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1. Introduction

The Cebysev inequality [1] reads that

bla/ubf(x)g(x)dxz [bla/ﬂbf(x)dx] [bl/abg(x)dx], (1)

a

where f and g are two integrable and synchronous functions on [a,b] and two functions f and g are
called synchronous on g, b] if

[f(x) = fWg(x) =gW)] =0, x,y € [a,b].

The inequality (1) has many applications in diverse research subjects such as numerical quadrature,
transform theory, probability, existence of solutions of differential equations, and statistical problems
(see ([2], Chapter IX) and the paper [3]). Many authors have investigated, generalized, and applied the
Cebysev inequality (1). For detailed information, please refer to [4,5] and closely related references.

In [6,7], the Riemann-Liouville fractional integrals 37, and J;_ of order a > 0 are defined
respectively by

3, f(x) = r(la) /Hx(x () dE x> e, R(w) S0 %)
and
3 f(x) = r(la) /xb(t )l dE, x<b, R(w) >0, 3)
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where T is the classical Euler gamma function [8-10].
In [11], Belarbi and Dahmani presented the following theorems related to the Cebysev
inequality (1) for the Riemann-Liouville fractional integral operators [12-14].

Theorem 1 ([11], Theorem 3.1). Let f and g be two synchronous functions on [0,00). Then, for t,a > 0,

we have
P = T s s ),

Theorem 2 ([11], Theorem 3.2). Let f and g be two synchronous functions on [0,00). Then, for all t,a, p > 0,

we have
P

T(B+ 1)]“(f8)(t) > JEF(0) P (1) + JPF(1)*g(t).

tﬂ(
m]ﬂf@(ﬂ +

Theorem 3 ([11], Theorem 3.3). Let f; for 1 < i < n be n positive and increasing functions on [0, o). Then,
fort,a > 0, we have

n n
J* (Hﬂ) &) = J* @I T fic).
i=1 i=1
Theorem 4 ([11], Theorem 3.4). Let f and g be two functions defined on [0, 00), such that f is increasing, g is
differentiable, and there exists a real number m = inf;>o g’ (t). Then, the inequality

1 ., " mt
O -

J*(f9)(t) = JUf(E) +m*(tf (1))

is valid for t,a > 0.

In [15], the Riemann-Liouville k-fractional integrals are respectively defined by

1

T ) = f /ﬂx(x )R AL, x> a, R(a) >0

and
b
T f(0) = gy [ (G0 WAL x < R@) >0,

where I'y is the gamma k-function [16,17].
In [18], the left and right sided fractional conformable integral operators are respectively
defined by

» 1 f[(x—a)* = (r—a)*P" ()

ﬁJﬂ*ﬂ")‘r(ﬁ)“ : ] CEr @
and

N D e G e e o L L 1€

ﬁjb‘f(x)‘rus)“ a ] CEE ©

where R(B) > 0. Obviously, if taking 2 = 0 and « = 1, then the Equations (4) and (5) reduce to the
Riemann-Liouville fractional integrals (2) and (3), respectively.
In [19], one sided conformable fractional integral operator was defined as

210 = vy, (2 T“>ﬁl§3 ar ©
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Recently, conformable k-fractional integrals were defined [20] by

B/k—1
Bra _ 1 /" (x—a)*—(r—a)" f(7)
e = e [ e 7
and f/k-1
b gy = L [ oy,
o T ) e " G- "
where R(B) > 0.
In this paper, we introduce the conformable k-fractional integral operator
1 x f oyt — g\ PR f(r)
prya — SN
Tef (%) () /O ( - ) o dT ®)

When k = 1, the Equations (7) to (8) reduces to the Equations (4) to (6), respectively.

2. Main Results

In this section, we present several Cebysev type inequalities for conformable k-fractional integral
operators defined in the Equation (8).

Theorem 5. Let f and g be two integrable functions which are synchronous on [0,00). Then,

ok
() () = O 0 (o) () o),

where a, B > 0.
Proof. Since f and g are synchronous on [0, %), we have

fu)g(u) + f(0)g(v) = f(u)g(v) + f(v)g(u). ©)

Multiplying both sides of the Equation (9) by

1 X — o\ B/
kl“k(ﬁ)ul“< o ) , xeR, O<u<x

results in

krk(ﬁl)ul—a (xa — ua>ﬁ/k1f (g () + 7 ! ("“ — ”“)ﬁ/“ F(v)g(v)

« (B)ul—= n

1 x — g\ PE 1 x& _ g\ Pk
= kl"k(,B)u1“< « ) flu)g(v) + krk(lg)ula( P > f(o)g(u).

Further integrating both sides with respect to u over (0, x) gives

x /v _ g B/k=1 A Bkl

X[ oy B/k—1 Delo N B/k—1 Nolu
. krkl(ﬁ)/o < o > f(ul)55 )du+krkl(ﬁ)/0 ( w > f(uzi(x Lau,

Consequently, it follows that
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x o aN B/k=1
I + fose)m s [(F5) i 2 8@ N0 + o) Clig) ()

o

and

aB/k
(Pl fg) (x) + Wﬂv)g(v) > (o) (FIEf) (x) + f(0) (FIEg) (x), (10)

X[l gy B/k—-1 du Jx*B/k
/0 ( x ) ul=« — BaP/k’

Multiplying both sides of the Equation (10) by

1 g\ PR
kT (B)ol— < o )

(I f8) (x) (x“—v“)*”’”+ f(0)g(v) (xﬂ—aﬂ)wk—l xaB/k
Ti(

where

arrives at

k(o= \ a (Bl =\« o (B + K)ab/F
g(@) (F1Ef) (x) [ x* — o \P/H T (o) (Plg) (x) [ x — om\ /A1
- krkw)w( oc ) i krk<ﬁ>vw< x ) |

Now, integrating over (0, x) reveals

(Pléfg) (x) krkl(ﬁ) /0 (xa i = ) ﬁ/k_lzﬁi

x*B/k 1 X [ xt — pt ﬁ/kflf(v)g(v)
* B TR AP (=) I

. 1 X[y ﬁ/kflg(v)
2 (ﬁlkf)(x)krk(ﬁ)/o < o ) de

Therefore, we have

x*B/k

YaP /% (ﬁ];?fg) (x) + T

x*B/k
T T O 7 PF8) () = P F) ) (i) () + (1) (0 (Pls) (x):

B+k)

The proof of Theorem 5 is complete. [J

Corollary 1. Let f and g be two integrable functions which are synchronous on [0, c0). Then,

Ciefs) () = LD () (0 (Plg) (), > 0.

Proof. This follows from taking @ = 1in Theorem 5. O

Theorem 6. Let f and g be two integrable functions which are synchronous on [0,00). Then,

xot/k xxB/k

W(%fg)(x) + W(T]ﬁ‘fg) (x) > (I F) () (T8 &) (%) + (T ) () (I ) (%)

fora,B,T > 0.
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Proof. Multiplying both sides of the equality (10) by

1 Xt g\ Tk
e )

yields

1 Xt — o\ k1 N f(v)g(v) [x*—o" T/k=1 x*B/k
me ) e S () e

a o T/k=1 a o T/k=1
2 kl—'k<r:)vllx (x X : ) g@) (Pt f) (x) + kl"k(rl)zﬂ“ (x o ° ) (@) (FIEg) (x).

Further integrating both sides with respect to v over (0, x) leads to

Flafe)(x) ¥ (x* —o*\"* 1 do X/ 1 =0\ f(0)g(v)
b (7)) S tnpepenme h (a) TS

BIa £ (x) px /x% — o\ /K1 500 Breg) (x) px /% — o\ /K1 £
> CRNG) (2 2) 80 4 QRO (22 2y 0 o,

Therefore, we have

xot/k x*B/k

W(ﬁ]ﬁ‘fg)(x) T

rop o (80 = (TN () (Ts) () + (T5F) () (s) ().

Further integrating with respect to v over (0,x), as did in the proof of Theorem 5,
concludes Theorem 6. [

Remark 1. Applying Theorem 6 to T = B results in Theorem 5.

Corollary 2. Let f and g be two integrable functions which are synchronoms on [0,00). Then

T/ B/k

Fir i U f8) (0 + m(kag)(x) > (PIif) () (Tkg) (x) + (Tef) (x) (PUig) (x)
forwa, B, T > 0.
Proof. This follows from taking @ = 1 in Theorem 6. O

Theorem 7. Let f; for 1 < i < n be positive and increasing functions on [a, b]. For a, p > 0, we have
n Ti(B+k)ab/k]" 1 1
(%‘Hﬁ) (x) 2 {W} [TCEf) (0)- (1)
i=1 i=1

Proof. We prove this theorem by induction on n € N. Obviously, the case n = 1 of (11) holds.
For n = 2, since f; and f, are increasing, we have

[f1(x) = AW)I[f2(x) = f2(y)] = O.

Now, the left proof of the inequality (11) for n = 2 is the same as that of Theorem 5.
Assume that the inequality (11) is true for some n > 3. We observe that, since f; is increasing,
f =TI, fiis increasing. Let ¢ = f,+1. Then, applying the case n = 2 to the functions f and g yields
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n B/k
(ﬁfznlfim) ()= | e D (ﬁfk Hﬁ) () ()
aﬁ/k np4+1
= (W) H(ﬁlkfz)( ),

where the induction hypothesis for n is used in the deduction of the second inequality. The proof of
Theorem 7 is complete. [

Corollary 3. Let f; for 1 < i < n be positive and increasing functions on [a, b]. For a, p > 0, we have

n T (B+k
(’Bfknfz) (x) > {k(i/k)] H(ﬁ] fz)( )
i=1
Proof. This follows from taking « = 1in Theorem 7. O

Theorem 8. Let «, f > 0 and the functions f, g : [0,00) — R be such that f is increasing, g is differentiable,
and g' has a lower bound m = inf,c(g o) &' (t). Then,

B/k
Ot () = PEERE 0321) () i) (1) = 5 s () () + (i) ),

where i(x) is the identity function.

Proof. Let h(x) = g(x) — mx. We find that  is differentiable and increasing on [0, ). As in the proof
of Theorem 7, for clarity, let p(x) = mx, we obtain

B/
(s~ p) (o) > LB 3y ) () 05— ) )

B/k BIk
= BP0 1) () (Ot) (o) - LI gy o) () ), 1)
where
(FIEf(g =) (x) = (Pl fs) (x) — m(Plif) (x) (13)
and
N  mx®B/KHIT (2K)
(ﬁ]kl’)(x) = W-

Since Ty (k) = 1, see ([16], p. 183), then Iy (2k) = k. Therefore, we derive

kmax*B/k+1

(Pip) (x) = T (B + 2K)ab /" (14)

Substituting the Equations (13) and (14) into the Equation (12) leads to the desired result. [

Corollary 4. Under conditions of Theorem 8, we have

(f8) () = TEEEE (B 20 (P () —

kmx

(B+

o (Ief) () m (B ) (),
where i(x) is the identity function.

Proof. This follows from taking @ = 1in Theorem 8. O
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3. Conclusions

In this paper, we established several CebySev type inequalities for conformable k-fractional
integral operators. We observed that, if allowing k = 1, inequalities obtained in this paper will reduce
to those inequalities in [21]. Similarly, if letting # = k = 1, inequalities obtained in this paper will
reduce to those inequalities in [11].
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