Recent Developments in Monoclonal-Antibody-Based Biologic Therapy for Severe Refractory Eosinophilic Asthma
Abstract
1. Introduction
2. Asthma Phenotypes
3. Biomarkers
4. IL-5
4.1. Mepolizumab
4.2. Reslizumab
4.3. Benralizumab
5. IL-4 and IL-13
Dupilumab
6. Conclusions
7. Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- 2024 GINA Main Report—Global Initiative for Asthma—GINA [Internet]. Available online: https://ginasthma.org/2024-report/ (accessed on 16 May 2024).
- Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet 2018, 391, 783–800. [Google Scholar] [CrossRef]
- McCracken, J.L.; Veeranki, S.P.; Ameredes, B.T.; Calhoun, W.J. Diagnosis and Management of Asthma in Adults: A Review. JAMA 2017, 318, 279–290. [Google Scholar] [CrossRef]
- Kwah, J.H.; Peters, A.T. Asthma in adults: Principles of treatment. Allergy Asthma Proc. 2019, 40, 396–402. [Google Scholar] [CrossRef]
- Bleecker, E.R.; Menzies-Gow, A.N.; Price, D.B.; Bourdin, A.; Sweet, S.; Martin, A.L.; Alacqua, M.; Tran, T.N. Systematic literature review of systemic corticosteroid use for asthma management. Am. J. Respir. Crit. Care Med. 2020, 201, 276–293. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, P.; Duh, M.S.; Lafeuille, M.H.; Gozalo, L.; Desai, U.; Robitaille, M.N.; Albers, F.; Yancey, S.; Ortega, H.; Forshag, M.; et al. Acute and chronic systemic corticosteroid-related complications in patients with severe asthma. J. Allergy Clin. Immunol. 2015, 136, 1488–1495. [Google Scholar] [CrossRef]
- Winders, T.; Fletcher, M.; Oppenheimer, J.; Howarth, P.; Antoun, Z.E.; van der Molen, T.; Heaney, L.G.; Thomas, M. Patient perspectives on the use of oral corticosteroids in asthma. J. Asthma 2025, 62, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Olin, J.T.; Wechsler, M.E. Asthma: Pathogenesis and Novel Drugs for Treatment. BMJ 2014, 349, g5517. [Google Scholar] [CrossRef]
- Pelaia, G.; Vatrella, A.; Busceti, M.T.; Gallelli, L.; Preianò, M.; Lombardo, N.; Terracciano, R.; Maselli, R. Role of biologics in severe eosinophilic asthma—Focus on reslizumab. Ther. Clin. Risk Manag. 2016, 12, 1075–1082. [Google Scholar] [CrossRef]
- Ray, A.; Oriss, T.B.; Wenzel, S.E. Emerging molecular phenotypes of asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 308, L130–L140. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.P. Endotyping asthma: New insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 2008, 372, 1107–1119. [Google Scholar] [CrossRef]
- Padem, N.; Saltoun, C. Classification of asthma. Allergy Asthma Proc. 2019, 40, 385–388. [Google Scholar] [CrossRef]
- Venkatesan, P. 2023 Gina report for asthma. Lancet Respir Med. 2023, 11, 589. [Google Scholar] [CrossRef]
- Curren, B.; Ahmed, T.; Howard, D.R.; Ullah, A.; Sebina, I.; Rashid, R.B.; Sikder, A.A.; Namubiru, P.; Bissell, A.; Ngo, S.; et al. IL-33-induced neutrophilic inflammation and NETosis underlie rhinovirus-triggered exacerbations of asthma. Mucosal Immunol. 2023, 16, 671–684. [Google Scholar] [CrossRef]
- Arwas, N.; Shvartzman, S.U.; Goldbart, A.; Bari, R.; Hazan, I.; Horev, A.; Golan, T.I. Elevated Neutrophil-to-Lymphocyte Ratio Is Associated with Severe Asthma Exacerbation in Children. J. Clin. Med. 2023, 12, 3312. [Google Scholar] [CrossRef]
- McDowell, P.J.; Busby, J.; Hanratty, C.E.; Djukanovic, R.; Woodcock, A.; Walker, S.; Hardman, T.C.; Arron, J.R.; Choy, D.F.; Bradding, P.; et al. Exacerbation Profile and Risk Factors in a Type-2-Low Enriched Severe Asthma Cohort: A Clinical Trial to Assess Asthma Exacerbation Phenotypes. Am. J. Respir. Crit. Care Med. 2022, 206, 545–553. [Google Scholar] [CrossRef]
- Camiolo, M.J.; Zhou, X.; Oriss, T.B.; Yan, Q.; Gorry, M.; Horne, W.; Trudeau, J.B.; Scholl, K.; Chen, W.; Kolls, J.K.; et al. High-dimensional profiling clusters asthma severity by lymphoid and non-lymphoid status. Cell Rep. 2021, 35, 108974. [Google Scholar] [CrossRef] [PubMed]
- Ekerljung, L.; Mincheva, R.; Hagstad, S.; Bjerg, A.; Telg, G.; Stratelis, G.; Lötvall, J. Prevalence, clinical characteristics and morbidity of the Asthma-COPD overlap in a general population sample. J. Asthma. 2018, 55, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Ledford, D.K.; Kim, T.B.; Ortega, V.E.; Cardet, J.C. Asthma and respiratory comorbidities. J. Allergy Clin. Immunol. 2025, 155, 316–326. [Google Scholar] [CrossRef]
- Listyoko, A.S.; Okazaki, R.; Harada, T.; Inui, G.; Yamasaki, A. Exploring the association between asthma and chronic comorbidities: Impact on clinical outcomes. Front. Med. 2024, 11, 1305638. [Google Scholar] [CrossRef]
- Barnes, P.J. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2018, 18, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The cytokines of asthma. Immunity 2019, 50, 975–991. [Google Scholar] [CrossRef]
- Văruț, R.M.; Dalia, D.; Radivojevic, K.; Trasca, D.M.; Stoica, G.-A.; Adrian, N.S.; Carmen, N.E.; Singer, C.E. Targeted Biologic Therapies in Severe Asthma: Mechanisms, Biomarkers, and Clinical Applications. Pharmaceuticals 2025, 18, 1021. [Google Scholar] [CrossRef]
- Indolfi, C.; Klain, A.; Capuano, M.C.; Colosimo, S.; Rapillo, R.; Miraglia del Giudice, M. Severe Asthma in School-Age Children: An Updated Appraisal on Biological Options and Challenges in This Age Group. Children 2025, 12, 167. [Google Scholar] [CrossRef] [PubMed]
- Arron, J.R.; Choy, D.F.; Scheerens, H.; Matthews, J.G. Non-invasive biomarkers that predict treatment benefit from biologic therapies in asthma. Ann. Am. Thorac. Soc. 2013, 10, S206–S213. [Google Scholar] [CrossRef] [PubMed]
- Saco, T.V.; Pepper, A.; Casale, T.B. Uses of biologics in allergic diseases: What to choose and when. Ann. Allergy Asthma Immunol. 2018, 120, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Grunwell, J.R.; Fitzpatrick, A.M. Asthma Phenotypes and Biomarkers. Respir. Care 2025, 70, 649–674. [Google Scholar] [CrossRef]
- Howell, I.; Howell, A.; Pavord, I.D. Type 2 inflammation and biological therapies in asthma: Targeted medicine taking flight. J. Exp. Med. 2023, 220, e20221212. [Google Scholar] [CrossRef]
- Petsky, H.L.; Cates, C.J.; Lasserson, T.J.; Li, A.M.; Turner, C.; Kynaston, J.A.; Chang, A.B. A systematic review and meta-analysis: Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils). Thorax 2012, 67, 199–208. [Google Scholar] [CrossRef]
- Gans, M.D.; Gavrilova, T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr. Respir Rev. 2020, 36, 118–127. [Google Scholar] [CrossRef]
- Jia, G.; Erickson, R.W.; Choy, D.F.; Mosesova, S.; Wu, L.C.; Solberg, O.D.; Shikotra, A.; Carter, R.; Audusseau, S.; Hamid, Q.; et al. Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid refractory Asthma (BOBCAT) Study Group. Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J. Allergy Clin. Immunol. 2012, 130, 647–654. [Google Scholar] [CrossRef]
- Hussain, M.; Liu, G. Eosinophilic asthma: Pathophysiology and therapeutic horizons. Cells 2024, 13, 384. [Google Scholar] [CrossRef]
- Rosenberg, H.F.; Dyer, K.D.; Foster, P.S. Eosinophils: Changing perspectives in health and disease. Nat. Rev. Immunol. 2013, 13, 9–22. [Google Scholar] [CrossRef]
- Nissim Ben Efraim, A.H.; Levi-Schaffer, F. Tissue remodeling and angiogenesis in asthma: The role of the eosinophil. Ther. Adv. Respir. Dis. 2008, 2, 163–171. [Google Scholar] [CrossRef]
- Talini, D.; Novelli, F.; Bacci, E.; Bartoli, M.; Cianchetti, S.; Costa, F.; Dente, F.L.; Di Franco, A.; Latorre, M.; Malagrinò, L.; et al. Sputum eosinophilia is a determinant of FEV1 decline in occupational asthma: Results of an observational study. BMJ Open 2015, 5, e005748. [Google Scholar] [CrossRef]
- Price, D.; Wilson, A.M.; Chisholm, A.; Rigazio, A.; Burden, A.; Thomas, M.; King, C. Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. J. Asthma Allergy 2016, 9, 1–2. [Google Scholar] [CrossRef]
- Ortega, H.; Yancey, S.W.; Keene, O.N.; Gunsoy, N.B.; Albers, F.C.; Howarth, P.H. Asthma exacerbations associated with lung function decline in patients with severe eosinophilic asthma. J. Allergy Clin. Immunol. Pract. 2018, 6, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Bel, E.H.; Bourdin, A.; Chan, R.; Han, J.K.; Keene, O.N.; Liu, M.C.; Martin, N.; Papi, A.; Roufosse, F.; et al. From DREAM to REALITI-A and beyond: Mepolizumab for the treatment of eosinophil-driven diseases. Allergy 2022, 77, 778–797. [Google Scholar] [CrossRef]
- Walsh, G.M. Reslizumab in the treatment of severe eosinophilic asthma: An update. Immunotherapy 2018, 10, 695–698. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, J.; Chen, Y. Efficacy and safety of treatment with benralizumab for eosinophilic asthma. Int. Immunopharmacol. 2022, 111, 109–131. [Google Scholar] [CrossRef] [PubMed]
- Maselli, D.J.; Rogers, L.; Peters, J.I. Benralizumab, an add-on treatment for severe eosinophilic asthma: Evaluation of exacerbations, emergency department visits, lung function, and oral corticosteroid use. Ther. Clin. Risk Manag. 2018, 14, 2059–2068. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G.M. Mepolizumab based therapy in Asthma—An update. Curr. Opin. Allergy Clin. Immunol. 2015, 15, 392–396. [Google Scholar] [CrossRef]
- Menzella, F.; Lusuardi, M.; Montanari, G.; Galeone, C.; Facciolongo, N.; Zucchi, L. Clinical usefulness of mepolizumab in severe eosinophilic asthma. Ther. Clin. Risk Manag. 2016, 12, 907–916. [Google Scholar] [CrossRef]
- Cavaliere, C.; Frati, F.; Ridolo, E.; Greco, A.; de Vincentiis, M.; Masieri, S.; Makri, E.; Incorvaia, C.; Incorvaia, C. The spectrum of therapeutic activity of mepolizumab. Expert Rev. Clin. Immunol. 2019, 15, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Haldar, P.; Brightling, C.E.; Hargadon, B.; Gupta, S.; Monteiro, W.; Sousa, A.; Marshall, R.P.; Bradding, P.; Green, R.H.; Wardlaw, A.J.; et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 2009, 360, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet 2012, 380, 651–659. [Google Scholar] [CrossRef]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; FitzGerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Chupp, G.L.; Bradford, E.S.; Albers, F.C.; Bratton, D.J.; Wang-Jairaj, J.; Nelsen, L.M.; Trevor, J.L.; Magnan, A.; Ten Brinke, A. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): A randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Resp. Med. 2017, 5, 390–400. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Li, D.W.; Jiang, S.J. Efficacy of anti-interleukin-5 therapy with mepolizumab in patients with asthma: A meta-analysis of randomized placebo-controlled trials. PLoS ONE 2013, 8, e59872. [Google Scholar]
- Yancey, S.W.; Ortega, H.G.; Keene, O.N.; Mayer, B.; Gunsoy, N.B.; Brightling, C.E.; Bleecker, E.R.; Haldar, P.; Pavord, I.D. Meta-analysis of asthma-related hospitalization in mepolizumab studies of severe eosinophilic asthma. J. Allergy Clin. Immunol. 2017, 139, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Ortega, H.G.; Yancey, S.W.; Mayer, B.; Gunsoy, N.B.; Keene, O.N.; Bleecker, E.R.; Brightling, C.E.; Pavord, I.D. Clinical outcomes in patients with severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: A combined analysis of the DREAM and MENSA studies. Lancet Resp. Med. 2016, 4, 549–556. [Google Scholar] [CrossRef]
- Farah, C.S.; Badal, T.; Reed, N.; Rogers, P.G.; King, G.G.; Thamrin, C.; Peters, M.J.; Seccombe, L.M. Mepolizumab improves small airway function in severe eosinophilic asthma. Respir. Med. 2019, 148, 49–53. [Google Scholar] [CrossRef]
- Bel, E.H.; Wenzel, S.E.; Thompson, P.J.; Prazma, C.M.; Keene, O.N.; Yancey, S.W.; Ortega, H.G.; Pavord, I.D. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N. Eng. J. Med. 2014, 371, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Pizzichini, M.M.; Kjarsgaard, M.; Inman, M.D.; Efthimiadis, A.; Pizzichini, E.; Hargreave, F.E.; O’Byrne, P.M. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 2009, 360, 985–993. [Google Scholar] [CrossRef]
- Lugogo, N.; Domingo, C.; Chanez, P.; Leigh, R.; Gilson, M.J.; Price, R.G.; Yancey, S.W.; Ortega, H.G. Long-term efficacy and safety of mepolizumab in patients with severe eosinophilic asthma: A multi-center, open-label, phase IIIb study. Clin. Ther. 2016, 38, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Brusselle, G.G.; Bel, E.H.; FitzGerald, J.M.; Masoli, M.; Korn, S.; Kato, M.; Albers, F.C.; Bradford, E.S.; Gilson, M.J.; et al. Long-term safety and clinical benefit of mepolizumab in patients with the most severe eosinophilic asthma: The COSMEX study. Clin. Ther. 2019, 41, 2041–2056. [Google Scholar] [CrossRef] [PubMed]
- Menzella, F.; Galeone, C.; Lusuardi, M.; Simonazzi, A.; Castagnetti, C.; Ruggiero, P.; Facciolongo, N. Near-fatal asthma responsive to mepolizumab after failure of omalizumab and bronchial thermoplasty. Ther. Clin. Risk Manag. 2017, 13, 1489–1493. [Google Scholar] [CrossRef]
- Llanos, J.P.; Ortega, H.; Bogart, M.; Packnett, E.R.; Manjelievskaia, J.; Bell, C.F.; Hahn, B. Real-world effectiveness of mepolizumab in patients with severe asthma: An examination of exacerbations and costs. J. Asthma Allergy 2020, 13, 77–87. [Google Scholar] [CrossRef]
- Taillé, C.; Chanez, P.; Devouassoux, G.; Didier, A.; Pison, C.; Garcia, G.; Charriot, J.; Bouée, S.; Gruber, A.; Pribil, C.; et al. Mepolizumab in a population with severe eosinophilic asthma and corticosteroid dependence: Results from a French early access programme. Eur. Resp. J. 2020, 55, 1902345. [Google Scholar] [CrossRef]
- Al-Lehebi, R.O.; Al Ahmad, M.; Maturu, V.N.; Mesa, A.G.; Mahboub, B.; Garcia, E.; Fernandez, P.; Soares, C.; Abreu, G.; Dos Santos, D.; et al. Real-world effectiveness of mepolizumab in severe asthma: Results from the multi-country, self-controlled nucala effectiveness study (NEST). Adv. Ther. 2024, 41, 4008–4031. [Google Scholar] [CrossRef]
- Thomas, D.; Harvey, E.S.; McDonald, V.M.; Stevens, S.; Upham, J.W.; Katelaris, C.H.; Kritikos, V.; Gillman, A.; Harrington, J.; Hew, M.; et al. Mepolizumab and oral corticosteroid stewardship: Data from the Australian Mepolizumab Registry. J. Allergy Clin. Immunol. Pract. 2021, 9, 2715–2724. [Google Scholar] [CrossRef]
- Kallieri, M.; Zervas, E.; Fouka, E.; Porpodis, K.; Mitrova, M.H.; Tzortzaki, E.; Makris, M.; Ntakoula, M.; Papaioannou, A.I.; Lyberopoulos, P.; et al. RELIght: A two-year REal-LIfe study of mepolizumab in patients with severe eosinophilic asthma in Greece: Evaluating the multiple components of response. Allergy 2022, 77, 2848. [Google Scholar] [CrossRef]
- Kavanagh, J.E.; d’Ancona, G.; Elstad, M.; Green, L.; Fernandes, M.; Thomson, L.; Roxas, C.; Dhariwal, J.; Nanzer, A.M.; Kent, B.D.; et al. Real-world effectiveness and the characteristics of a “super-responder” to mepolizumab in severe eosinophilic asthma. Chest 2020, 158, 491–500. [Google Scholar] [CrossRef]
- Bagnasco, D.; Caminati, M.; Menzella, F.; Milanese, M.; Rolla, G.; Lombardi, C.; Bucca, C.; Heffler, E.; Paoletti, G.; Testino, E.; et al. One year of mepolizumab. Efficacy and safety in real-life in Italy. Pulm. Pharmacol. Ther. 2019, 58, 101836. [Google Scholar] [CrossRef]
- Sposato, B.; Camiciottoli, G.; Bacci, E.; Scalese, M.; Carpagnano, G.E.; Pelaia, C.; Santus, P.; Maniscalco, M.; Masieri, S.; Corsico, A.; et al. Mepolizumab effectiveness on small airway obstruction, corticosteroid sparing and maintenance therapy step-down in real life. Pulm. Pharmacol. Ther. 2020, 61, 101899. [Google Scholar] [CrossRef]
- Domingo Ribas, C.; Carrillo Díaz, T.; Blanco Aparicio, M.; Martínez Moragón, E.; Banas Conejero, D.; Sánchez Herrero, M.G. Raal world effectiveness and safety of mepolizumab in a multicentric Spanish cohort of asthma patients stratified by eosinophils: The REDES study. Drugs 2021, 81, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Harrison, T.; Canonica, G.W.; Chupp, G.; Lee, J.; Schleich, F.; Welte, T.; Valero, A.; Gemzoe, K.; Maxwell, A.; Joksaite, S.; et al. Real-world mepolizumab in the prospective severe asthma REALITI-A study: Initial analysis. Eur. Resp. J. 2020, 56, 2000151. [Google Scholar] [CrossRef]
- Cockle, S.M.; Stynes, G.; Gunsoy, N.B.; Parks, D.; Alfonso-Cristancho, R.; Wex, J.; Bradford, E.S.; Albers, F.C.; Willson, J. Comparative effectiveness of mepolizumab and omalizumab in severe asthma: An indirect treatment comparison. Resp. Med. 2017, 123, 140–148. [Google Scholar] [CrossRef]
- Kallur, L.; Gonzalez-Estrada, A.; Eidelman, F.; Dimov, V. Pharmacokinetic drug evaluation of mepolizumab for the treatment of severe asthma associated with persistent eosinophilic inflammation in adults. Exp. Opin. Drug Metab. Toxicol. 2017, 13, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.; Chan, R.; Brown, N.; Howarth, P.; Gilson, M.; Price, R.G.; Maspero, J. Long-term safety of mepolizumab for up to ∼10 years in patients with severe asthma: Open-label extension study. Ann. Med. 2024, 56, 2417184. [Google Scholar] [CrossRef]
- Maglione, M.; Borrelli, M.; Dorato, A.; Cimbalo, C.; Del Giudice, L.A.; Santamaria, F. Mepolizumab in Severe Pediatric Asthma: Certainties and Doubts through a Single-Center Experience and Review of the Literature. Children 2024, 11, 895. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.J.; Bacharier, L.B.; Gergen, P.J.; Gagalis, L.; Calatroni, A.; Wellford, S.; Gill, M.A.; Stokes, J.; Liu, A.H.; Gruchalla, R.S.; et al. Mepolizumab for urban children with exacerbation-prone eosinophilic asthma in the USA (MUPPITS-2): A randomised, double-blind, placebo-controlled, parallel-group trial. Lancet 2022, 400, 502–511. [Google Scholar] [CrossRef]
- Castro, M.; Zangrilli, J.; Wechsler, M.E.; Bateman, E.D.; Brusselle, G.G.; Bardin, P.; Murphy, K.; Maspero, J.F.; O’Brien, C.; Korn, S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: Results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Resp. Med. 2015, 3, 355–366. [Google Scholar] [CrossRef]
- Corren, J.; Weinstein, S.; Janka, L.; Zangrilli, J.; Garin, M. Phase 3 study of reslizumab in patients with poorly controlled asthma: Effects across a broad range of eosinophil counts. Chest 2016, 150, 799–810. [Google Scholar] [CrossRef]
- Bjermer, L.; Lemiere, C.; Maspero, J.; Weiss, S.; Zangrilli, J.; Germinaro, M. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels: A randomized phase 3 study. Chest 2016, 150, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Jacobs, J.; Bjermer, L.; Fahrenholz, J.M.; Shalit, Y.; Garin, M.; Zangrilli, J.; Castro, M. Long-term safety and efficacy of reslizumab in patients with eosinophilic asthma. J. Allergy Clin. Immunol. Pract. 2017, 5, 1572–1581. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.; O’Sullivan, R.; Casey, D.; Murphy, J.; MacSharry, J.; Plant, B.J.; Murphy, D.M. The effectiveness of Reslizumab in severe asthma treatment: A real-world experience. Resp. Res. 2019, 20, 289. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Peters, S.P.; Hill, T.D.; Ariely, R.; DePietro, M.R.; Driessen, M.T.; Terasawa, E.L.; Thomason, D.R.; Panettieri Jr, R.A. Clinical outcomes and health-care resource use associated with reslizumab treatment in adults with severe eosinophilic asthma in real-world practice. Chest 2021, 159, 1734–1746. [Google Scholar] [CrossRef]
- Pérez de Llano, L.A.; Cosío, B.G.; Lobato Astiárraga, I.; Soto Campos, G.; Tejedor Alonso, M.Á.; Marina Malanda, N.; Padilla Galo, A.; Urrutia Landa, I.; Michel de la Rosa, F.J.; García-Moguel, I.; et al. Asthma control in patients with severe eosinophilic asthma treated with reslizumab: Spanish real-life data. J. Asthma Allergy 2022, 15, 79–88. [Google Scholar] [CrossRef]
- Hashimoto, S.; Kroes, J.A.; Eger, K.A.; Asam, P.F.M.; Hofstee, H.B.; Bendien, S.A.; Braunstahl, G.J.; Broeders, M.E.; Imming, L.M.; Langeveld, B.; et al. Real-world effectiveness of reslizumab in patients with severe eosinophilic asthma–first initiators and switchers. J. Allergy Clin. Immunol. Pract. 2022, 10, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Farne, H.A.; Wilson, A.; Powell, C.; Bax, L.; Milan, S.J. Anti-IL5 therapies for asthma. Cochrane Database Syst. Rev. 2017, 9, CD010834. [Google Scholar] [CrossRef] [PubMed]
- Bleecker, E.R.; FitzGerald, J.M.; Chanez, P.; Papi, A.; Weinstein, S.F.; Barker, P.; Sproule, S.; Gilmartin, G.; Aurivillius, M.; Werkström, V.; et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): A randomised, multicentre, placebo-controlled phase 3 trial. Lancet 2016, 388, 2115–2127. [Google Scholar] [CrossRef]
- FitzGerald, J.M.; Bleecker, E.R.; Nair, P.; Korn, S.; Ohta, K.; Lommatzsch, M.; Ferguson, G.T.; Busse, W.W.; Barker, P.; Sproule, S.; et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2016, 388, 2128–2141. [Google Scholar] [CrossRef]
- Goldman, M.; Hirsch, I.; Zangrilli, J.G.; Newbold, P.; Xu, X. The association between blood eosinophil count and benralizumab efficacy for patients with severe, uncontrolled asthma: Subanalyses of the Phase III SIROCCO and CALIMA studies. Curr. Med. Res. Opin. 2017, 33, 1605–1613. [Google Scholar] [CrossRef]
- Chia, Y.L.; Yan, L.; Yu, B.; Wang, B.; Barker, P.; Goldman, M.; Roskos, L. Relationship between benralizumab exposure and efficacy for patients with severe eosinophilic asthma. Clin. Pharmacol. Ther. 2019, 106, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Wenzel, S.; Rabe, K.F.; Bourdin, A.; Lugogo, N.L.; Kuna, P.; Barker, P.; Sproule, S.; Ponnarambil, S.; Goldman, M. Oral glucocorticoid–sparing effect of benralizumab in severe asthma. N. Eng. J. Med. 2017, 376, 2448–2458. [Google Scholar] [CrossRef]
- Panettieri, R.A., Jr.; Welte, T.; Shenoy, K.V.; Korn, S.; Jandl, M.; Kerwin, E.M.; Feijoo, R.; Barker, P.; Olsson, R.F.; Martin, U.J.; et al. Onset of effect, changes in airflow obstruction and lung volume, and health-related quality of life improvements with benralizumab for patients with severe eosinophilic asthma: Phase IIIb randomized, controlled trial (SOLANA). J. Asthma Allergy 2020, 13, 115–126. [Google Scholar] [CrossRef]
- FitzGerald, J.M.; Bleecker, E.R.; Menzies-Gow, A.; Zangrilli, J.G.; Hirsch, I.; Metcalfe, P.; Newbold, P.; Goldman, M. Predictors of enhanced response with benralizumab for patients with severe asthma: Pooled analysis of the SIROCCO and CALIMA studies. Lancet Resp. Med. 2018, 6, 51–64. [Google Scholar] [CrossRef]
- Busse, W.W.; Bleecker, E.R.; FitzGerald, J.M.; Ferguson, G.T.; Barker, P.; Sproule, S.; Olsson, R.F.; Martin, U.J.; Goldman, M.; Yañez, A.; et al. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Resp. Med. 2019, 7, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Busse, W.W.; Bleecker, E.R.; FitzGerald, J.M.; Ferguson, G.T.; Barker, P.; Brooks, L.; Olsson, R.F.; Martin, U.J.; Goldman, M. Benralizumab for adolescent patients with severe, eosinophilic asthma: Safety and efficacy after 3 years of treatment. J. Allergy Clin. Immunol. 2021, 148, 266–271. [Google Scholar] [CrossRef]
- Bourdin, A.; Shaw, D.; Menzies-Gow, A.; FitzGerald, J.M.; Bleecker, E.R.; Busse, W.W.; Ferguson, G.T.; Brooks, L.; Barker, P.; Gil, E.G.; et al. Two-year integrated steroid-sparing analysis and safety of benralizumab for severe asthma. J. Asthma 2021, 58, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Chipps, B.E.; Hirsch, I.; Trudo, F.; Alacqua, M.; Zangrilli, J.G. Benralizumab efficacy for patients with fixed airflow obstruction and severe, uncontrolled eosinophilic asthma. Ann. Allergy Asthma Immuno 2020, 124, 79–86. [Google Scholar] [CrossRef]
- Mathur, S.K.; Modena, B.D.; Coumou, H.; Barker, P.; Kreindler, J.L.; Zangrilli, J.G. Postbronchodilator lung function improvements with benralizumab for patients with severe asthma. Allergy 2020, 75, 1507. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Galo, A.; Levy-Abitbol, R.; Olveira, C.; Valencia Azcona, B.; Pérez Morales, M.; Rivas-Ruiz, F.; Tortajada-Goitia, B.; Moya-Carmona, I.; Levy-Naon, A. Real-life experience with benralizumab during 6 months. BMC Pulmon Med. 2020, 20, 184. [Google Scholar] [CrossRef]
- Menzella, F.; Fontana, M.; Galeone, C.; Ghidoni, G.; Capobelli, S.; Ruggiero, P.; Scelfo, C.; Simonazzi, A.; Catellani, C.; Livrieri, F.; et al. Real world effectiveness of benralizumab on respiratory function and asthma control. Multidiscip. Resp. Med. 2021, 16, 785. [Google Scholar] [CrossRef] [PubMed]
- Ridolo, E.; Barone, A.; Ottoni, M.; Peveri, S.; Montagni, M.; Nicoletta, F. The new therapeutic frontiers in the treatment of eosinophilic esophagitis: Biological drugs. Int. J. Mol. Sci. 2024, 25, 1702. [Google Scholar] [CrossRef]
- Lombardi, C.; Comberiati, P.; Ridolo, E.; Cottini, M.; Yacoub, M.R.; Casagrande, S.; Riccò, M.; Bottazzoli, M.; Berti, A. Anti-IL-5 pathway agents in eosinophilic-associated disorders across the lifespan. Drugs 2024, 84, 661–684. [Google Scholar] [CrossRef] [PubMed]
- Crowe, M.; Robinson, D.; Sagar, M.; Chen, L.; Ghamande, S. Chronic eosinophilic pneumonia: Clinical perspectives. Ther. Clin. Risk Manag. 2019, 15, 397–403. [Google Scholar] [CrossRef]
- Walsh, G.M. Recent developments in the use of monoclonal antibodies targeting the type 2 cytokines for severe asthma treatment. Adv. Pharmacol. 2023, 98, 31–54. [Google Scholar] [CrossRef]
- Wills-Karp, M.; Luyimbazi, J.; Xu, X.; Schofield, B.; Neben, T.Y.; Karp, C.L.; Donaldson, D.D. Interleukin-13: Central mediator of allergic asthma. Science 1998, 282, 2258–2261. [Google Scholar] [CrossRef]
- Gandhi, N.A.; Bennett, B.L.; Graham, N.M.; Pirozzi, G.; Stahl, N.; Yancopoulos, G.D. Targeting key proximal drivers of type 2 inflammation in disease. Nat. Rev. Drug Disc. 2016, 15, 35–50. [Google Scholar] [CrossRef]
- Wenzel, S.; Ford, L.; Pearlman, D.; Spector, S.; Sher, L.; Skobieranda, F.; Wang, L.; Kirkesseli, S.; Rocklin, R.; Bock, B.; et al. Dupilumab in persistent asthma with elevated eosinophil levels. N. Eng. J. Med. 2013, 368, 2455–2466. [Google Scholar] [CrossRef]
- Wenzel, S.; Castro, M.; Corren, J.; Maspero, J.; Wang, L.; Zhang, B.; Pirozzi, G.; Sutherland, E.R.; Evans, R.R.; Joish, V.N.; et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: A randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 2016, 388, 31–44. [Google Scholar] [CrossRef]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; FitzGerald, J.M.; et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N. Eng. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef]
- Rabe, K.F.; Nair, P.; Brusselle, G.; Maspero, J.F.; Castro, M.; Sher, L.; Zhu, H.; Hamilton, J.D.; Swanson, B.N.; Khan, A.; et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N. Eng. J. Med. 2018, 378, 2475–2485. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Deniz, Y.; Corren, J.; Casale, T.B.; FitzGerald, J.M.; Izuhara, K.; Daizadeh, N.; Ortiz, B.; Johnson, R.R.; Harel, S.; et al. Baseline FeNO independently predicts the dupilumab response in patients with moderate-to-severe asthma. J. Allergy Clin. Immunol. Pract. 2023, 11, 1213–1220. [Google Scholar] [CrossRef]
- Brooks, G.D. Updated Evaluation of Dupilumab in the Treatment of Asthma: Patient Selection and Reported Outcomes. Ther. Clin. Risk Manag. 2020, 16, 181–187. [Google Scholar] [CrossRef]
- Pe Ameer, O.Z.; Mansour, G.K.; Al-Amoudi, R.S.; Abu-Owaimer, F.M. Exploring Dupilumab for Asthma: From Mechanistic Insights to Clinical Outcomes, Safety and Cost-Effectiveness. Front. Pharmacol. 2025, 16, 1631321. [Google Scholar] [CrossRef]
- Dunican, E.M.; Elicker, B.M.; Gierada, D.S.; Nagle, S.K.; Schiebler, M.L.; Newell, J.D.; Raymond, W.W.; Lachowicz-Scroggins, M.E.; Di Maio, S.; Hoffman, E.A.; et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J. Clin. Investig. 2018, 128, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Elicker, B.M.; Henry, T.; Gierada, D.S.; Schiebler, M.L.; Huang, B.K.; Peters, M.C.; Castro, M.; Hoffman, E.A.; Fain, S.B.; et al. Mucus plugs persist in asthma, and changes in mucus plugs associate with changes in airflow over time. Amer Resp. Crit. Care Med. 2022, 205, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Anai, M.; Yoshida, C.; Izumi, H.; Muramoto, K.; Saruwatari, K.; Tomita, Y.; Ichiyasu, H.; Sakagami, T. Successful treatment with dupilumab for mucus plugs in severe asthma. Resp. Case Rep. 2023, 11, e01074. [Google Scholar] [CrossRef]
- Marseglia, G.L.; Licari, A.; Tosca, M.A.; Miraglia del Giudice, M.; Indolfi, C.; Ciprandi, G. An updated reappraisal of dupilumab in children and adolescents with severe asthma. Children 2024, 11, 843. [Google Scholar] [CrossRef]
- Indolfi, C.; Dinardo, G.; Klain, A.; Contieri, M.; Umano, G.R.; Decimo, A.; Ciprandi, G.; Del Giudice, M.M. Time effect of dupilumab to treat severe uncontrolled asthma in adolescents: A pilot study. Allergol. Immunopathol. 2023, 51, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Aznaran-Torres, R.; Nombera-Lossio, J.; Arredondo-Nontol, M.; Jurado-Hernández, J.L.; Álvarez-Orozco, I.F.; Rojas, E.M.; Taype-Rondan, A.; Fernandez-Guzman, D. Effects of Dupilumab in Children and Adolescents with Moderate-Severe Asthma: A Systematic Review of Clinical Trials. Pediatr. Pulmonol. 2025, 60, e71138. [Google Scholar] [CrossRef] [PubMed]
- Bacharier, L.B.; Maspero, J.F.; Katelaris, C.H.; Fiocchi, A.G.; Gagnon, R.; de Mir, I.; Jain, N.; Sher, L.D.; Mao, X.; Liu, D.; et al. Dupilumab in children with uncontrolled moderate-to-severe asthma. N. Eng. J. Med. 2021, 385, 2230–2240. [Google Scholar] [CrossRef]
- Jackson, D.J.; Bacharier, L.B.; Phipatanakul, W.; Sher, L.; Domingo, C.; Papadopoulos, N.; Modena, B.; Li, N.; Xia, C.; Kamal, M.A.; et al. Dupilumab pharmacokinetics and effect on type 2 biomarkers in children with moderate-to-severe asthma. Ann. Allergy Asthma Immunol. 2023, 131, 44–51. [Google Scholar] [CrossRef]
- Fiocchi, A.G.; Phipatanakul, W.; Zeiger, R.S.; Durrani, S.R.; Cole, J.; Msihid, J.; Gall, R.; Jacob-Nara, J.A.; Deniz, Y.; Rowe, P.J.; et al. Dupilumab leads to better-controlled asthma and quality of life in children: The VOYAGE study. Eur. Resp. J. 2023, 62, 2300558. [Google Scholar] [CrossRef] [PubMed]
- Bacharier, L.B.; Guilbert, T.W.; Katelaris, C.H.; Deschildre, A.; Phipatanakul, W.; Liu, D.; Altincatal, A.; Mannent, L.P.; Amin, N.; Laws, E.; et al. Dupilumab improves lung function parameters in pediatric type 2 asthma: VOYAGE study. J. Allergy Clin. Immunol Pract. 2024, 12, 948–959. [Google Scholar] [CrossRef]
- Kim, J.; Naclerio, R. Therapeutic potential of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps: Evidence to date. Ther. Clin. Risk Manag. 2020, 16, 31–37. [Google Scholar] [CrossRef]
- Rodriguez-Iglesias, M.; Calvo-Henríquez, C.; Martin-Jimenez, D.; García-Lliberós, A.; Maza-Solano, J.; Moreno-Luna, R.; Izquierdo-Domínguez, A.; Martínez-Capoccioni, G.; Alobid, I. Effect of dupilumab in CRSwNP sinonasal outcomes from real life studies: A systematic review with meta-analysis. Curr. Allergy Asthma Rep. 2025, 25, 13. [Google Scholar] [CrossRef]
- Chu, S.H.; Chen, J.J.; Chen, C.C.; Lei, W.T.; Lien, C.H.; Weng, S.L.; Yeung, C.Y.; Liu, L.Y.M.; Tai, Y.L.; Huang, Y.N.; et al. Efficacy of Dupilumab in the Treatment of Eosinophilic Esophagitis: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Life 2025, 15, 307. [Google Scholar] [CrossRef]
- Liu, D.; Patel, D.; Lau, M.; Largen, J.; Hu, B.D.; He, H.; Guttman-Yassky, E. A translational approach to improve therapeutics in atopic dermatitis and beyond. J. Immunol. 2025, 214, 2165–2179. [Google Scholar] [CrossRef]
- Dean, K.; Niven, R. Asthma Phenotypes and Endotypes: Implications for Personalised Therapy. BioDrugs 2017, 31, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Kardas, G.; Panek, M.; Kuna, P.; Damiański, P.; Kupczyk, M. Monoclonal antibodies in the management of asthma: Dead ends, current status and future perspectives. Front. Immunol. 2022, 13, 983852. [Google Scholar] [CrossRef]
- Nolasco, S.; Pelaia, C.; Scioscia, G.; Campisi, R.; Crimi, C. Tezepelumab for asthma. Drugs Today 2022, 58, 591–603. [Google Scholar] [CrossRef]
- Ayobami, A.; Joshua, A.; Boyce, J.A.; Kita, H. Targeting alarmins in asthma: From bench to clinic. J. Allergy Clin. Immunol. 2025, 155, 1133–1148. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Abel, P.W.; Casale, T.B.; Tu, Y. T(H)17 cells and corticosteroid insensitivity in severe asthma. J. Allergy Clin. Immunol. 2022, 149, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Busse, W.W.; Holgate, S.; Kerwin, E.; Chon, Y.; Feng, J.; Lin, J.; Lin, S.L. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 2013, 188, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, M.E.; Ruddy, M.K.; Pavord, I.D.; Israel, E.; Rabe, K.F.; Ford, L.B.; Maspero, J.F.; Abdulai, R.M.; Hu, C.-C.; Martincova, R.; et al. Efficacy and Safety of Itepekimab in Patients with Moderate-to-Severe Asthma. N. Engl. J. Med. 2021, 385, 1656–1668. [Google Scholar] [CrossRef]
- Kelsen, S.G.; Agache, I.O.; Soong, W.; Israel, E.; Chupp, G.L.; Cheung, D.S.; Theess, W.; Yang, X.; Staton, T.L.; Choy, D.F.; et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. J. Allergy Clin. Immunol. 2021, 148, 790–798. [Google Scholar] [CrossRef]
- McQueen, R.B.; Sheehan, D.N.; Whittington, M.D.; van Boven, J.F.; Campbell, J.D. Cost-effectiveness of biological asthma treatments: A systematic review and recommendations for future economic evaluations. Pharmacoeconomics 2018, 36, 957–971. [Google Scholar] [CrossRef]
- Whittington, M.D.; McQueen, R.B.; Ollendorf, D.A.; Tice, J.A.; Chapman, R.H.; Pearson, S.D.; Campbell, J.D. Assessing the value of mepolizumab for severe eosinophilic asthma: A cost-effectiveness analysis. Ann. Allergy Asthma Immunol. 2017, 118, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Agache, I.; Beltran, J.; Akdis, C.; Akdis, M.; Canelo-Aybar, C.; Canonica, G.W.; Casale, T.; Chivato, T.; Corren, J.; Del Giacco, S.; et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines-recommendations on the use of biologicals in severe asthma. Allergy 2020, 75, 1023–1042. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walsh, G.M. Recent Developments in Monoclonal-Antibody-Based Biologic Therapy for Severe Refractory Eosinophilic Asthma. Antibodies 2025, 14, 101. https://doi.org/10.3390/antib14040101
Walsh GM. Recent Developments in Monoclonal-Antibody-Based Biologic Therapy for Severe Refractory Eosinophilic Asthma. Antibodies. 2025; 14(4):101. https://doi.org/10.3390/antib14040101
Chicago/Turabian StyleWalsh, Garry M. 2025. "Recent Developments in Monoclonal-Antibody-Based Biologic Therapy for Severe Refractory Eosinophilic Asthma" Antibodies 14, no. 4: 101. https://doi.org/10.3390/antib14040101
APA StyleWalsh, G. M. (2025). Recent Developments in Monoclonal-Antibody-Based Biologic Therapy for Severe Refractory Eosinophilic Asthma. Antibodies, 14(4), 101. https://doi.org/10.3390/antib14040101
