Limited Biomarker Potential for IgG Autoantibodies Reactive to Linear Epitopes in Systemic Lupus Erythematosus or Spondyloarthropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Subjects
2.2. Peptide Array
2.3. Enzyme-Linked Immunosorbent Assay
2.4. Random Forest and Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schellekens, G.A.; de Jong, B.A.; van den Hoogen, F.H.; van de Putte, L.B.; van Venrooij, W.J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Investig. 1998, 101, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Barra, L.; Pope, J.E.; Orav, J.E.; Boire, G.; Haraoui, B.; Hitchon, C.; Keystone, E.C.; Thorne, J.C.; Tin, D.; Bykerk, V.P.; et al. Prognosis of seronegative patients in a large prospective cohort of patients with early inflammatory arthritis. J. Rheumatol. 2014, 41, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Deodhar, A.; Mittal, M.; Reilly, P.; Bao, Y.; Manthena, S.; Anderson, J.; Joshi, A. Ankylosing spondylitis diagnosis in US patients with back pain: Identifying providers involved and factors associated with rheumatology referral delay. Clin. Rheumatol. 2016, 35, 1769–1776. [Google Scholar] [CrossRef]
- Pratt, A.G.; Lendrem, D.; Hargreaves, B.; Aslam, O.; Galloway, J.B.; Isaacs, J.D. Components of treatment delay in rheumatoid arthritis differ according to autoantibody status: Validation of a single-centre observation using national audit data. Rheumatology 2016, 55, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.R.; Baek, H.L.; Yoon, H.H.; Ryu, H.J.; Choi, H.J.; Baek, H.J.; Ko, K.P. Delayed diagnosis is linked to worse outcomes and unfavourable treatment responses in patients with axial spondyloarthritis. Clin. Rheumatol. 2015, 34, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.J.; Johnson, G.D.; Holborow, E.J. Antinuclear Factor in Rheumatoid Arthritis, Its Incidence and Clinical Significance. Ann. Rheum. Dis. 1964, 23, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.S.; Anderson, J.R.; Bloch, K.J.; Buchanan, W.W.; Bunim, J.J. Antinuclear and Precipitating Auto-Antibodies in Sjoegren’s Syndrome. Ann. Rheum. Dis. 1965, 24, 16–22. [Google Scholar] [CrossRef]
- Selmi, C.; Ceribelli, A.; Generali, E.; Scire, C.A.; Alborghetti, F.; Colloredo, G.; Porrati, L.; Achenza, M.I.; De Santis, M.; Cavaciocchi, F.; et al. Serum antinuclear and extractable nuclear antigen antibody prevalence and associated morbidity and mortality in the general population over 15 years. Autoimmun. Rev. 2016, 15, 162–166. [Google Scholar] [CrossRef]
- van Beers, J.; Schreurs, M.W.J. Anti-Sm antibodies in the classification criteria of systemic lupus erythematosus. J. Transl. Autoimmun. 2022, 5, 100155. [Google Scholar] [CrossRef]
- Isenberg, D.A.; Manson, J.J.; Ehrenstein, M.R.; Rahman, A. Fifty years of anti-ds DNA antibodies: Are we approaching journey’s end? Rheumatology 2007, 46, 1052–1056. [Google Scholar] [CrossRef]
- Engmark, M.; Andersen, M.R.; Laustsen, A.H.; Patel, J.; Sullivan, E.; de Masi, F.; Hansen, C.S.; Kringelum, J.V.; Lomonte, B.; Gutierrez, J.M.; et al. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays. Sci. Rep. 2016, 6, 36629. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.S.; Dufva, M.; Bogh, K.L.; Sullivan, E.; Patel, J.; Eiwegger, T.; Szepfalusi, Z.; Nielsen, M.; Christiansen, A. Linear epitope mapping of peanut allergens demonstrates individualized and persistent antibody-binding patterns. J. Allergy Clin. Immunol. 2016, 138, 1728–1730. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.G.; Blackburn, J.M. Advances in the development of human protein microarrays. Expert. Rev. Proteom. 2017, 14, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Storey, J.D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 2002, 78, 781–804. [Google Scholar] [CrossRef]
- Stephens, M. False discovery rates: A new deal. Biostatistics 2017, 18, 275–294. [Google Scholar] [CrossRef]
- Zheng, Z.; Mergaert, A.M.; Ong, I.M.; Shelef, M.A.; Newton, M.A. MixTwice: Large-scale hypothesis testing for peptide arrays by variance mixing. Bioinformatics 2021, 37, 2637–2643. [Google Scholar] [CrossRef]
- Mergaert, A.M.; Zheng, Z.H.; Denny, M.F.; Amjadi, M.F.; Bashar, S.J.; Newton, M.A.; Malmström, V.; Grönwall, C.; McCoy, S.S.; Shelef, M.A. Rheumatoid Factor and Anti-Modified Protein Antibody Reactivities Converge on IgG Epitopes. Arthritis Rheumatol. 2022, 74, 984–991. [Google Scholar] [CrossRef]
- Petri, M.; Orbai, A.M.; Alarcon, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Shiboski, S.C.; Shiboski, C.H.; Criswell, L.; Baer, A.; Challacombe, S.; Lanfranchi, H.; Schiodt, M.; Umehara, H.; Vivino, F.; Zhao, Y.; et al. American College of Rheumatology classification criteria for Sjogren’s syndrome: A data-driven, expert consensus approach in the Sjogren’s International Collaborative Clinical Alliance cohort. Arthritis Care Res. 2012, 64, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.; Zheng, Z.; Lasarev, M.R.; Larsen, M.C.; Vande Loo, A.; Alexandridis, R.A.; Newton, M.A.; Shelef, M.A.; McCoy, S.S. Novel autoantibodies help diagnose anti-SSA antibody negative Sjogren disease and predict abnormal labial salivary gland pathology. Ann. Rheum. Dis. 2024, 83, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Mergaert, A.M.; Fahmy, L.M.; Bawadekar, M.; Holmes, C.L.; Ong, I.M.; Bridges, A.J.; Newton, M.A.; Shelef, M.A. Disordered Antigens and Epitope Overlap Between Anti-Citrullinated Protein Antibodies and Rheumatoid Factor in Rheumatoid Arthritis. Arthritis Rheumatol. 2020, 72, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Zandian, A.; Forsstrom, B.; Haggmark-Manberg, A.; Schwenk, J.M.; Uhlen, M.; Nilsson, P.; Ayoglu, B. Whole-Proteome Peptide Microarrays for Profiling Autoantibody Repertoires within Multiple Sclerosis and Narcolepsy. J. Proteome Res. 2017, 16, 1300–1314. [Google Scholar] [CrossRef]
- Steen, J.; Forsstrom, B.; Sahlstrom, P.; Odowd, V.; Israelsson, L.; Krishnamurthy, A.; Badreh, S.; Mathsson Alm, L.; Compson, J.; Ramskold, D.; et al. Human plasma cell derived monoclonal antibodies to post-translationally modified proteins recognize amino acid motifs rather than specific proteins. Arthritis Rheumatol. 2018, 71, 196–209. [Google Scholar] [CrossRef]
- Steffen, W.; Ko, F.C.; Patel, J.; Lyamichev, V.; Albert, T.; Benz, J.; Rudolph, M.G.; Bergmann, F.; Streidl, T.; Kratzsch, P.; et al. Discovery of a microbial transglutaminase enabling highly site-specific labeling of proteins. J. Biol. Chem. 2017, 292, 15622–15635. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomforest. R News 2002, 2, 18–22. [Google Scholar]
- Henderson, N.C.; Newton, M.A. Making the cut: Improved ranking and selection for large-scale inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 2016, 78, 781–804. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Sahlstrom, P.; Hansson, M.; Steen, J.; Amara, K.; Titcombe, P.J.; Forsstrom, B.; Stalesen, R.; Israelsson, L.; Piccoli, L.; Lundberg, K.; et al. Different hierarchies of anti-modified protein autoantibody reactivities in rheumatoid arthritis. Arthritis Rheumatol. 2020, 72, 1643–1657. [Google Scholar] [CrossRef] [PubMed]
- Heffron, A.S.; McIlwain, S.J.; Amjadi, M.F.; Baker, D.A.; Khullar, S.; Armbrust, T.; Halfmann, P.J.; Kawaoka, Y.; Sethi, A.K.; Palmenberg, A.C.; et al. The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biol. 2021, 19, e3001265. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.F.; Adyniec, R.R.; Gupta, S.; Bashar, S.J.; Mergaert, A.M.; Braun, K.M.; Moreno, G.K.; O’Connor, D.H.; Friedrich, T.C.; Safdar, N.; et al. Anti-membrane Antibodies Persist at Least One Year and Discriminate Between Past Coronavirus Disease 2019 Infection and Vaccination. J. Infect. Dis. 2022, 226, 1897–1902. [Google Scholar] [CrossRef] [PubMed]
- Koussiouris, J.; Chandran, V. Autoantibodies in psoriatic disease. Adv. Clin. Chem. 2023, 115, 135–174. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Sohn, D.H.; Zhao, X.; Sokolove, J.; Lindstrom, T.M.; Yoo, B.; Lee, C.K.; Reveille, J.D.; Taurog, J.D.; Robinson, W.H. Role of PPM1A and anti-PPM1A Autoantibodies in Ankylosing Spondylitis. Arthritis Rheumatol. 2014, 66, 2793. [Google Scholar] [CrossRef]
- Wright, C.; Sibani, S.; Trudgian, D.; Fischer, R.; Kessler, B.; LaBaer, J.; Bowness, P. Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays. Mol. Cell Proteom. 2012, 11, M9 00384. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, E.J.; Lee, J.H.; Hong, S.C.; Lee, C.K.; Yoo, B.; Oh, J.S.; Lee, S.H.; Kim, T.J.; Lee, S.H.; et al. Autoantibodies against Protein Phosphatase Magnesium-Dependent 1A as a Biomarker for Predicting Radiographic Progression in Ankylosing Spondylitis Treated with Anti-Tumor Necrosis Factor Agents. J. Clin. Med. 2020, 9, 3968. [Google Scholar] [CrossRef]
- Chang, M.H.; Nigrovic, P.A. Antibody-dependent and -independent mechanisms of inflammatory arthritis. JCI Insight 2019, 4, 125278. [Google Scholar] [CrossRef]
- De Stefano, L.; Bugatti, S.; Mazzucchelli, I.; Rossi, S.; Xoxi, B.; Bozzalla Cassione, E.; Luvaro, T.; Montecucco, C.; Manzo, A. Synovial and serum B-cell signature of autoantibody-negative rheumatoid arthritis versus autoantibody-positive rheumatoid arthritis and psoriatic arthritis. Rheumatology 2023, 63, 1322–1331. [Google Scholar] [CrossRef]
- Wu, F.L.; Lai, D.Y.; Ding, H.H.; Tang, Y.J.; Xu, Z.W.; Ma, M.L.; Guo, S.J.; Wang, J.F.; Shen, N.; Zhao, X.D.; et al. Identification of Serum Biomarkers for Systemic Lupus Erythematosus Using a Library of Phage Displayed Random Peptides and Deep Sequencing. Mol. Cell Proteom. 2019, 18, 1851–1863. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.X.; Yin, X.; Li, X.; Li, H.; Zhang, X.; Wang, Z.; Qiu, Y.R. Screening epitope peptides based on a phage-displayed random peptide and peptide microarrays to contribute to improving the diagnostic efficiency of systemic lupus erythematosus. Immunol. Lett. 2023, 259, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Stafford, P.; Sherma, N.D.; Peterson, M.; Diehnelt, C.W. A Peptide Microarray Platform Approach for Discovery of Immunodominant Antibody Epitopes. Anal. Chem. 2024, 96, 14524–14530. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Spezia, P.G.; Maggi, F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines 2024, 12, 887. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Dou, X.; Zhang, X.; Yan, M.; Xiong, D.; Jiang, R.; Ou, T.; Tang, A.; Yu, X.; Zhu, F.; et al. Protective antigenic epitopes revealed by immunosignatures after three doses of inactivated SARS-CoV-2 vaccine. Front. Immunol. 2022, 13, 938378. [Google Scholar] [CrossRef]
Array Features | ELISA-Array Coefficient | ELISA Fold Value | ELISA p-Value |
---|---|---|---|
Fold | 0.72 | 0.74 | 0.72 |
Fold (NN) 1 | 0.68 | 0.75 | 0.67 |
r-value | 0.64 | 0.57 | 0.70 |
locFDR 2 | 0.60 | 0.72 | 0.73 |
locFDR (NN) | 0.63 | 0.65 | 0.65 |
propexp 3 | 0.64 | 0.72 | 0.71 |
propexp (NN) | 0.67 | 0.73 | 0.71 |
propcon 4 | 0.61 | 0.50 | 0.58 |
propcon (NN) | 0.64 | 0.50 | 0.59 |
All features | 0.82 | 0.81 | 0.80 |
ID | Sequence | pcor 1 | pfold 2 | pp-value 3 | Ecor 4 | Efold 5 | Ep-value 6 |
---|---|---|---|---|---|---|---|
surf-1253 | CCKFDEDDSEPVLKGV | 0.63 | 0.60 | 0.98 | 0.83 | 8.75 | 2.3 × 10−9 |
surf-814 | KRSFIEDLLFNKVTLA | 0.55 | 0.44 | 0.98 | 0.59 | 1.98 | 6.0 × 10−5 |
mem-8 | ITVEELKKLLEQWNLV | 0.53 | 0.60 | 0.97 | 0.83 | 51.52 | 1.1 × 10−8 |
nucl-390 | QTVTLLPAADLDDFSK | 0.64 | 0.51 | 0.98 | 0.82 | 92.32 | 1.7 × 10−9 |
ID | Sequence | pcor 1 | pfold 2 | pp-value 3 | Ecor 4 | Efold 5 | Ep-value 6 |
---|---|---|---|---|---|---|---|
Q9Y468-515 | QPPLGPREPSSASPGG | 0.89 | 0.89 | 0.84 | 0.44 | 9.3 | 0.013 |
Q9BWU1-35 | VYKARRKDGKDEKEYA | 0.80 | 0.88 | 0.83 | 0.52 | 1.6 | 0.003 |
Q96GP6-845 | TPIQKPPRKKSREAAG | 0.77 | 0.93 | 0.84 | 0.49 | 3.5 | 0.044 |
O75037-125 | AERKRRAQEQGVAGPE | 0.81 | 0.89 | 0.86 | 0.46 | 2.5 | 0.009 |
Q8TE54-327 | AQGSAKKFKYSIDDNQ | 0.95 | 0.88 | 0.80 | 0.36 | 2.2 | 0.025 |
ID | Sequence | pcor 1 | pfold 2 | pp-value 3 | Ecor 4 | Efold 5 | Ep-value 6 |
---|---|---|---|---|---|---|---|
Q13330-195 | ETQVWEAHNPLTDKQI | 0.756 | 0.828 | 0.844 | 0.17 | 4.1 | 0.721 |
Q9NUL5-255 | LSQGGLLEDLDNLILE | 0.618 | 0.928 | 0.876 | 0.40 | 1.4 | 0.123 |
Q9Y3Y4-315 | DACTTEKSNKSSLHPN | 0.898 | 0.786 | 0.674 | 0.26 | 1.8 | 0.089 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashar, S.J.; Zheng, Z.; Mergaert, A.M.; Adyniec, R.R.; Gupta, S.; Amjadi, M.F.; McCoy, S.S.; Newton, M.A.; Shelef, M.A. Limited Biomarker Potential for IgG Autoantibodies Reactive to Linear Epitopes in Systemic Lupus Erythematosus or Spondyloarthropathy. Antibodies 2024, 13, 87. https://doi.org/10.3390/antib13040087
Bashar SJ, Zheng Z, Mergaert AM, Adyniec RR, Gupta S, Amjadi MF, McCoy SS, Newton MA, Shelef MA. Limited Biomarker Potential for IgG Autoantibodies Reactive to Linear Epitopes in Systemic Lupus Erythematosus or Spondyloarthropathy. Antibodies. 2024; 13(4):87. https://doi.org/10.3390/antib13040087
Chicago/Turabian StyleBashar, S. Janna, Zihao Zheng, Aisha M. Mergaert, Ryan R. Adyniec, Srishti Gupta, Maya F. Amjadi, Sara S. McCoy, Michael A. Newton, and Miriam A. Shelef. 2024. "Limited Biomarker Potential for IgG Autoantibodies Reactive to Linear Epitopes in Systemic Lupus Erythematosus or Spondyloarthropathy" Antibodies 13, no. 4: 87. https://doi.org/10.3390/antib13040087
APA StyleBashar, S. J., Zheng, Z., Mergaert, A. M., Adyniec, R. R., Gupta, S., Amjadi, M. F., McCoy, S. S., Newton, M. A., & Shelef, M. A. (2024). Limited Biomarker Potential for IgG Autoantibodies Reactive to Linear Epitopes in Systemic Lupus Erythematosus or Spondyloarthropathy. Antibodies, 13(4), 87. https://doi.org/10.3390/antib13040087