# Topological Characterizations and Index-Analysis of New Degree-Based Descriptors of Honeycomb Networks

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Connectivity Polynomials and Degree-Based Descriptors

#### 1.2. Honeycomb Network, $H{C}_{n}$ for $n>1$

## 2. Main Results

**Theorem**

**1.**

**Proof.**

**Proposition**

**1.**

**Proof.**

**Theorem**

**2.**

**Proof.**

**Albertson index**:

**Bell index**:

**Theorem**

**3.**

**Proof.**

**Theorem**

**4.**

**Proof.**

## 3. Index Analysis of Honeycomb Networks

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Wiener, H.J. Structural determination of paraffin boiling points. J. Am. Chem. Soc.
**1947**, 69, 17–20. [Google Scholar] [CrossRef] [PubMed] - Hosoya, H. Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. Bull. Chem. Soc. Jpn.
**1971**, 44, 2332–2339. [Google Scholar] [CrossRef] [Green Version] - Hosoya, H. On some counting polynomials in Chemistry. Discret. Appl. Math.
**1988**, 19, 239–257. [Google Scholar] [CrossRef] - Klavzar, S.; Deutsch, E. M-Polynomial, and Degree-Based Topological Indices. Iran. J. Math. Chem.
**2015**, 6, 93–102. [Google Scholar] - Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-polynomial and degree-based topological indices of Nano star dendrimers. Symmetry
**2016**, 8, 97. [Google Scholar] [CrossRef] - Munir, M.; Nazeer, W.; Nizami, A.R.; Rafique, S.; Kang, S.M. M-polynomial and degree-based topological indices of Titania Nanotubes. Symmetry
**2016**, 8, 117. [Google Scholar] [CrossRef] - Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes. Symmetry
**2016**, 8, 149. [Google Scholar] [CrossRef] - Kwun, Y.C.; Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori. Sci. Rep.
**2017**, 7, 8756. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kang, S.M.; Nazeer, W.; Manzoor, Z.; Nizami, A.R.; Aslam, A.; Munir, M. M-polynomials and topological indices of hex-derived networks. Open Phys.
**2018**, 16, 394–403. [Google Scholar] [CrossRef] - Ashaq, A.; Nazeer, W.; Munir, M.; Kang, S.M. M-Polynomials and Topological Indices Of Zigzag and Rhombic Benzenoid Systems. Open Chem.
**2018**, 16, 73–78. [Google Scholar] - Gutman, I.; Trinajstic, N. Graph theory, and molecular orbitals total f-electron energy of alternant hydrocarbons. Chem. Phys. Lett.
**1972**, 17, 535–538. [Google Scholar] [CrossRef] - Gutman, I. Molecular graphs with minimal and maximal Randic indices. Croat. Chem. Acta
**2002**, 75, 357–369. [Google Scholar] - Gutman, I. Degree-based topological indices. Croat. Chem. Acta
**2013**, 86, 351–361. [Google Scholar] [CrossRef] - Tabar, F.; Gutman, I.; Nasiri, R. Extremely irregular trees. Bull. Cl. Sci. Math. Nat.
**2013**, 38, 1–8. [Google Scholar] - Furtula, B.; Gutman, I. A forgotten topological index. J. Math. Chem.
**2015**, 53, 1184–1190. [Google Scholar] [CrossRef] - Gutman, I.; Furtula, B.; Vukicevic, Z.; Popivoda, G. On an old/new degree-based topological index. Bull. Cl. Sci. Math. Nat.
**2015**, 40, 19–31. [Google Scholar] - Shirdel, G.H.; Pour, H.R.; Sayadi, A.M. The hyper-Zagreb index of graph operations. Iran. J. Math. Chem.
**2013**, 4, 213–220. [Google Scholar] - Ghorbani, M.; Azimi, N. Note on multiple Zagreb indices. Iran. J. Math. Chem.
**2012**, 3, 137–143. [Google Scholar] - Shao, Z.; Siddiqui, M.K.; Muhammad, M.H. Computing Zagreb Indices and Zagreb Polynomials for Symmetrical Nanotubes. Symmetry
**2018**, 10, 244. [Google Scholar] [CrossRef] - Albertson, M. The irregularity of a graph. Ars. Combin.
**1997**, 46, 219–225. [Google Scholar] - Bell, F. A note on the irregularity of graphs. Linear Algebra Appl.
**1992**, 161, 45–54. [Google Scholar] [CrossRef] - Milicevic, A.; Nikolic, S.; Trinajstic, N. On reformulated Zagreb indices. Mol. Divers.
**2004**, 8, 393–399. [Google Scholar] [CrossRef] [PubMed] - Bieri, G.; Dill, J.D.; Heilbronner, E.; Schmelzer, A. Application of the Equivalent Bond Orbital Model to the C2s-Ionization Energies of Saturated Hydrocarbons. Helv. Chim. Acta
**1977**, 60, 2234–2247. [Google Scholar] [CrossRef] - Heilbronner, E. A Simple Equivalent Bond Orbital Model for the Rationalization of the C2s-Photoelectron Spectra of the Higher n-Alkanes, in Particular of Polyethylene. Helv. Chim. Acta
**1977**, 60, 2248–2257. [Google Scholar] [CrossRef] - Doslic, T. Vertex-weighted Wiener polynomials for composite graphs. Ars. Math. Contemp.
**2008**, 1, 66–80. [Google Scholar] [CrossRef] - Stojmenovic, I. Honeycomb networks: Topological properties and communication algorithms. IEEE Trans. Parallel Distrib. Syst.
**1997**, 8, 1036–1042. [Google Scholar] [CrossRef] [Green Version] - Paul, M.; Bharati, R.; Indra, R.; Monica, C. On minimum metric dimension of honeycomb networks. J. Discret. Algorithms
**2008**, 6, 20–27. [Google Scholar] - Rajan, B.; Sonia, K.; Monica, C. Conditional Resolvability of Honeycomb and Hexagonal Networks. Math. Comput. Sci.
**2011**, 5, 89–99. [Google Scholar] [CrossRef] - Akhter, S.; Imran, M.; Gao, W.; Farahani, R. On topological indices of honeycomb networks and graphene networks. Hac. J. Math. Stat.
**2018**, 47, 19–35. [Google Scholar] [CrossRef] - Rajan, B.; William, A.; Grigorious, C.; Stephen, S. On Certain Topological Indices of Silicate, Honeycomb and Hexagonal Networks. J. Comput. Math. Sci.
**2012**, 3, 530–535. [Google Scholar]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hussain, Z.; Munir, M.; Rafique, S.; Min Kang, S.
Topological Characterizations and Index-Analysis of New Degree-Based Descriptors of Honeycomb Networks. *Symmetry* **2018**, *10*, 478.
https://doi.org/10.3390/sym10100478

**AMA Style**

Hussain Z, Munir M, Rafique S, Min Kang S.
Topological Characterizations and Index-Analysis of New Degree-Based Descriptors of Honeycomb Networks. *Symmetry*. 2018; 10(10):478.
https://doi.org/10.3390/sym10100478

**Chicago/Turabian Style**

Hussain, Zafar, Mobeen Munir, Shazia Rafique, and Shin Min Kang.
2018. "Topological Characterizations and Index-Analysis of New Degree-Based Descriptors of Honeycomb Networks" *Symmetry* 10, no. 10: 478.
https://doi.org/10.3390/sym10100478