On the Symmetry of a Zig-Zag and an Armchair Polyhex Carbon Nanotorus
Abstract
:1. Introduction
2. Main Results and Discussion
2.1. Computational Details
| A MATLAB Program for Computing Solution Matrix |
| function y=permute2(a) |
| m=length(a); |
| 1:m; |
| sort(a); |
| r i=1:m |
| x=[[]; |
| for j=1:m |
| if min(b(:,i)==b(:,j))==1 |
| x=[x,j]; |
| end |
| end |
| p(i,1:length(x))=x; |
| end |
| for i=1:m-2 |
| for j=i+1:m |
| if max(p(i,:)==j)==1 |
| tt=0; |
| s=[1:i-1 j]; |
| for r=i+1:m |
| n=size(s); |
| w=[[]; |
| for t=1:n(1) |
| v=p(r,:); |
| v(v==0)=[[]; |
| k1=1:m;k1(v)=[[]; |
| k=1:m; |
| k([s(t,:) k1])=[[]; |
| for f=k |
| if min(a([s(t,:) f],[s(t,:) f])==a(1:r,1:r))==1 |
| w=[w;s(t,:) f]; |
| if r==m |
| tt=1; |
| break |
| end |
| end |
| if tt==1 |
| break |
| end |
| end |
| if tt==1 |
| break |
| end |
| end |
| s=w; |
| end |
| if length(s)>1 |
| y=[y; s(1,:)]; |
| end |
| end |
| end |
| end |
| B:=[]; |
| N:=Size(A); |
| for i in [1,2..N] do |
| d:=PermListList(A[1],A[i]); |
| Add(B,d); |
| od; |
| G:=AsGroup(B); |
| GeneratorsOfGroup(G); |
2.2. Theoretical Results
3. Conclusion
Acknowledgements
References
- Damnjanović, M.; Milošević, I.; Vuković, T.; Sredanović, R. Symmetry and lattices of single-wall nanotubes. J. Phys. A: Math. Gen. 1999, 32, 4097–4104. [Google Scholar] [CrossRef]
- Milošević, I.; Živanović, R.; Damnjanović, M. Symmetry classification of stereoregular polymers. Polymer 1997, 38, 4445–4453. [Google Scholar] [CrossRef]
- Ezra, G. S. Symmetry Properties of Molecules. In Lecture Notes in Chemistry; Springer-Verlag: Berlin; Vol. 28, 1982. [Google Scholar]
- Lomont, J. S. Applications of Finite Groups; Academic Press Inc.: New York, 1959. [Google Scholar]
- Diudea, M. V. Toroidal Graphenes from 4-Valent Tori. Bull. Chem. Soc. Japan 2002, 75, 487–492. [Google Scholar] [CrossRef]
- Diudea, M. V. Hosoya Polynomial in Tori. MATCH Commun. Math. Comput. Chem. 2002, 45, 109–122. [Google Scholar]
- Diudea, M.V.; John, P.E. Covering Polyhedral Tori. MATCH Commun. Math. Comput. Chem. 2001, 44, 103–116. [Google Scholar]
- Higham, D.J.; Higham, N.J. MATLAB Guide; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, 2000. [Google Scholar]
- Schönert, M.; Besche, H.U.; Breuer, T.H.; Celler, F.; Eick, B.; Felsch, V.; Hulpke, A.; Mnich, J.; Nickel, W.; Pfeiffer, G.; Polis, U.; Theißen, H.; Niemeyer, A. GAP, Groups, Algorithms and Programming; Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule: Aachen, Germany, 1995. [Google Scholar]
- Ashrafi, A.R. On Non-Rigid Group Theory for some Molecules. MATCH Commun. Math. Comput. Chem. 2005, 53, 161–174. [Google Scholar]
- Randic, M. On the recognition of identical graphs representing molecular topology. J. Chem. Phys. 1974, 60, 3920–3928. [Google Scholar] [CrossRef]
- Randic, M. On discerning symmetry properties of graphs. Chem. Phys. Letters 1976, 42, 283–287. [Google Scholar] [CrossRef]
- Randic, M.; Davis, M.I. Symmetry properties of chemical graphs. VI. isomerizations of octahedral complexes. Int. J. Quant. Chem. 1984, 26, 69–89. [Google Scholar] [CrossRef]
- Balasubramanian, K. The symmetry groups of nonrigid molecules as generalized wreath products and their representations. J. Chem. Phys. 1980, 72, 665–677. [Google Scholar] [CrossRef]
- Balasubramanian, K. Generating functions for the nuclear spin statistics of non-rigid molecules. J. Chem. Phys. 1981, 75, 4572–4585. [Google Scholar] [CrossRef]
- Balasubramanian, K. The symmetry groups of chemical graphs. Int. J. Quant. Chem. 1982, 21, 411–418. [Google Scholar] [CrossRef]
- Balasubramanian, K. Group theory of non-rigid molecules and its applications. Studies Phys. Theor. Chem. 1983, 23, 149–168. [Google Scholar]
- Balasubramanian, K. Applications of combinatorics and graph theory to spectroscopy and quantum chemistry. Chem. Rev. 1985, 85, 599–618. [Google Scholar] [CrossRef]
- Balasubramanian, K. Graph-theoretical perception of molecular symmetry. Chem. Phys. Letters 1995, 232, 415–423. [Google Scholar] [CrossRef]
- Balasubramanian, K. Non-rigid group theory, tunneling splitting and nuclear spin statistics of water pentamer: (H2O)5. J. Phys. Chem. 2004, 108, 5527–5536. [Google Scholar] [CrossRef]
- Balasubramanian, K. Nuclear spin statistics of extended aromatic C48N12 azafullerene. Chem. Phys. Letters 2004, 391, 69–74. [Google Scholar] [CrossRef]
- Ashrafi, A.R. On symmetry properties of molecules. Chem. Phys. Letters 2005, 406, 75–80. [Google Scholar] [CrossRef]
- Ashrafi, A.R.; Ahmadi, M.R. New computer program to calculate the symmetry of molecules. Cent. Eur. J. Chem. 2005, 3, 647–657. [Google Scholar] [CrossRef]
- Ashrafi, A.R. On a new algorithm for computing symmetry of big fullerenes. Collect. Czech. Chem. Commun. 2006, 71, 1270–1277. [Google Scholar] [CrossRef]
- Ashrafi, A.R. The full non-rigid group and symmetry of dimethylTrichloroPhosphorus. Chinese J. Chem. 2005, 23, 829–834. [Google Scholar]
- Ashrafi, A.R.; Hamadanian, M. Full non-rigid group theory and symmetry of melamine. J. Iranian Chem. Soc. 2005, 2, 135–139. [Google Scholar] [CrossRef]
- Ashrafi, A.R.; Hamadanian, M. Symmetry properties of some chemical graphs. Croat. Chem. Acta 2005, 78, 159–163. [Google Scholar]
- Ashrafi, A.R.; Loghman, A. PI index of armchair polyhex nanotubes. Ars Combinatoria 2006, 80, 193–199. [Google Scholar]


© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yavari, M.; Ashrafi, A.R. On the Symmetry of a Zig-Zag and an Armchair Polyhex Carbon Nanotorus. Symmetry 2009, 1, 145-152. https://doi.org/10.3390/sym1020145
Yavari M, Ashrafi AR. On the Symmetry of a Zig-Zag and an Armchair Polyhex Carbon Nanotorus. Symmetry. 2009; 1(2):145-152. https://doi.org/10.3390/sym1020145
Chicago/Turabian StyleYavari, Morteza, and Ali Reza Ashrafi. 2009. "On the Symmetry of a Zig-Zag and an Armchair Polyhex Carbon Nanotorus" Symmetry 1, no. 2: 145-152. https://doi.org/10.3390/sym1020145
APA StyleYavari, M., & Ashrafi, A. R. (2009). On the Symmetry of a Zig-Zag and an Armchair Polyhex Carbon Nanotorus. Symmetry, 1(2), 145-152. https://doi.org/10.3390/sym1020145
