

Article

Some Inequalities of Čebyšev Type for Conformable *k*-Fractional Integral Operators

Feng Qi ^{1,2,3}, Gauhar Rahman ⁴, Sardar Muhammad Hussain ⁴, Wei-Shih Du ^{5,*} and Kottakkaran Sooppy Nisar ⁶

- Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, China; qifeng618@gmail.com
- ² College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, China
- School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China
- Department of Mathematical Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan; gauhar55uom@gmail.com (G.R.); smhussain01@gmail.com (S.M.H.)
- Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
- Department of Mathematics, College of Arts and Science at Wadi Al Dawaser, Prince Sattam bin Abdulaziz University, Wadi Al Dawaser 11991, Saudi Arabia; n.sooppy@psau.edu.sa
- * Correspondence: wsdu@mail.nknu.edu.tw

Received: 24 October 2018; Accepted: 6 November 2018; Published: 8 November 2018

Abstract: In the article, the authors present several inequalities of the Čebyšev type for conformable k-fractional integral operators.

Keywords: inequality; fractional integral; *k*-fractional integral; conformable *k*-fractional integral; operator

MSC: 26A33; 26D10; 26D15; 90C23; 33B20

1. Introduction

The Čebyšev inequality [1] reads that

$$\frac{1}{b-a} \int_a^b f(x)g(x) \, \mathrm{d}x \ge \left[\frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \right] \left[\frac{1}{b-a} \int_a^b g(x) \, \mathrm{d}x \right],\tag{1}$$

where f and g are two integrable and synchronous functions on [a,b] and two functions f and g are called synchronous on [a,b] if

$$[f(x) - f(y)][g(x) - g(y)] \ge 0, \quad x, y \in [a, b].$$

The inequality (1) has many applications in diverse research subjects such as numerical quadrature, transform theory, probability, existence of solutions of differential equations, and statistical problems (see ([2], Chapter IX) and the paper [3]). Many authors have investigated, generalized, and applied the Čebyšev inequality (1). For detailed information, please refer to [4,5] and closely related references.

In [6,7], the Riemann–Liouville fractional integrals $\mathfrak{I}_{a^+}^{\alpha}$ and $\mathfrak{I}_{b^-}^{\alpha}$ of order $\alpha>0$ are defined respectively by

$$\mathfrak{I}_{a+}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x - t)^{\alpha - 1} f(t) \, \mathrm{d} t, \quad x > a, \quad \Re(\alpha) > 0$$
 (2)

and

$$\mathfrak{I}_{b^{-}}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t - x)^{\alpha - 1} f(t) \, \mathrm{d} \, t, \quad x < b, \quad \Re(\alpha) > 0, \tag{3}$$

Symmetry **2018**, 10, 614 2 of 8

where Γ is the classical Euler gamma function [8–10].

In [11], Belarbi and Dahmani presented the following theorems related to the Čebyšev inequality (1) for the Riemann–Liouville fractional integral operators [12–14].

Theorem 1 ([11], Theorem 3.1). Let f and g be two synchronous functions on $[0, \infty)$. Then, for $t, \alpha > 0$, we have

 $J^{\alpha}(fg) \ge \frac{\Gamma(\alpha+1)}{t^{\alpha}} J^{\alpha} f(t) J^{\alpha} g(t).$

Theorem 2 ([11], Theorem 3.2). *Let f and g be two synchronous functions on* $[0, \infty)$. *Then, for all t,* α , $\beta > 0$, we have

$$\frac{t^{\alpha}}{\Gamma(\alpha+1)}J^{\beta}(fg)(t) + \frac{t^{\beta}}{\Gamma(\beta+1)}J^{\alpha}(fg)(t) \geq J^{\alpha}f(t)J^{\beta}g(t) + J^{\beta}f(t)J^{\alpha}g(t).$$

Theorem 3 ([11], Theorem 3.3). Let f_i for $1 \le i \le n$ be n positive and increasing functions on $[0, \infty)$. Then, for $t, \alpha > 0$, we have

$$J^{\alpha}\left(\prod_{i=1}^{n} f_{i}\right)(t) \geq [J^{\alpha}(1)]^{1-n} \prod_{i=1}^{n} J^{\alpha} f_{i}(t).$$

Theorem 4 ([11], Theorem 3.4). Let f and g be two functions defined on $[0, \infty)$, such that f is increasing, g is differentiable, and there exists a real number $m = \inf_{t > 0} g'(t)$. Then, the inequality

$$J^{\alpha}(fg)(t) \geq \frac{1}{J^{\alpha}(1)}J^{\alpha}f(t)J^{\alpha}g(t) - \frac{mt}{\alpha+1}J^{\alpha}f(t) + mJ^{\alpha}(tf(t))$$

is valid for $t, \alpha > 0$.

In [15], the Riemann–Liouville *k*-fractional integrals are respectively defined by

$$\mathfrak{I}_{k,a+}^{\alpha}f(x) = \frac{1}{k\Gamma_k(\alpha)} \int_a^x (x-t)^{\alpha/k-1} f(t) \, \mathrm{d} t, \quad x > a, \quad \Re(\alpha) > 0$$

and

$$\mathfrak{I}_{k,b^-}^{\alpha}f(x) = \frac{1}{k\Gamma_k(\alpha)} \int_x^b (t-x)^{\alpha/k-1} f(t) \, \mathrm{d}\, t, \quad x < b, \quad \Re(\alpha) > 0,$$

where Γ_k is the gamma *k*-function [16,17].

In [18], the left and right sided fractional conformable integral operators are respectively defined by

$${}^{\beta}\mathfrak{I}_{a}^{\alpha}f(x) = \frac{1}{\Gamma(\beta)} \int_{a}^{x} \left[\frac{(x-a)^{\alpha} - (\tau-a)^{\alpha}}{\alpha} \right]^{\beta-1} \frac{f(\tau)}{(\tau-a)^{1-\alpha}} \, \mathrm{d}\,\tau \tag{4}$$

and

$${}^{\beta}\mathcal{I}^{\alpha}_{b^{-}}f(x) = \frac{1}{\Gamma(\beta)} \int_{a}^{x} \left[\frac{(b-x)^{\alpha} - (b-\tau)^{\alpha}}{\alpha} \right]^{\beta-1} \frac{f(\tau)}{(b-\tau)^{1-\alpha}} \,\mathrm{d}\,\tau,\tag{5}$$

where $\Re(\beta) > 0$. Obviously, if taking a = 0 and $\alpha = 1$, then the Equations (4) and (5) reduce to the Riemann–Liouville fractional integrals (2) and (3), respectively.

In [19], one sided conformable fractional integral operator was defined as

$${}^{\beta}\mathfrak{I}^{\alpha}f(x) = \frac{1}{\Gamma(\beta)} \int_0^x \left(\frac{x^{\alpha} - \tau^{\alpha}}{\alpha}\right)^{\beta - 1} \frac{f(\tau)}{\tau^{1 - \alpha}} \, \mathrm{d}\,\tau. \tag{6}$$

Symmetry **2018**, 10, 614 3 of 8

Recently, conformable *k*-fractional integrals were defined [20] by

$${}_{k}^{\beta} \mathfrak{I}_{a+}^{\alpha} f(x) = \frac{1}{k \Gamma_{k}(\beta)} \int_{a}^{x} \left[\frac{(x-a)^{\alpha} - (\tau-a)^{\alpha}}{\alpha} \right]^{\beta/k-1} \frac{f(\tau)}{(\tau-a)^{1-\alpha}} \, \mathrm{d}\,\tau \tag{7}$$

and

$${}_k^{\beta} \mathfrak{I}_{b^-}^{\alpha} f(x) = \frac{1}{k \Gamma_k(\beta)} \int_a^x \left[\frac{(b-x)^{\alpha} - (b-\tau)^{\alpha}}{\alpha} \right]^{\beta/k-1} \frac{f(\tau)}{(b-\tau)^{1-\alpha}} \, \mathrm{d} \, \tau,$$

where $\Re(\beta) > 0$.

In this paper, we introduce the conformable *k*-fractional integral operator

$${}^{\beta}\mathfrak{I}_{k}^{\alpha}f(x) = \frac{1}{k\Gamma_{k}(\beta)} \int_{0}^{x} \left(\frac{x^{\alpha} - \tau^{\alpha}}{\alpha}\right)^{\beta/k - 1} \frac{f(\tau)}{\tau^{1 - \alpha}} \, \mathrm{d}\,\tau. \tag{8}$$

When k = 1, the Equations (7) to (8) reduces to the Equations (4) to (6), respectively.

2. Main Results

In this section, we present several Čebyšev type inequalities for conformable *k*-fractional integral operators defined in the Equation (8).

Theorem 5. Let f and g be two integrable functions which are synchronous on $[0, \infty)$. Then,

$$({}^{\beta}J_k^{\alpha}fg)(x) \geq \frac{\Gamma_k(\beta+k)\alpha^{\beta/k}}{x^{\alpha\beta/k}}({}^{\beta}J_k^{\alpha}f)(x)({}^{\beta}J_k^{\alpha}g)(x),$$

where $\alpha, \beta > 0$.

Proof. Since f and g are synchronous on $[0, \infty)$, we have

$$f(u)g(u) + f(v)g(v) \ge f(u)g(v) + f(v)g(u). \tag{9}$$

Multiplying both sides of the Equation (9) by

$$\frac{1}{k\Gamma_k(\beta)u^{1-\alpha}}\left(\frac{x^{\alpha}-u^{\alpha}}{\alpha}\right)^{\beta/k-1}, \quad x \in \mathbb{R}, \quad 0 < u < x$$

results in

$$\begin{split} \frac{1}{k\Gamma_k(\beta)u^{1-\alpha}} \bigg(\frac{x^\alpha - u^\alpha}{\alpha}\bigg)^{\beta/k-1} f(u)g(u) + \frac{1}{k\Gamma_k(\beta)u^{1-\alpha}} \bigg(\frac{x^\alpha - u^\alpha}{\alpha}\bigg)^{\beta/k-1} f(v)g(v) \\ & \geq \frac{1}{k\Gamma_k(\beta)u^{1-\alpha}} \bigg(\frac{x^\alpha - u^\alpha}{\alpha}\bigg)^{\beta/k-1} f(u)g(v) + \frac{1}{k\Gamma_k(\beta)u^{1-\alpha}} \bigg(\frac{x^\alpha - u^\alpha}{\alpha}\bigg)^{\beta/k-1} f(v)g(u). \end{split}$$

Further integrating both sides with respect to u over (0, x) gives

$$\begin{split} \frac{1}{k\Gamma_k(\beta)} \int_0^x & \left(\frac{x^\alpha - u^\alpha}{\alpha}\right)^{\beta/k - 1} \frac{f(u)g(u)}{u^{1 - \alpha}} \, \mathrm{d}\, u + \frac{1}{k\Gamma_k(\beta)} \int_0^x \left(\frac{x^\alpha - u^\alpha}{\alpha}\right)^{\beta/k - 1} \frac{f(v)g(v)}{u^{1 - \alpha}} \, \mathrm{d}\, u \\ & \geq \frac{1}{k\Gamma_k(\beta)} \int_0^x \left(\frac{x^\alpha - u^\alpha}{\alpha}\right)^{\beta/k - 1} \frac{f(u)g(v)}{u^{1 - \alpha}} \, \mathrm{d}\, u + \frac{1}{k\Gamma_k(\beta)} \int_0^x \left(\frac{x^\alpha - u^\alpha}{\alpha}\right)^{\beta/k - 1} \frac{f(v)g(u)}{u^{1 - \alpha}} \, \mathrm{d}\, u. \end{split}$$

Consequently, it follows that

Symmetry **2018**, 10, 614 4 of 8

$$(^{\beta}J_k^{\alpha}fg)(x) + f(v)g(v)\frac{1}{k\Gamma_k(\beta)}\int_0^x \left(\frac{x^{\alpha} - u^{\alpha}}{\alpha}\right)^{\beta/k-1}\frac{\mathrm{d}\,u}{u^{1-\alpha}} \ge g(v)(^{\beta}J_k^{\alpha}f)(x) + f(v)(^{\beta}J_k^{\alpha}g)(x)$$

and

$$\left({}^{\beta}J_{k}^{\alpha}fg\right)(x) + \frac{x^{\alpha\beta/k}}{\Gamma_{k}(\beta+k)\alpha^{\beta/k}}f(v)g(v) \ge g(v)\left({}^{\beta}J_{k}^{\alpha}f\right)(x) + f(v)\left({}^{\beta}J_{k}^{\alpha}g\right)(x),\tag{10}$$

where

$$\int_0^x \left(\frac{x^{\alpha} - u^{\alpha}}{\alpha}\right)^{\beta/k - 1} \frac{\mathrm{d}\,u}{u^{1 - \alpha}} = \frac{kx^{\alpha\beta/k}}{\beta\alpha^{\beta/k}}.$$

Multiplying both sides of the Equation (10) by

$$\frac{1}{k\Gamma_k(\beta)v^{1-\alpha}}\left(\frac{x^\alpha-v^\alpha}{\alpha}\right)^{\beta/k-1}$$

arrives at

$$\begin{split} \frac{\left(\beta J_k^{\alpha} f g\right)(x)}{k \Gamma_k(\beta) v^{1-\alpha}} \left(\frac{x^{\alpha} - v^{\alpha}}{\alpha}\right)^{\beta/k-1} &+ \frac{f(v) g(v)}{k \Gamma_k(\beta) v^{1-\alpha}} \left(\frac{x^{\alpha} - v^{\alpha}}{\alpha}\right)^{\beta/k-1} \frac{x^{\alpha\beta/k}}{\Gamma_k(\beta + k) \alpha^{\beta/k}} \\ &\geq \frac{g(v) \left(\beta J_k^{\alpha} f\right)(x)}{k \Gamma_k(\beta) v^{1-\alpha}} \left(\frac{x^{\alpha} - v^{\alpha}}{\alpha}\right)^{\beta/k-1} &+ \frac{f(v) \left(\beta J_k^{\alpha} g\right)(x)}{k \Gamma_k(\beta) v^{1-\alpha}} \left(\frac{x^{\alpha} - v^{\alpha}}{\alpha}\right)^{\beta/k-1}. \end{split}$$

Now, integrating over (0, x) reveals

$$\begin{split} \left({}^{\beta}J_{k}^{\alpha}fg\right)(x)\frac{1}{k\Gamma_{k}(\beta)}\int_{0}^{x}&\left(\frac{x^{\alpha}-v^{\alpha}}{\alpha}\right)^{\beta/k-1}\frac{\mathrm{d}\,v}{v^{1-\alpha}}\\ &+\frac{x^{\alpha\beta/k}}{\Gamma_{k}(\beta+k)\alpha^{\beta/k}}\frac{1}{k\Gamma_{k}(\beta)}\int_{0}^{x}&\left(\frac{x^{\alpha}-v^{\alpha}}{\alpha}\right)^{\beta/k-1}\frac{f(v)g(v)}{v^{1-\alpha}}\,\mathrm{d}\,v\\ &\geq\left({}^{\beta}J_{k}^{\alpha}f\right)(x)\frac{1}{k\Gamma_{k}(\beta)}\int_{0}^{x}&\left(\frac{x^{\alpha}-v^{\alpha}}{\alpha}\right)^{\beta/k-1}\frac{g(v)}{v^{1-\alpha}}\,\mathrm{d}\,v\\ &+\left({}^{\beta}J_{k}^{\alpha}g\right)(x)\frac{1}{k\Gamma_{k}(\beta)}\int_{0}^{x}&\left(\frac{x^{\alpha}-v^{\alpha}}{\alpha}\right)^{\beta/k-1}\frac{f(v)}{v^{1-\alpha}}\,\mathrm{d}\,v. \end{split}$$

Therefore, we have

$$\frac{x^{\alpha\beta/k}}{\Gamma_k(\beta+k)\alpha^{\beta/k}} {\betaJ_k^\alpha f g \choose k}(x) + \frac{x^{\alpha\beta/k}}{\Gamma_k(\beta+k)\alpha^{\beta/k}} {\betaJ_k^\alpha f g \choose k}(x) \ge {\betaJ_k^\alpha f \choose k}(x) {\betaJ_k^\alpha g \choose k}(x) + {\betaJ_k^\alpha f \choose k}(x) {\betaJ_k^\alpha g \choose k}(x).$$

The proof of Theorem 5 is complete. \Box

Corollary 1. *Let* f *and* g *be two integrable functions which are synchronous on* $[0, \infty)$ *. Then,*

$$(^{\beta}J_kfg)(x) \geq \frac{\Gamma_k(\beta+k)}{x^{\beta/k}}(^{\beta}J_kf)(x)(^{\beta}J_kg)(x), \quad \alpha,\beta > 0.$$

Proof. This follows from taking $\alpha = 1$ in Theorem 5. \square

Theorem 6. Let f and g be two integrable functions which are synchronous on $[0, \infty)$. Then,

$$\frac{x^{\alpha\tau/k}}{\Gamma_k(\tau+k)\alpha^{\tau/k}} \left({}^{\beta}J_k^{\alpha}fg\right)(x) + \frac{x^{\alpha\beta/k}}{\Gamma_k(\beta+k)\alpha^{\beta/k}} \left({}^{\tau}J_k^{\alpha}fg\right)(x) \ge \left({}^{\beta}J_k^{\alpha}f\right)(x) \left({}^{\tau}J_k^{\alpha}g\right)(x) + \left({}^{\tau}J_k^{\alpha}f\right)(x) \left({}^{\beta}J_k^{\alpha}g\right)(x)$$
for $\alpha, \beta, \tau > 0$.

Symmetry **2018**, 10, 614 5 of 8

Proof. Multiplying both sides of the equality (10) by

$$\frac{1}{k\Gamma_k(\tau)v^{1-\alpha}}\left(\frac{x^\alpha-v^\alpha}{\alpha}\right)^{\tau/k-1}$$

yields

$$\begin{split} &\frac{1}{k\Gamma_{k}(\tau)v^{1-\alpha}}\bigg(\frac{x^{\alpha}-v^{\alpha}}{\alpha}\bigg)^{\tau/k-1} \big(\beta J_{k}^{\alpha}fg\big)(x) + \frac{f(v)g(v)}{k\Gamma_{k}(\tau)v^{1-\alpha}}\bigg(\frac{x^{\alpha}-v^{\alpha}}{\alpha}\bigg)^{\tau/k-1} \frac{x^{\alpha\beta/k}}{\Gamma_{k}(\beta+k)\alpha^{\beta/k}} \\ &\geq \frac{1}{k\Gamma_{k}(\tau)v^{1-\alpha}}\bigg(\frac{x^{\alpha}-v^{\alpha}}{\alpha}\bigg)^{\tau/k-1} g(v) \big(\beta J_{k}^{\alpha}f\big)(x) + \frac{1}{k\Gamma_{k}(\tau)v^{1-\alpha}}\bigg(\frac{x^{\alpha}-v^{\alpha}}{\alpha}\bigg)^{\tau/k-1} f(v) \big(\beta J_{k}^{\alpha}g\big)(x). \end{split}$$

Further integrating both sides with respect to v over (0, x) leads to

$$\begin{split} \frac{\left(\beta J_k^\alpha f g\right)(x)}{k\Gamma_k(\tau)} \int_0^x & \left(\frac{x^\alpha - v^\alpha}{\alpha}\right)^{\tau/k - 1} \frac{\mathrm{d}\,v}{v^{1 - \alpha}} + \frac{x^{\alpha\beta/k}}{\Gamma_k(\beta + k)\alpha^{\beta/k}} \frac{1}{k\Gamma_k(\tau)} \int_0^x \left(\frac{x^\alpha - v^\alpha}{\alpha}\right)^{\tau/k - 1} \frac{f(v)g(v)}{v^{1 - \alpha}} \, \mathrm{d}\,v \\ & \geq \frac{\left(\beta J_k^\alpha f\right)(x)}{k\Gamma_k(\tau)} \int_0^x \left(\frac{x^\alpha - v^\alpha}{\alpha}\right)^{\tau/k - 1} \frac{g(v)}{v^{1 - \alpha}} \, \mathrm{d}\,v + \frac{\left(\beta J_k^\alpha g\right)(x)}{k\Gamma_k(\tau)} \int_0^x \left(\frac{x^\alpha - v^\alpha}{\alpha}\right)^{\tau/k - 1} \frac{f(v)}{v^{1 - \alpha}} \, \mathrm{d}\,v. \end{split}$$

Therefore, we have

$$\frac{x^{\alpha\tau/k}}{\Gamma_k(\tau+k)\alpha^{\tau/k}} \left({}^{\beta}J_k^{\alpha}fg\right)(x) + \frac{x^{\alpha\beta/k}}{\Gamma_k(\beta+k)\alpha^{\beta/k}} \left({}^{\tau}J_k^{\alpha}fg\right)(x) \ge \left({}^{\beta}J_k^{\alpha}f\right)(x) \left({}^{\tau}J_k^{\alpha}g\right)(x) + \left({}^{\tau}J_k^{\alpha}f\right)(x) \left({}^{\beta}J_k^{\alpha}g\right)(x).$$

Further integrating with respect to v over (0, x), as did in the proof of Theorem 5, concludes Theorem 6. \square

Remark 1. Applying Theorem 6 to $\tau = \beta$ results in Theorem 5.

Corollary 2. *Let* f *and* g *be two integrable functions which are synchronoms on* $[0, \infty)$ *. Then*

$$\frac{x^{\tau/k}}{\Gamma_k(\tau+k)} (^{\beta}J_k fg)(x) + \frac{x^{\beta/k}}{\Gamma_k(\beta+k)} (^{\tau}J_k fg)(x) \ge (^{\beta}J_k f)(x) (^{\tau}J_k g)(x) + (^{\tau}J_k f)(x) (^{\beta}J_k g)(x)$$

for α , β , $\tau > 0$.

Proof. This follows from taking $\alpha = 1$ in Theorem 6. \square

Theorem 7. Let f_i for $1 \le i \le n$ be positive and increasing functions on [a,b]. For $\alpha,\beta>0$, we have

$$\left({}^{\beta}J_{k}^{\alpha}\prod_{i=1}^{n}f_{i}\right)(x) \geq \left[\frac{\Gamma_{k}(\beta+k)\alpha^{\beta/k}}{x^{\alpha\beta/k}}\right]^{n-1}\prod_{i=1}^{n}({}^{\beta}J_{k}^{\alpha}f_{i})(x). \tag{11}$$

Proof. We prove this theorem by induction on $n \in \mathbb{N}$. Obviously, the case n = 1 of (11) holds. For n = 2, since f_1 and f_2 are increasing, we have

$$[f_1(x) - f_1(y)][f_2(x) - f_2(y)] \ge 0.$$

Now, the left proof of the inequality (11) for n = 2 is the same as that of Theorem 5.

Assume that the inequality (11) is true for some $n \ge 3$. We observe that, since f_i is increasing, $f = \prod_{i=1}^n f_i$ is increasing. Let $g = f_{n+1}$. Then, applying the case n = 2 to the functions f and g yields

Symmetry **2018**, 10, 614 6 of 8

$$\begin{pmatrix} \beta J_k^{\alpha} \prod_{i=1}^n f_i f_{n+1} \end{pmatrix} (x) \ge \left[\frac{\Gamma_k(\beta+k)\alpha^{\beta/k}}{x^{\alpha\beta/k}} \right] \begin{pmatrix} \beta J_k^{\alpha} \prod_{i=1}^n f_i \end{pmatrix} (\beta J_k^{\alpha} f_{n+1}) (x)
\ge \left(\frac{\Gamma_k(\beta+k)\alpha^{\beta/k}}{x^{\alpha\beta/k}} \right)^n \prod_{i=1}^{n+1} (\beta J_k^{\alpha} f_i) (x),$$

where the induction hypothesis for n is used in the deduction of the second inequality. The proof of Theorem 7 is complete. \Box

Corollary 3. Let f_i for $1 \le i \le n$ be positive and increasing functions on [a,b]. For $\alpha, \beta > 0$, we have

$$\left({}^{\beta}J_k\prod_{i=1}^nf_i\right)(x)\geq \left[\frac{\Gamma_k(\beta+k)}{x^{\beta/k}}\right]^{n-1}\prod_{i=1}^n({}^{\beta}J_kf_i)(x).$$

Proof. This follows from taking $\alpha = 1$ in Theorem 7. \square

Theorem 8. Let $\alpha, \beta > 0$ and the functions $f, g : [0, \infty) \to \mathbb{R}$ be such that f is increasing, g is differentiable, and g' has a lower bound $m = \inf_{t \in [0,\infty)} g'(t)$. Then,

$$(^{\beta}J_k^{\alpha}fg)(x) \geq \frac{\Gamma_k(\beta+k)\alpha^{\beta/k}}{x^{\alpha\beta/k}} (^{\beta}J_k^{\alpha}f)(x) (^{\beta}J_k^{\alpha}g)(x) - \frac{kmx}{(\beta+k)} (^{\beta}J_k^{\alpha}f)(x) + m(^{\beta}J_k^{\alpha}if)(x),$$

where i(x) is the identity function.

Proof. Let h(x) = g(x) - mx. We find that h is differentiable and increasing on $[0, \infty)$. As in the proof of Theorem 7, for clarity, let p(x) = mx, we obtain

$$(^{\beta}J_{k}^{\alpha}f(g-p))(x) \geq \frac{\Gamma_{k}(\beta+k)\alpha^{\beta/k}}{x^{\alpha\beta/k}}(^{\beta}J_{k}^{\alpha}f)(x)(^{\beta}J_{k}^{\alpha}(g-p))(x)$$

$$= \frac{\Gamma_{k}(\beta+k)\alpha^{\beta/k}}{x^{\alpha\beta/k}}(^{\beta}J_{k}^{\alpha}f)(x)(^{\beta}J_{k}^{\alpha}g)(x) - \frac{\Gamma_{k}(\beta+k)\alpha^{\beta/k}}{x^{\alpha\beta/k}}(^{\beta}J_{k}^{\alpha}f)(x)(^{\beta}J_{k}^{\alpha}p)(x), \quad (12)$$

where

$$({}^{\beta}J_k^{\alpha}f(g-p))(x) = ({}^{\beta}J_k^{\alpha}fg)(x) - m({}^{\beta}J_k^{\alpha}if)(x)$$
(13)

and

$$(^{\beta}J_k^{\alpha}p)(x) = \frac{mx^{\alpha\beta/k+1}\Gamma_k(2k)}{\Gamma_k(\beta+2k)\alpha^{\beta/k}}.$$

Since $\Gamma_k(k) = 1$, see ([16], p. 183), then $\Gamma_k(2k) = k$. Therefore, we derive

$$(^{\beta}J_{k}^{\alpha}p)(x) = \frac{kmx^{\alpha\beta/k+1}}{\Gamma_{k}(\beta+2k)\alpha^{\beta/k}}.$$
(14)

Substituting the Equations (13) and (14) into the Equation (12) leads to the desired result. \Box

Corollary 4. *Under conditions of Theorem 8, we have*

$$(^{\beta}J_kfg)(x) \geq \frac{\Gamma_k(\beta+k)}{x^{\beta/k}}(^{\beta}J_kf)(x)(^{\beta}J_kg)(x) - \frac{kmx}{(\beta+k)}(^{\beta}J_kf)(x) + m(^{\beta}J_kif)(x),$$

where i(x) is the identity function.

Proof. This follows from taking $\alpha = 1$ in Theorem 8. \square

Symmetry **2018**, 10, 614 7 of 8

3. Conclusions

In this paper, we established several Čebyšev type inequalities for conformable k-fractional integral operators. We observed that, if allowing k = 1, inequalities obtained in this paper will reduce to those inequalities in [21]. Similarly, if letting $\alpha = k = 1$, inequalities obtained in this paper will reduce to those inequalities in [11].

Author Contributions: The authors contributed equally to this work. All authors have read and approved the final manuscript.

Funding: The fourth author was supported by Grant No. MOST 107-2115-M-017-004-MY2 of the Ministry of Science and Technology of the Republic of China.

Acknowledgments: The authors are thankful to the anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Čebyšev, P.L. Sur les expressions approximatives des intégrales définies par les autres prises entre les mêmes limites. *Proc. Math. Soc. Charkov* **1882**, 2, 93–98.
- 2. Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. *Classical and New Inequalities in Analysis*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; doi:10.1007/978-94-017-1043-5.
- 3. Qi, F.; Cui, L.-H.; Xu, S.-L. Some inequalities constructed by Tchebysheff's integral inequality. *Math. Inequal. Appl.* **1999**, 2, 517–528. [CrossRef]
- 4. Özdemir, M.E.; Set, E.; Akdemir, A.O.; Sarıkaya, M.Z. Some new Chebyshev type inequalities for functions whose derivatives belongs to *L_p* spaces. *Afr. Mat.* **2015**, *26*, 1609–1619. [CrossRef]
- Set, E.; Dahmani, Z.; Mumcu, I. New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Pólya-Szegö inequality. *Int. J. Optim. Control. Theor. Appl. IJOCTA* 2018, 8, 137–144. [CrossRef]
- 6. Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204,
- 7. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. *Fractional Integrals and Derivatives: Theory and Applications*; Edited and with a Foreword by S. M. Nikol'skiĭ; Translated from the 1987 Russian Original; Revised by the Authors; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993.
- 8. Nisar, K.S.; Qi, F.; Rahman, G.; Mubeen, S.; Arshad, M. Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric *k*-function. *J. Inequal. Appl.* **2018**, 2018, 135. [CrossRef] [PubMed]
- 9. Qi, F.; Guo, B.-N. Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function. *Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM* **2017**, 111, 425–434. [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012; doi:10.1016/B978-0-12-385218-2.00001-3.
- 11. Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 86.
- 12. Shi, D.-P.; Xi, B.-Y.; Qi, F. Hermite–Hadamard type inequalities for (m, h_1, h_2) -convex functions via Riemann–Liouville fractional integrals. *Turkish J. Anal. Number Theory* **2014**, 2, 22–27. [CrossRef]
- 13. Shi, D.-P.; Xi, B.-Y.; Qi, F. Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals of (*α*, *m*)-convex functions. *Fract. Differ. Calc.* **2014**, *4*, 33–43. [CrossRef]
- 14. Wang, S.-H.; Qi, F. Hermite–Hadamard type inequalities for *s*-convex functions via Riemann–Liouville fractional integrals. *J. Comput. Anal. Appl.* **2017**, 22, 1124–1134.
- 15. Mubeen, S.; Habibullah, G.M. k-fractional integrals and application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94.
- 16. Díaz, R.; Pariguan, E. On hypergeometric function and Pochhammer *k*-symbol. *Divulg. Mat.* **2007**, *15*, 179–192.
- 17. Qi, F.; Akkurt, A.; Yildirim, H. Catalan numbers, *k*-gamma and *k*-beta functions, and parametric integrals. *J. Comput. Anal. Appl.* **2018**, *25*, 1036–1042.
- 18. Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Băleanu, D. On a new class of fractional operators. *Adv. Differ. Equ.* **2017**, 2017, 247. [CrossRef]

Symmetry **2018**, 10, 614 8 of 8

19. Set, E.; Mumcu, İ.; Özdemir, M.E. Grüss Type Inequalities Involving New Conformable Fractional Integral Operators. ResearchGate Preprint. 2018. Available online: https://www.researchgate.net/publication/323545750 (accessed on 8 October).

- 20. Habib, S.; Mubeen, S.; Naeem, M.N.; Qi, F. Generalized *k*-Fractional Conformable Integrals and Related Inequalities. HAL Archives. 2018. Available online: https://hal.archives-ouvertes.fr/hal-01788916 (accessed on 8 October 2018).
- 21. Set, E.; Mumcu, İ.; Demirbaş, S. Chebyshev Type Inequalities Involving New Conformable Fractional Integral Operators. ResearchGate Preprint. 2018. Available online: https://www.researchgate.net/publication/323880498 (accessed on 8 October 2018).

 \odot 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).