss Type Inequalities Involving New Conformable Fractional Integral Operators. ResearchGate Preprint. 2018. Available online: https://www.researchgate.net/publication/323545750 (accessed on 8 October 2018).
- Habib, S.; Mubeen, S.; Naeem, M.N.; Qi, F. Generalized k-Fractional Conformable Integrals and Related Inequalities. HAL Archives. 2018. Available online: https://hal.archives-ouvertes.fr/hal-01788916 (accessed on 8 October 2018).
- Set, E.; Mumcu, İ.; Demirbaş, S. Chebyshev Type Inequalities Involving New Conformable Fractional Integral Operators. ResearchGate Preprint. 2018. Available online: https://www.researchgate.net/publication/323880498 (accessed on 8 October 2018).
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, F.; Rahman, G.; Hussain, S.M.; Du, W.-S.; Nisar, K.S. Some Inequalities of Čebyšev Type for Conformable k-Fractional Integral Operators. Symmetry 2018, 10, 614. https://doi.org/10.3390/sym10110614
Qi F, Rahman G, Hussain SM, Du W-S, Nisar KS. Some Inequalities of Čebyšev Type for Conformable k-Fractional Integral Operators. Symmetry. 2018; 10(11):614. https://doi.org/10.3390/sym10110614
Chicago/Turabian StyleQi, Feng, Gauhar Rahman, Sardar Muhammad Hussain, Wei-Shih Du, and Kottakkaran Sooppy Nisar. 2018. "Some Inequalities of Čebyšev Type for Conformable k-Fractional Integral Operators" Symmetry 10, no. 11: 614. https://doi.org/10.3390/sym10110614