Ophthalmic Use of Targeted Biologics in the Management of Intraocular Diseases: Current and Emerging Therapies
Abstract
:1. Introduction
2. Materials and Methods
3. Monoclonal Antibody Therapy for Uveitis
3.1. Uveitis
3.2. Anti-TNF-α Monoclonal Antibodies
3.2.1. Adalimumab
3.2.2. Infliximab
3.2.3. Other Anti-TNF-α Antibodies
3.3. Non-Anti-TNF-α Monoclonal Antibodies
3.3.1. Anti-Interleukin-6 Monoclonal Antibodies
3.3.2. Anti-CD20 Monoclonal Antibodies
3.3.3. Other Non-Anti-TNF-α Monoclonal Antibodies
4. Monoclonal Antibody Therapy for Age-Related Macular Degeneration
4.1. Age-Related Macular Degeneration
4.2. Treatment of Age-Related Macular Degeneration with Anti-VEGF Monoclonal Antibodies
4.2.1. Aflibercept
4.2.2. Bevacizumab
4.2.3. Ranibizumab
4.2.4. Brolucizumab
4.2.5. Faricimab
5. Treatment of Other Retinal Diseases with Anti-VEGF Monoclonal Antibodies
5.1. Diabetic Retinopathy
5.2. Retinal Vein Occlusion
5.3. Retinopathy of Prematurity
6. Adverse Events of Intravitreal Anti-VEGF Injections
7. Treatment of Age-Related Macular Degeneration with Complement System-Targeting Antibodies
7.1. Lampalizumab
7.2. Pegcetacoplan
7.3. Other Complement System-Targeting Antibodies
8. Cost-Effectiveness Analysis of Intravitreal Antibody Therapy
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.B.; Smith, A.J.; Smith, J.R. Biologic Drugs for the Treatment of Noninfectious Uveitis. Asia-Pac. J. Ophthalmol. 2021, 10, 63–73. [Google Scholar] [CrossRef]
- Ciulla, T.A.; Amador, A.G.; Zinman, B. Diabetic retinopathy and diabetic macular edema: Pathophysiology, screening, and novel therapies. Diabetes Care 2003, 26, 2653–2664. [Google Scholar] [CrossRef]
- Stahl, A.; Nakanishi, H.; Lepore, D.; Wu, W.-C.; Azuma, N.; Jacas, C.; Vitti, R.; Athanikar, A.; Chu, K.; Iveli, P.; et al. Intravitreal Aflibercept vs Laser Therapy for Retinopathy of Prematurity: Two-Year Efficacy and Safety Outcomes in the Nonrandomized Controlled Trial FIREFLEYE next. JAMA Netw. Open 2024, 7, e248383. [Google Scholar] [CrossRef]
- Wu, X.; Tao, M.; Zhu, L.; Zhang, T.; Zhang, M. Pathogenesis and current therapies for non-infectiousnoninfectious uveitis. Clin. Exp. Med. 2023, 23, 1089–1106. [Google Scholar] [CrossRef]
- Leclercq, M.; Desbois, A.-C.; Domont, F.; Maalouf, G.; Touhami, S.; Cacoub, P.; Bodaghi, B.; Saadoun, D. Biotherapies in Uveitis. J. Clin. Med. 2020, 9, 3599. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Tatlipinar, S.; Shah, S.M.; Haller, J.A.; Quinlan, E.; Sung, J.; Zimmer-Galler, I.; Do, D.V.; Campochiaro, P.A. Vascular Endothelial Growth Factor Is a Critical Stimulus for Diabetic Macular Edema. Am. J. Ophthalmol. 2006, 142, 961–969.e4. [Google Scholar] [CrossRef]
- Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1419–1431. [Google Scholar] [CrossRef]
- Massin, P.; Bandello, F.; Garweg, J.G.; Hansen, L.L.; Harding, S.P.; Larsen, M.; Mitchell, P.; Sharp, D.; Wolf-Schnurrbusch, U.E.; Gekkieva, M.; et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): A 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care 2010, 33, 2399–2405. [Google Scholar] [CrossRef]
- Heier, J.S.; Brown, D.M.; Chong, V.; Korobelnik, J.F.; Kaiser, P.K.; Nguyen, Q.D.; Kirchhof, B.; Ho, A.; Ogura, Y.; Yancopoulos, G.D.; et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 2012, 119, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Dugel, P.U.; Koh, A.; Ogura, Y.; Jaffe, G.J.; Schmidt-Erfurth, U.; Brown, D.M.; Gomes, A.V.; Warburton, J.; Weichselberger, A.; Holz, F.G. HAWK and HARRIER: Phase 3, Multicenter, Randomized, Double-Masked Trials of Brolucizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology 2020, 127, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, G.J.; Dick, A.D.; Brézin, A.P.; Nguyen, Q.D.; Thorne, J.E.; Kestelyn, P.; Barisani-Asenbauer, T.; Franco, P.; Heiligenhaus, A.; Scales, D.; et al. Adalimumab in Patients with Active Noninfectious Uveitis. N. Engl. J. Med. 2016, 375, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Suhler, E.B.; Jaffe, G.J.; Fortin, E.; Lim, L.L.; Merrill, P.T.; Dick, A.D.; Brezin, A.P.; Nguyen, Q.D.; Thorne, J.E.; Van Calster, J.; et al. Long-Term Safety and Efficacy of Adalimumab in Patients with Noninfectious Intermediate Uveitis, Posterior Uveitis, or Panuveitis. Ophthalmology 2021, 128, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Uchida, M.; Kamoi, K.; Ando, N.; Wei, C.; Karube, H.; Ohno-Matsui, K. Safety of Infliximab for the Eye Under Human T-Cell Leukemia Virus Type 1 Infectious Conditions in vitro. Front. Microbiol. 2019, 10, 2148. [Google Scholar] [CrossRef]
- Busto-Iglesias, M.; Rodríguez-Martínez, L.; Rodríguez-Fernández, C.A.; González-López, J.; González-Barcia, M.; de Domingo, B.; Rodríguez-Rodríguez, L.; Fernández-Ferreiro, A.; Mondelo-García, C. Perspectives of Therapeutic Drug Monitoring of Biological Agents in Non-InfectiousNoninfectious Uveitis Treatment: A Review. Pharmaceutics 2023, 15, 766. [Google Scholar] [CrossRef]
- Yang, M.; Kamoi, K.; Zong, Y.; Zhang, J.; Zou, Y.; Ohno-Matsui, K. Ripasudil as a Potential Therapeutic Agent in Treating Secondary Glaucoma in HTLV-1-Uveitis: An In Vitro Analysis. Int. J. Mol. Sci. 2024, 25, 3229. [Google Scholar] [CrossRef]
- Zong, Y.; Kamoi, K.; Ando, N.; Kurozumi-Karube, H.; Ohno-Matsui, K. Mechanism of Secondary Glaucoma Development in HTLV-1 Uveitis. Front. Microbiol. 2022, 13, 738742. [Google Scholar] [CrossRef]
- Kamoi, K. HTLV-1 in Ophthalmology. Front. Microbiol. 2020, 11, 388. [Google Scholar] [CrossRef]
- Kitaguchi-Iwakiri, Y.; Kamoi, K.; Takase, H.; Okubo, Y.; Ohno-Matsui, K. Long-term incidence of posterior capsular opacification in patients with non-infectiousnoninfectious uveitis. Sci. Rep. 2022, 12, 4296. [Google Scholar] [CrossRef]
- Dick, A.D.; Rosenbaum, J.T.; Al-Dhibi, H.A.; Belfort, R.; Brézin, A.P.; Chee, S.P.; Davis, J.L.; Ramanan, A.V.; Sonoda, K.-H.; Carreño, E.; et al. Guidance on Noncorticosteroid Systemic Immunomodulatory Therapy in Noninfectious Uveitis: Fundamentals of Care for UveitiS (FOCUS) Initiative. Ophthalmology 2018, 125, 757–773. [Google Scholar] [CrossRef]
- Dick, A.D.; Forrester, J.V.; Liversidge, J.; Cope, A.P. The role of tumour necrosis factor (TNF-alpha) in experimental autoimmune uveoretinitis (EAU). Prog. Retin. Eye Res. 2004, 23, 617–637. [Google Scholar] [CrossRef] [PubMed]
- Karube, H.; Kamoi, K.; Ohno-Matsui, K. Anti-TNF therapy in the management of ocular attacks in an elderly patient with long-standing Behçet’s disease. Int. Med. Case Rep. J. 2016, 9, 301–304. [Google Scholar] [PubMed]
- Santos Lacomba, M.; Marcos Martín, C.; Gallardo Galera, J.M.; Gómez Vidal, M.A.; Collantes Estévez, E.; Ramírez Chamond, R.; Omar, M.M. Aqueous Humor and Serum Tumor Necrosis Factor-α in Clinical Uveitis. Ophthalmic Res. 2001, 33, 251–255. [Google Scholar] [CrossRef]
- Hernández Garfella, M.L.; Palomares Fort, P.; Román Ivorra, J.A.; Cervera Taulet, E. Aqueous Humor Levels of Different Interleukins 1-β, 2, 6 and 10, Tumor Necrosis Factor-α and Vascular Endothelial Growth Factor in Uveitis Treated with Adalimumab. J. Ophthalmic Vis. Res. 2015, 10, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Leal, I.; Rodrigues, F.B.; Sousa, D.C.; Duarte, G.S.; Romão, V.C.; Marques-Neves, C.; Costa, J.; Fonseca, J.E. Anti-TNF Drugs for Chronic Uveitis in Adults—A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Med. 2019, 6, 104. [Google Scholar] [CrossRef] [PubMed]
- Kurozumi-Karube, H.; Kamoi, K.; Ando, N.; Uchida, M.; Hamaguchi, I.; Ohno-Matsui, K. In vitro Evaluation of the Safety of Adalimumab for the Eye Under HTLV-1 Infection Status: A Preliminary Study. Front. Microbiol. 2020, 11, 522579. [Google Scholar] [CrossRef]
- Tracey, D.; Klareskog, L.; Sasso, E.H.; Salfeld, J.G.; Tak, P.P. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol. Ther. 2008, 117, 244–279. [Google Scholar] [CrossRef]
- Hasegawa, E.; Takeda, A.; Yawata, N.; Sonoda, K.-H. The effectiveness of adalimumab treatment for non-infectiousnoninfectious uveitis. Immunol. Med. 2019, 42, 79–83. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Merrill, P.T.; Jaffe, G.J.; Dick, A.D.; Kurup, S.K.; Sheppard, J.; Schlaen, A.; Pavesio, C.; Cimino, L.; Van Calster, J.; et al. Adalimumab for prevention of uveitic flare in patients with inactive non-infectiousnoninfectious uveitis controlled by corticosteroids (VISUAL II): A multicentre, double-masked, randomised, placebo-controlled phase 3 trial. Lancet 2016, 388, 1183–1192. [Google Scholar] [CrossRef]
- Suhler, E.B.; Adán, A.; Brézin, A.P.; Fortin, E.; Goto, H.; Jaffe, G.J.; Kaburaki, T.; Kramer, M.; Lim, L.L.; Muccioli, C.; et al. Safety and Efficacy of Adalimumab in Patients with Noninfectious Uveitis in an Ongoing Open-Label Study: VISUAL III. Ophthalmology 2018, 125, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Ming, S.; Xie, K.; He, H.; Li, Y.; Lei, B. Efficacy and safety of adalimumab in the treatment of non-infectiousnoninfectious uveitis: A meta-analysis and systematic review. Drug Des. Dev. Ther. 2018, 12, 2005–2016. [Google Scholar] [CrossRef] [PubMed]
- Sfikakis, P.P.; Theodossiadis, P.G.; Katsiari, C.G.; Kaklamanis, P.; Markomichelakis, N.N. Effect of infliximab on sight-threatening panuveitis in Behcet’s disease. Lancet 2001, 358, 295–296. [Google Scholar] [CrossRef] [PubMed]
- Kruh, J.N.; Yang, P.; Suelves, A.M.; Foster, C.S. Infliximab for the Treatment of Refractory Noninfectious Uveitis: A Study of 88 Patients with Long-term Follow-up. Ophthalmology 2014, 121, 358–364. [Google Scholar] [CrossRef]
- Norcia, L.F.; Kiappe, O.P.; Jorge, E.C. Biological Therapy in Noninfectious Pediatric Uveitis: A Systematic Review. Clin. Ophthalmol. 2021, 15, 3765–3776. [Google Scholar] [CrossRef]
- Horiguchi, N.; Kamoi, K.; Horie, S.; Iwasaki, Y.; Kurozumi-Karube, H.; Takase, H.; Ohno-Matsui, K. A 10-year follow-up of infliximab monotherapy for refractory uveitis in Behçet’s syndrome. Sci. Rep. 2020, 10, 22227. [Google Scholar] [CrossRef]
- Takeuchi, M.; Usui, Y.; Namba, K.; Keino, H.; Takeuchi, M.; Takase, H.; Kamoi, K.; Hase, K.; Ito, T.; Nakai, K.; et al. Ten-year follow-up of infliximab treatment for uveitis in Behçet disease patients: A multicenter retrospective study. Front. Med. 2023, 10, 1095423. [Google Scholar] [CrossRef] [PubMed]
- Vallet, H.; Seve, P.; Biard, L.; Baptiste Fraison, J.; Bielefeld, P.; Perard, L.; Bienvenu, B.; Abad, S.; Rigolet, A.; Deroux, A.; et al. Infliximab Versus Adalimumab in the Treatment of Refractory Inflammatory Uveitis: A Multicenter Study from the French Uveitis Network. Arthritis Rheumatol. 2016, 68, 1522–1530. [Google Scholar] [CrossRef]
- Valenzuela, R.A.; Flores, I.; Urrutia, B.; Fuentes, F.; Sabat, P.E.; Llanos, C.; Cuitino, L.; Urzua, C.A. New Pharmacological Strategies for the Treatment of Non-InfectiousNoninfectious Uveitis. A Minireview. Front. Pharmacol. 2020, 11, 655. [Google Scholar] [CrossRef]
- Markomichelakis, N.; Delicha, E.; Masselos, S.; Fragiadaki, K.; Kaklamanis, P.; Sfikakis, P.P. A single infliximab infusion vs corticosteroids for acute panuveitis attacks in Behçet’s disease: A comparative 4-week study. Rheumatology 2010, 50, 593–597. [Google Scholar] [CrossRef]
- Simonini, G.; Taddio, A.; Cattalini, M.; Caputo, R.; De Libero, C.; Naviglio, S.; Bresci, C.; Lorusso, M.; Lepore, L.; Cimaz, R. Prevention of flare recurrences in childhood-refractory chronic uveitis: An open-label comparative study of adalimumab versus infliximab. Arthritis Care Res. 2011, 63, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Río, V.; de la Hera, D.; Blanco, R.; Beltrán-Catalán, E.; Loricera, J.; Cañal, J.; Ventosa, J.; Cifrián, J.M.; Ortiz-Sanjuán, F.; Rueda-Gotor, J.; et al. Golimumab in uveitis previously treated with other anti-TNF-alpha drugs: A retrospective study of three cases from a single centre and literature review. Clin. Exp. Rheumatol. 2014, 32, 864–868. [Google Scholar] [PubMed]
- Prieto-Peña, D.; Calderón-Goercke, M.; Adán, A.; Chamorro-López, L.; Maíz-Alonso, O.; De Dios-Jiménez Aberásturi, J.R.; Veroz, R.; Blanco, S.; Martín-Santos, J.M.; Navarro, F.; et al. Efficacy and safety of certolizumab pegol in pregnant women with uveitis. Recommendations on the management with immunosuppressive and biologic therapies in uveitis during pregnancy. Clin. Exp. Rheumatol. 2021, 39, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Lopalco, G.; Emmi, G.; Gentileschi, S.; Guerriero, S.; Vitale, A.; Silvestri, E.; Becatti, M.; Cavallo, I.; Fabiani, C.; Frediani, B.; et al. Certolizumab Pegol treatment in Behcet’s disease with different organ involvement: A multicenter retrospective observational study. Mod. Rheumatol. 2017, 27, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, T.; Sonoda, K.H.; Ohguro, N.; Ohsugi, Y.; Ishibashi, T.; Cua, D.J.; Kobayashi, T.; Yoshida, H.; Yoshimura, A. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis. Rheumatology 2009, 48, 347–354. [Google Scholar] [CrossRef]
- Mesquida, M.; Leszczynska, A.; Llorenç, V.; Adán, A. Interleukin-6 blockade in ocular inflammatory diseases. Clin. Exp. Immunol. 2014, 176, 301–309. [Google Scholar] [CrossRef]
- Choy, E.H.; De Benedetti, F.; Takeuchi, T.; Hashizume, M.; John, M.R.; Kishimoto, T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 2020, 16, 335–345. [Google Scholar] [CrossRef]
- Zhang, J.; Kamoi, K.; Zong, Y.; Yang, M.; Zou, Y.; Ohno-Matsui, K. Evaluating tocilizumab safety and immunomodulatory effects under ocular HTLV-1 infection in vitro. Int. Immunopharmacol. 2024, 137, 112460. [Google Scholar] [CrossRef]
- Sepah, Y.J.; Sadiq, M.A.; Chu, D.S.; Dacey, M.; Gallemore, R.; Dayani, P.; Hanout, M.; Hassan, M.; Afridi, R.; Agarwal, A.; et al. Primary (Month-6) Outcomes of the STOP-Uveitis Study: Evaluating the Safety, Tolerability, and Efficacy of Tocilizumab in Patients With Noninfectious Uveitis. Am. J. Ophthalmol. 2017, 183, 71–80. [Google Scholar] [CrossRef]
- Calvo-Río, V.; Santos-Gómez, M.; Calvo, I.; González-Fernández, M.I.; López-Montesinos, B.; Mesquida, M.; Adán, A.; Hernández, M.V.; Maíz, O.; Atanes, A.; et al. Anti-Interleukin-6 Receptor Tocilizumab for Severe Juvenile Idiopathic Arthritis-Associated Uveitis Refractory to Anti-Tumor Necrosis Factor Therapy: A Multicenter Study of Twenty-Five Patients. Arthritis Rheumatol. 2017, 69, 668–675. [Google Scholar] [CrossRef]
- Eser Ozturk, H.; Oray, M.; Tugal-Tutkun, I. Tocilizumab for the Treatment of Behçet Uveitis that Failed Interferon Alpha and Anti-Tumor Necrosis Factor-Alpha Therapy. Ocul. Immunol. Inflamm. 2018, 26, 1005–1014. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, B.; Su, W. A Review of the Various Roles and Participation Levels of B-Cells in Non-InfectiousNoninfectious Uveitis. Front. Immunol. 2021, 12, 676046. [Google Scholar]
- Epps, S.J.; Coplin, N.; Luthert, P.J.; Dick, A.D.; Coupland, S.E.; Nicholson, L.B. Features of ectopic lymphoid-like structures in human uveitis. Exp. Eye Res. 2020, 191, 107901. [Google Scholar] [CrossRef]
- Ng, C.C.; Sy, A.; Cunningham, E.T. Rituximab for non-infectiousnoninfectious Uveitis and Scleritis. J. Ophthalmic Inflamm. Infect. 2021, 11, 23. [Google Scholar] [CrossRef]
- Abu El-Asrar, A.M.; Dheyab, A.; Khatib, D.; Struyf, S.; Van Damme, J.; Opdenakker, G. Efficacy of B Cell Depletion Therapy with Rituximab in Refractory Chronic Recurrent Uveitis Associated with Vogt-Koyanagi-Harada Disease. Ocul. Immunol. Inflamm. 2022, 30, 750–757. [Google Scholar] [CrossRef]
- Bolletta, E.; Gozzi, F.; Mastrofilippo, V.; Pipitone, N.; De Simone, L.; Croci, S.; Invernizzi, A.; Adani, C.; Iannetta, D.; Coassin, M.; et al. Efficacy of Rituximab Treatment in Vogt-Koyanagi-Harada Disease Poorly Controlled by Traditional Immunosuppressive Treatment. Ocul. Immunol. Inflamm. 2022, 30, 1303–1308. [Google Scholar] [CrossRef]
- Guedes, M.C.E.; Borrego, L.M.; Proença, R.D. Roles of interleukin-17 in uveitis. Indian J. Ophthalmol. 2016, 64, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Pepple, K.L.; Lin, P. Targeting Interleukin-23 in the Treatment of Noninfectious Uveitis. Ophthalmology 2018, 125, 1977–1983. [Google Scholar] [CrossRef]
- Mugheddu, C.; Atzori, L.; Del Piano, M.; Lappi, A.; Pau, M.; Murgia, S.; Zucca, I.; Rongioletti, F. Successful ustekinumab treatment of noninfectious uveitis and concomitant severe psoriatic arthritis and plaque psoriasis. Dermatol. Ther. 2017, 30, e12527. [Google Scholar] [CrossRef]
- Chateau, T.; Angioi, K.; Peyrin-Biroulet, L. Two Cases of Successful Ustekinumab Treatment for Non-infectiousNoninfectious Uveitis Associated with Crohn’s Disease. J. Crohn’s Colitis 2019, 14, 571. [Google Scholar] [CrossRef]
- Hueber, W.; Patel, D.D.; Dryja, T.; Wright, A.M.; Koroleva, I.; Bruin, G.; Antoni, C.; Draelos, Z.; Gold, M.H.; Psoriasis Study Group; et al. Effects of AIN457, a Fully Human Antibody to Interleukin-17A, on Psoriasis, Rheumatoid Arthritis, and Uveitis. Sci. Transl. Med. 2010, 2, 52ra72. [Google Scholar] [CrossRef] [PubMed]
- Volz, C.; Pauly, D. Antibody therapies and their challenges in the treatment of age-related macular degeneration. Eur. J. Pharm. Biopharm. 2015, 95, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Zimbrón, L.F.; Zamora-Alvarado, R.; Ochoa-De la Paz, L.; Velez-Montoya, R.; Zenteno, E.; Gulias-Cañizo, R.; Quiroz-Mercado, H.; Gonzalez-Salinas, R. Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD. Oxidative Med. Cell. Longev. 2018, 2018, 8374647. [Google Scholar] [CrossRef]
- National Eye Institute. Age-Related Macular Degeneration (AMD) Data and Statistics; National Eye Institute: Bethesda, MD, USA, 2019.
- Velez-Montoya, R.; Oliver, S.C.N.; Olson, J.L.; Fine, S.L.; Mandava, N.; Quiroz-Mercado, H. Current knowledge and trends in age-related macular degeneration: Today’s and Future Treatments. Retina 2013, 33, 1487–1502. [Google Scholar] [CrossRef]
- Zong, Y.; Kamoi, K.; Kurozumi-Karube, H.; Zhang, J.; Yang, M.; Ohno-Matsui, K. Safety of intraocular anti-VEGF antibody treatment under in vitro HTLV-1 infection. Front. Immunol. 2023, 13, 1089286. [Google Scholar] [CrossRef]
- Song, D.; Liu, P.; Shang, K.; Ma, Y. Application and mechanism of anti-VEGF drugs in age-related macular degeneration. Front. Bioeng. Biotechnol. 2022, 10, 943915. [Google Scholar] [CrossRef]
- Kovach, J.L.; Schwartz, S.G.; Flynn, H.W., Jr.; Scott, I.U. Anti-VEGF Treatment Strategies for Wet AMD. J. Ophthalmol. 2012, 2012, 786870. [Google Scholar] [CrossRef]
- Kaiser, S.M.; Arepalli, S.; Ehlers, J.P. Current and Future Anti-VEGF Agents for Neovascular Age-Related Macular Degeneration. J. Exp. Pharmacol. 2021, 13, 905–912. [Google Scholar] [CrossRef]
- Wallsh, J.O.; Gallemore, R.P. Anti-VEGF-Resistant Retinal Diseases: A Review of the Latest Treatment Options. Cells 2021, 10, 1049. [Google Scholar] [CrossRef]
- Lu, X.; Sun, X. Profile of conbercept in the treatment of neovascular age-related macular degeneration. Drug Des. Devel. Ther. 2015, 9, 2311–2320. [Google Scholar]
- Papadopoulos, N.; Martin, J.; Ruan, Q.; Rafique, A.; Rosconi, M.P.; Shi, E.; Pyles, E.A.; Yancopoulos, G.D.; Stahl, N.; Wiegand, S.J. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012, 15, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Ferro Desideri, L.; Traverso, C.E.; Nicolò, M. Brolucizumab: A novel anti-VEGF humanized single-chain antibody fragment for treating w-AMD. Expert Opin. Biol. Ther. 2021, 21, 553–561. [Google Scholar] [CrossRef]
- Regula, J.T.; Lundh von Leithner, P.; Foxton, R.; Barathi, V.A.; Cheung, C.M.; Bo Tun, S.B.; Wey, Y.S.; Iwata, D.; Dostalek, M.; Moelleken, J.; et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol. Med. 2016, 8, 1265–1288. [Google Scholar] [CrossRef] [PubMed]
- Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Nasir, A.; Rabena, M.D.; Le, K.; et al. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br. J. Ophthalmol. 2014, 98, 1636. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lu, T.; Tuomi, L.; Jumbe, N.; Lu, J.; Eppler, S.; Kuebler, P.; Damico-Beyer, L.A.; Joshi, A. Pharmacokinetics of Ranibizumab in Patients with Neovascular Age-Related Macular Degeneration: A Population Approach. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1616–1624. [Google Scholar] [CrossRef]
- Pignatelli, F.; Niro, A.; Passidomo, F.; Addabbo, G. Molecular structure, pharmacokinetics and clinical evidence of brolucizumab: A narrative review. Ann. Eye Sci. 2021, 6, 37. [Google Scholar] [CrossRef]
- Panos, G.D.; Lakshmanan, A.; Dadoukis, P.; Ripa, M.; Motta, L.; Amoaku, W.M. Faricimab: Transforming the Future of Macular Diseases Treatment—A Comprehensive Review of Clinical Studies. Drug Des. Dev. Ther. 2023, 17, 2861–2873. [Google Scholar] [CrossRef]
- Do, D.V.; Rhoades, W.; Nguyen, Q.D. Pharmacokinetic study of intravitreal aflibercept in humans with neovascular age-related macular degeneration. Retina 2020, 40, 643–647. [Google Scholar] [CrossRef]
- Krohne, T.U.; Liu, Z.; Holz, F.G.; Meyer, C.H. Intraocular Pharmacokinetics of Ranibizumab Following a Single Intravitreal Injection in Humans. Am. J. Ophthalmol. 2012, 154, 682–686.e2. [Google Scholar] [CrossRef]
- Moisseiev, E.; Waisbourd, M.; Ben-Artsi, E.; Levinger, E.; Barak, A.; Daniels, T.; Csaky, K.; Loewenstein, A.; Barequet, I.S. Pharmacokinetics of bevacizumab after topical and intravitreal administration in human eyes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 331–337. [Google Scholar] [CrossRef]
- Holz, F.G.; Dugel, P.U.; Weissgerber, G.; Hamilton, R.; Silva, R.; Bandello, F.; Larsen, M.; Weichselberger, A.; Wenzel, A.; Schmidt, A.; et al. Single-Chain Antibody Fragment VEGF Inhibitor RTH258 for Neovascular Age-Related Macular Degeneration: A Randomized Controlled Study. Ophthalmology 2016, 123, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Ohji, M.; Takahashi, K.; Okada, A.A.; Kobayashi, M.; Matsuda, Y.; Terano, Y.; Ohji, M.; Hanemoto, T.; Kaga, T.; Kouno, T.; et al. Efficacy and Safety of Intravitreal Aflibercept Treat-and-Extend Regimens in Exudative Age-Related Macular Degeneration: 52- and 96-Week Findings from ALTAIR. Adv. Ther. 2020, 37, 1173–1187. [Google Scholar] [CrossRef] [PubMed]
- Wykoff, C.C.; Brown, D.M.; Reed, K.; Berliner, A.J.; Gerstenblith, A.T.; Breazna, A.; Abraham, P.; Fein, J.G.; Chu, K.W.; Clark, W.L.; et al. Effect of High-Dose Intravitreal Aflibercept, 8 mg, in Patients with Neovascular Age-Related Macular Degeneration: The Phase 2 CANDELA Randomized Clinical Trial. JAMA Ophthalmol. 2023, 141, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.F.; Maguire, M.G.; Ying, G.A.; Grunwald, J.E.; Fine, S.L.; Jaffe, G.J. Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration. N. Engl. J. Med. 2011, 364, 1897–1908. [Google Scholar]
- Brown David, M.; Kaiser Peter, K.; Michels, M.; Soubrane, G.; Heier Jeffrey, S.; Kim Robert, Y.; Sy Judy, P.; Schneider, S. Ranibizumab versus Verteporfin for Neovascular Age-Related Macular Degeneration. N. Engl. J. Med. 2006, 355, 1432–1444. [Google Scholar] [CrossRef] [PubMed]
- Busbee, B.G.; Ho, A.C.; Brown, D.M.; Heier, J.S.; Suñer, I.J.; Li, Z.; Rubio, R.G.; Lai, P. Twelve-Month Efficacy and Safety of 0.5 mg or 2.0 mg Ranibizumab in Patients with Subfoveal Neovascular Age-related Macular Degeneration. Ophthalmology 2013, 120, 1046–1056. [Google Scholar] [CrossRef]
- Wykoff, C.C.; Croft, D.E.; Brown, D.M.; Wang, R.; Payne, J.F.; Clark, L.; Abdelfattah, N.S.; Sadda, S.R. Prospective Trial of Treat-and-Extend versus Monthly Dosing for Neovascular Age-Related Macular Degeneration: TREX-AMD 1-Year Results. Ophthalmology 2015, 122, 2514–2522. [Google Scholar] [CrossRef]
- Kertes, P.J.; Galic, I.J.; Greve, M.; Williams, R.G.; Rampakakis, E.; Scarino, A.; Sheidow, T. Canadian Treat-and-Extend Analysis Trial with Ranibizumab in Patients with Neovascular Age-Related Macular Disease: One-Year Results of the Randomized Canadian Treat-and-Extend Analysis Trial with Ranibizumab Study. Ophthalmology 2019, 126, 841–848. [Google Scholar] [CrossRef]
- Tufail, A.; Patel, P.J.; Egan, C.; Hykin, P.; da Cruz, L.; Gregor, Z.; Dowler, J.; Majid, M.A.; Bailey, C.; Mohamed, Q.; et al. Bevacizumab for neovascular age related macular degeneration (ABC Trial): Multicentre randomised double masked study. BMJ 2010, 340, c2459. [Google Scholar] [CrossRef]
- Khanani, A.M.; Patel, S.S.; Ferrone, P.J.; Osborne, A.; Sahni, J.; Grzeschik, S.; Basu, K.; Ehrlich, J.S.; Haskova, Z.; Dugel, P.U. Efficacy of Every Four Monthly and Quarterly Dosing of Faricimab vs Ranibizumab in Neovascular Age-Related Macular Degeneration: The STAIRWAY Phase 2 Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 964–972. [Google Scholar] [CrossRef]
- Khanani, A.M.; Kotecha, A.; Chang, A.; Chen, S.-J.; Chen, Y.; Guymer, R.; Heier, J.S.; Holz, F.G.; Iida, T.; Ives, J.A.; et al. TENAYA and LUCERNE: Two-Year Results from the Phase 3 Neovascular Age-Related Macular Degeneration Trials of Faricimab with Treat-and-Extend Dosing in Year 2. Ophthalmology 2024, 131, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.F.; Maguire, M.G.; Fine, S.L.; Ying, G.-s.; Jaffe, G.J.; Grunwald, J.E.; Toth, C.; Redford, M.; Ferris, F.L. Ranibizumab and Bevacizumab for Treatment of Neovascular Age-related Macular Degeneration: Two-Year Results. Ophthalmology 2012, 119, 1388–1398. [Google Scholar] [CrossRef]
- Brown, D.M.; Michels, M.; Kaiser, P.K.; Heier, J.S.; Sy, J.P.; Ianchulev, T. Ranibizumab versus Verteporfin Photodynamic Therapy for Neovascular Age-Related Macular Degeneration: Two-Year Results of the ANCHOR Study. Ophthalmology 2009, 116, 57–65.e5. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Blodi, B.A.; Shapiro, H.; Acharya, N.R. Angiographic and Optical Coherence Tomographic Results of the MARINA Study of Ranibizumab in Neovascular Age-Related Macular Degeneration. Ophthalmology 2007, 114, 1868–1875.e4. [Google Scholar] [CrossRef]
- Ho, A.C.; Busbee, B.G.; Regillo, C.D.; Wieland, M.R.; Van Everen, S.A.; Li, Z.; Rubio, R.G.; Lai, P. Twenty-four-Month Efficacy and Safety of 0.5 mg or 2.0 mg Ranibizumab in Patients with Subfoveal Neovascular Age-Related Macular Degeneration. Ophthalmology 2014, 121, 2181–2192. [Google Scholar] [CrossRef]
- Silva, R.; Berta, A.; Larsen, M.; Macfadden, W.; Feller, C.; Monés, J. Treat-and-Extend versus Monthly Regimen in Neovascular Age-Related Macular Degeneration: Results with Ranibizumab from the TREND Study. Ophthalmology 2018, 125, 57–65. [Google Scholar] [CrossRef]
- Kertes, P.J.; Galic, I.J.; Greve, M.; Williams, G.; Baker, J.; Lahaie, M.; Sheidow, T. Efficacy of a Treat-and-Extend Regimen with Ranibizumab in Patients with Neovascular Age-Related Macular Disease: A Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Jaffe, G.J.; Wykoff, C.C.; Adiguzel, E.; Heier, J.S.; Khanani, A.M. MERLIN: Two-Year Results of Brolucizumab in Participants with Neovascular Age-Related Macular Degeneration and Persistent Retinal Fluid. Ophthalmology, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Stewart, M.W.; Grippon, S.; Kirkpatrick, P. Aflibercept . Nat. Rev. Drug Discov. 2012, 11, 269–270. [Google Scholar] [CrossRef]
- Canadian Agency for Drugs and Technologies in Health. Brolucizumab (Beovu): (Novartis Pharmaceuticals Canada Inc.): Indication: Treatment of Neovascular (Wet) Age-Related Macular Degeneration (AMD); Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, USA, 2020.
- Canadian Agency for Drugs and Technologies in Health. Faricimab (Vabysmo): CADTH Reimbursement Recommendation: Indication: For the Treatment of Diabetic Macular Edema; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, USA, 2022.
- Stewart, M.W. Clinical and differential utility of VEGF inhibitors in wet age-related macular degeneration: Focus on aflibercept. Clin. Ophthalmol. 2012, 6, 1175–1186. [Google Scholar] [CrossRef]
- Semeraro, F.; Morescalchi, F.; Duse, S.; Parmeggiani, F.; Gambicorti, E.; Costagliola, C. Aflibercept in wet AMD: Specific role and optimal use. Drug Des. Dev. Ther. 2013, 7, 711–722. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Shah, S.M.; Hafiz, G.; Quinlan, E.; Sung, J.; Chu, K.; Cedarbaum, J.M.; Campochiaro, P.A. A Phase I Trial of an IV-Administered Vascular Endothelial Growth Factor Trap for Treatment in Patients with Choroidal Neovascularization due to Age-Related Macular Degeneration. Ophthalmology 2006, 113, 1522.e1–1522.e14. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.D.; Shah, S.M.; Browning, D.J.; Hudson, H.; Sonkin, P.; Hariprasad, S.M.; Kaiser, P.; Slakter, J.S.; Haller, J.; Do, D.V.; et al. A Phase I Study of Intravitreal Vascular Endothelial Growth Factor Trap-Eye in Patients with Neovascular Age-Related Macular Degeneration. Ophthalmology 2009, 116, 2141–2148.e1. [Google Scholar] [CrossRef]
- Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S.D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E.; et al. VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 2002, 99, 11393–11398. [Google Scholar] [CrossRef] [PubMed]
- Moshfeghi, A.A.; Rosenfeld, P.J.; Puliafito, C.A.; Michels, S.; Marcus, E.N.; Lenchus, J.D.; Venkatraman, A.S. Systemic Bevacizumab (Avastin) Therapy for Neovascular Age-Related Macular Degeneration: Twenty-Four–Week Results of an Uncontrolled Open-Label Clinical Study. Ophthalmology 2006, 113, 2002–2011.e2. [Google Scholar] [CrossRef]
- Avery, R.L.; Pieramici, D.J.; Rabena, M.D.; Castellarin, A.A.; Nasir, M.A.; Giust, M.J. Intravitreal Bevacizumab (Avastin) for Neovascular Age-Related Macular Degeneration. Ophthalmology 2006, 113, 363–372.e5. [Google Scholar] [CrossRef]
- Yin, X.; He, T.; Yang, S.; Cui, H.; Jiang, W. Efficacy and Safety of Antivascular Endothelial Growth Factor (Anti-VEGF) in Treating Neovascular Age-Related Macular Degeneration (AMD): A Systematic Review and Meta-analysis. J. Immunol. Res. 2022, 2022, 6004047. [Google Scholar] [CrossRef]
- Ferrara, N.; Damico, L.; Shams, N.; Lowman, H.; Kim, R. development of ranibizumab, an anti–vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006, 26, 859–870. [Google Scholar] [CrossRef]
- Śpiewak, D.; Drzyzga, Ł.; Dorecka, M.; Wyględowska-Promieńska, D. Summary of the Therapeutic Options for Patients with Dry and Neovascular AMD. J. Clin. Med. 2024, 13, 4227. [Google Scholar] [CrossRef]
- Kilmartin, D.J. Literature review and proposal of best practice for ophthalmologists: Monitoring of patients following intravitreal brolucizumab therapy. Ir. J. Med. Sci. 2023, 192, 447–456. [Google Scholar] [CrossRef]
- Baumal, C.R.; Spaide, R.F.; Vajzovic, L.; Freund, K.B.; Walter, S.D.; John, V.; Rich, R.; Chaudhry, N.; Lakhanpal, R.R.; Oellers, P.R.; et al. Retinal Vasculitis and Intraocular Inflammation after Intravitreal Injection of Brolucizumab. Ophthalmology 2020, 127, 1345–1359. [Google Scholar] [CrossRef]
- Moon, B.-H.; Kim, Y.; Kim, S.-Y. Twenty Years of Anti-Vascular Endothelial Growth Factor Therapeutics in Neovascular Age-Related Macular Degeneration Treatment. Int. J. Mol. Sci. 2023, 24, 13004. [Google Scholar] [CrossRef] [PubMed]
- Ferro Desideri, L.; Traverso, C.E.; Nicolò, M.; Munk, M.R. Faricimab for the Treatment of Diabetic Macular Edema and Neovascular Age-Related Macular Degeneration. Pharmaceutics 2023, 15, 1413. [Google Scholar] [CrossRef]
- Khanani, A.M.; Russell, M.W.; Aziz, A.A.; Danzig, C.J.; Weng, C.Y.; Eichenbaum, D.A.; Singh, R.P. Angiopoietins as Potential Targets in Management of Retinal Disease. Clin. Ophthalmol. 2021, 15, 3747–3755. [Google Scholar] [CrossRef]
- Sahni, J.; Dugel, P.U.; Patel, S.S.; Chittum, M.E.; Berger, B.; del Valle Rubido, M.; Sadikhov, S.; Szczesny, P.; Schwab, D.; Nogoceke, E.; et al. Safety and Efficacy of Different Doses and Regimens of Faricimab vs Ranibizumab in Neovascular Age-Related Macular Degeneration: The AVENUE Phase 2 Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 955–963. [Google Scholar] [CrossRef]
- Tan, T.-E.; Wong, T.Y. Diabetic retinopathy: Looking forward to 2030. Front. Endocrinol. 2023, 13, 1077669. [Google Scholar] [CrossRef]
- Simó, R.; Sundstrom, J.M.; Antonetti, D.A. Ocular Anti-VEGF therapy for diabetic retinopathy: The role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care 2014, 37, 893–899. [Google Scholar] [CrossRef]
- Ansari, P.; Tabasumma, N.; Snigdha, N.N.; Siam, N.H.; Panduru, R.V.N.R.S.; Azam, S.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Diabetic Retinopathy: An Overview on Mechanisms, Pathophysiology and Pharmacotherapy. Diabetology 2022, 3, 159–175. [Google Scholar] [CrossRef]
- Everett, L.A.; Paulus, Y.M. Laser Therapy in the Treatment of Diabetic Retinopathy and Diabetic Macular Edema. Curr. Diabetes Rep. 2021, 21, 35. [Google Scholar] [CrossRef]
- Aiello Lloyd, P.; Avery Robert, L.; Arrigg Paul, G.; Keyt Bruce, A.; Jampel Henry, D.; Shah Sabera, T.; Pasquale Louis, R.; Thieme, H.; Iwamoto Mami, A.; Park John, E.; et al. Vascular Endothelial Growth Factor in Ocular Fluid of Patients with Diabetic Retinopathy and Other Retinal Disorders. N. Engl. J. Med. 1994, 331, 1480–1487. [Google Scholar] [CrossRef]
- Stewart, M.W. A Review of Ranibizumab for the Treatment of Diabetic Retinopathy. Ophthalmol. Ther. 2017, 6, 33–47. [Google Scholar] [CrossRef]
- Wells, J.A.; Glassman, A.R.; Ayala, A.R.; Jampol, L.M.; Aiello, L.P.; Antoszyk, A.N.; Arnold-Bush, B.; Baker, C.W.; Bressler, N.M.; Browning, D.J.; et al. Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema. N. Engl. J. Med. 2015, 372, 1193–1203. [Google Scholar] [CrossRef]
- Bahr, T.A.; Bakri, S.J. Update on the Management of Diabetic Retinopathy: Anti-VEGF Agents for the Prevention of Complications and Progression of Nonproliferative and Proliferative Retinopathy. Life 2023, 13, 1098. [Google Scholar] [CrossRef]
- Wykoff, C.C.; Garweg, J.G.; Regillo, C.; Souied, E.; Wolf, S.; Dhoot, D.S.; Agostini, H.T.; Chang, A.; Laude, A.; Wachtlin, J.; et al. KESTREL and KITE Phase 3 Studies: 100-Week Results with Brolucizumab in Patients With Diabetic Macular Edema. Am. J. Ophthalmol. 2024, 260, 70–83. [Google Scholar] [CrossRef]
- Brown, D.M.; Emanuelli, A.; Bandello, F.; Barranco, J.J.E.; Figueira, J.; Souied, E.; Wolf, S.; Gupta, V.; Ngah, N.F.; Liew, G.; et al. KESTREL and KITE: 52-Week Results from Two Phase III Pivotal Trials of Brolucizumab for Diabetic Macular Edema. Am. J. Ophthalmol. 2022, 238, 157–172. [Google Scholar] [CrossRef]
- Sahni, J.; Patel, S.S.; Dugel, P.U.; Khanani, A.M.; Jhaveri, C.D.; Wykoff, C.C.; Hershberger, V.S.; Pauly-Evers, M.; Sadikhov, S.; Szczesny, P.; et al. Simultaneous Inhibition of Angiopoietin-2 and Vascular Endothelial Growth Factor-A with Faricimab in Diabetic Macular Edema: BOULEVARD Phase 2 Randomized Trial. Ophthalmology 2019, 126, 1155–1170. [Google Scholar] [CrossRef]
- Wykoff, C.C.; Abreu, F.; Adamis, A.P.; Basu, K.; Eichenbaum, D.A.; Haskova, Z.; Lin, H.; Loewenstein, A.; Mohan, S.; Pearce, I.A.; et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): Two randomised, double-masked, phase 3 trials. Lancet 2022, 399, 741–755. [Google Scholar] [CrossRef]
- Shirley, M. Faricimab: First Approval. Drugs 2022, 82, 825–830. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Chen, H.; Koh, A.; Zhao, C.; Chen, Y. A Review of Intraocular Biomolecules in Retinal Vein Occlusion: Toward Potential Biomarkers for Companion Diagnostics. Front. Pharmacol. 2022, 13, 859951. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Sang, A. Efficacy and effectiveness of anti-VEGF or steroids monotherapy versus combination treatment for macular edema secondary to retinal vein occlusion: A systematic review and meta-analysis. BMC Ophthalmol. 2022, 22, 472. [Google Scholar] [CrossRef]
- Varma, R.; Bressler, N.M.; Suñer, I.; Lee, P.; Dolan, C.M.; Ward, J.; Colman, S.; Rubio, R.G. Improved Vision-Related Function after Ranibizumab for Macular Edema after Retinal Vein Occlusion: Results from the BRAVO and CRUISE Trials. Ophthalmology 2012, 119, 2108–2118. [Google Scholar] [CrossRef]
- Brown, D.M.; Campochiaro, P.A.; Singh, R.P.; Li, Z.; Gray, S.; Saroj, N.; Rundle, A.C.; Rubio, R.G.; Murahashi, W.Y. Ranibizumab for macular edema following central retinal vein occlusion: Six-month primary end point results of a phase III study. Ophthalmology 2010, 117, 1124–1133.e1. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Clark, W.L.; Boyer, D.S.; Brown, D.M.; Vitti, R.; Berliner, A.J.; Kazmi, H.; Ma, Y.; Stemper, B.; Zeitz, O.; et al. Intravitreal aflibercept injection for macular edema due to central retinal vein occlusion: Two-year results from the COPERNICUS study. Ophthalmology 2014, 121, 1414–1420.e1. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.L.; Boyer, D.S.; Heier, J.S.; Brown, D.M.; Haller, J.A.; Vitti, R.; Kazmi, H.; Berliner, A.J.; Erickson, K.; Chu, K.W.; et al. Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion: 52-Week Results of the VIBRANT Study. Ophthalmology 2016, 123, 330–336. [Google Scholar] [CrossRef]
- Yuzawa, M.; Fujita, K.; Wittrup-Jensen, K.U.; Norenberg, C.; Zeitz, O.; Adachi, K.; Wang, E.C.; Heier, J.; Kaiser, P.; Chong, V.; et al. Improvement in vision-related function with intravitreal aflibercept: Data from phase 3 studies in wet age-related macular degeneration. Ophthalmology 2015, 122, 571–578. [Google Scholar] [CrossRef]
- Rosenfeld, P.J.; Fung, A.E.; Puliafito, C.A. Optical Coherence Tomography Findings After an Intravitreal Injection of Bevacizumab (Avastin®) for Macular Edema from Central Retinal Vein Occlusion. Ophthalmic Surg. Lasers Imaging Retin. 2005, 36, 336–339. [Google Scholar] [CrossRef]
- Hellström, A.; Smith, L.E.H.; Dammann, O. Retinopathy of prematurity. Lancet 2013, 382, 1445–1457. [Google Scholar] [CrossRef]
- Raghuveer, T.S.; Zackula, R.E.; Hartnett, M.E. Aflibercept to treat retinopathy of prematurity: Need for more research. J. Perinatol. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Fierson, W.M. Screening Examination of Premature Infants for Retinopathy of Prematurity. Pediatrics 2018, 142, e20183061. [Google Scholar] [CrossRef]
- Stahl, A.; Sukgen, E.A.; Wu, W.-C.; Lepore, D.; Nakanishi, H.; Mazela, J.; Moshfeghi, D.M.; Vitti, R.; Athanikar, A.; Chu, K.; et al. Effect of Intravitreal Aflibercept vs. Laser Photocoagulation on Treatment Success of Retinopathy of Prematurity: The FIREFLEYE Randomized Clinical Trial. JAMA 2022, 328, 348–359. [Google Scholar] [CrossRef]
- Stahl, A.; Lepore, D.; Fielder, A.; Fleck, B.; Reynolds, J.D.; Chiang, M.F.; Li, J.; Liew, M.; Maier, R.; Zhu, Q.; et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): An open-label randomised controlled trial. Lancet 2019, 394, 1551–1559. [Google Scholar] [CrossRef]
- Freedman, S.F.; Hercinovic, A.; Wallace, D.K.; Kraker, R.T.; Li, Z.; Bhatt, A.R.; Boente, C.S.; Crouch, E.R.; Hubbard, G.B.; Rogers, D.L.; et al. Low- and Very Low-Dose Bevacizumab for Retinopathy of Prematurity: Reactivations, Additional Treatments, and 12-Month Outcomes. Ophthalmology 2022, 129, 1120–1128. [Google Scholar] [CrossRef]
- Mintz-Hittner, H.A.; Kennedy, K.A.; Chuang, A.Z. Efficacy of Intravitreal Bevacizumab for Stage 3+ Retinopathy of Prematurity. N. Engl. J. Med. 2011, 364, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.K.; Kraker, R.T.; Freedman, S.F.; Crouch, E.R.; Hutchinson, A.K.; Bhatt, A.R.; Rogers, D.L.; Yang, M.B.; Haider, K.M.; VanderVeen, D.K.; et al. Assessment of Lower Doses of Intravitreous Bevacizumab for Retinopathy of Prematurity: A Phase 1 Dosing Study. JAMA Ophthalmol. 2017, 135, 654–656. [Google Scholar] [CrossRef] [PubMed]
- VanderVeen, D.K.; Melia, M.; Yang, M.B.; Hutchinson, A.K.; Wilson, L.B.; Lambert, S.R. Anti-Vascular Endothelial Growth Factor Therapy for Primary Treatment of Type 1 Retinopathy of Prematurity: A Report by the American Academy of Ophthalmology. Ophthalmology 2017, 124, 619–633. [Google Scholar] [CrossRef]
- Kong, L.; Bhatt, A.R.; Demny, A.B.; Coats, D.K.; Li, A.; Rahman, E.Z.; Smith, O.B.E.; Steinkuller, P.G. Pharmacokinetics of Bevacizumab and Its Effects on Serum VEGF and IGF-1 in Infants with Retinopathy of Prematurity. Investig. Ophthalmol. Vis. Sci. 2015, 56, 956–961. [Google Scholar] [CrossRef]
- Hartnett, M.E. Vascular Endothelial Growth Factor Antagonist Therapy for Retinopathy of Prematurity. Clin. Perinatol. 2014, 41, 925–943. [Google Scholar] [CrossRef]
- Ghasemi Falavarjani, K.; Nguyen, Q.D. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye 2013, 27, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Baudin, F.; Benzenine, E.; Mariet, A.-S.; Bron, A.M.; Daien, V.; Korobelnik, J.F.; Quantin, C.; Creuzot-Garcher, C. Association of Acute Endophthalmitis with Intravitreal Injections of Corticosteroids or Anti–Vascular Growth Factor Agents in a Nationwide Study in France. JAMA Ophthalmol. 2018, 136, 1352–1358. [Google Scholar] [CrossRef]
- Tolentino, M. Systemic and Ocular Safety of Intravitreal Anti-VEGF Therapies for Ocular Neovascular Disease. Surv. Ophthalmol. 2011, 56, 95–113. [Google Scholar] [CrossRef]
- Ladas, I.D.; Karagiannis, D.A.; Rouvas, A.A.; Kotsolis, A.I.; Liotsou, A.; Vergados, I. Safety of repeat intravitreal injections of bevacizumab versus ranibizumab: Our Experience After 2,000 Injections. Retina 2009, 29, 313–318. [Google Scholar] [CrossRef]
- Wu, L.; Martínez-Castellanos, M.A.; Quiroz-Mercado, H.; Arevalo, J.F.; Berrocal, M.H.; Farah, M.E.; Maia, M.; Roca, J.A.; Rodriguez, F.J.; for the Pan American Collaborative Retina, G. Twelve-month safety of intravitreal injections of bevacizumab (Avastin®): Results of the Pan-American Collaborative Retina Study Group (PACORES). Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 81–87. [Google Scholar] [CrossRef]
- Bakri, S.J.; Snyder, M.R.; Reid, J.M.; Pulido, J.S.; Singh, R.J. Pharmacokinetics of Intravitreal Bevacizumab (Avastin). Ophthalmology 2007, 114, 855–859. [Google Scholar] [CrossRef]
- Kamba, T.; McDonald, D.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer 2007, 96, 1788–1795. [Google Scholar] [CrossRef]
- Anderson, D.H.; Radeke, M.J.; Gallo, N.B.; Chapin, E.A.; Johnson, P.T.; Curletti, C.R.; Hancox, L.S.; Hu, J.; Ebright, J.N.; Malek, G.; et al. The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited. Prog. Retin. Eye Res. 2010, 29, 95–112. [Google Scholar] [CrossRef]
- Ambati, J.; Atkinson, J.P.; Gelfand, B.D. Immunology of age-related macular degeneration. Nat. Rev. Immunol. 2013, 13, 438–451. [Google Scholar] [CrossRef]
- Holz, F.G.; Sadda, S.R.; Busbee, B.; Chew, E.Y.; Mitchell, P.; Tufail, A.; Brittain, C.; Ferrara, D.; Gray, S.; Honigberg, L.; et al. Efficacy and Safety of Lampalizumab for Geographic Atrophy Due to Age-Related Macular Degeneration: Chroma and Spectri Phase 3 Randomized Clinical Trials. JAMA Ophthalmol. 2018, 136, 666–677. [Google Scholar] [CrossRef]
- Do, D.V.; Pieramici, D.J.; van Lookeren Campagne, M.; Beres, T.; Friesenhahn, M.; Zhang, Y.; Strauss, E.C.; for the Phase Ia, I. A Phase ia dose-escalation study of the anti-factor d monoclonal antibody fragment fcfd4514s in patients with geographic atrophy. Retina 2014, 34, 313–320. [Google Scholar] [CrossRef]
- Yaspan, B.L.; Williams, D.F.; Holz, F.G.; Regillo, C.D.; Li, Z.; Dressen, A.; van Lookeren Campagne, M.; Le, K.N.; Graham, R.R.; Beres, T.; et al. Targeting factor D of the alternative complement pathway reduces geographic atrophy progression secondary to age-related macular degeneration. Sci. Transl. Med. 2017, 9, eaaf1443. [Google Scholar] [CrossRef]
- Liao, D.S.; Grossi, F.V.; El Mehdi, D.; Gerber, M.R.; Brown, D.M.; Heier, J.S.; Wykoff, C.C.; Singerman, L.J.; Abraham, P.; Grassmann, F.; et al. Complement C3 Inhibitor Pegcetacoplan for Geographic Atrophy Secondary to Age-Related Macular Degeneration: A Randomized Phase 2 Trial. Ophthalmology 2020, 127, 186–195. [Google Scholar] [CrossRef]
- Heier, J.S.; Lad, E.M.; Holz, F.G.; Rosenfeld, P.J.; Guymer, R.H.; Boyer, D.; Grossi, F.; Baumal, C.R.; Korobelnik, J.-F.; Slakter, J.S.; et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): Two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet 2023, 402, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Rother, R.P.; Rollins, S.A.; Mojcik, C.F.; Brodsky, R.A.; Bell, L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat. Biotechnol. 2007, 25, 1256–1264. [Google Scholar] [CrossRef]
- Dmytrijuk, A.; Robie-Suh, K.; Cohen, M.H.; Rieves, D.; Weiss, K.; Pazdur, R. FDA Report: Eculizumab (Soliris®) for the Treatment of Patients with Paroxysmal Nocturnal Hemoglobinuria. Oncologist 2008, 13, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, J.; Kaltenthaler, E.; Richards, A.; Tappenden, P.; Bessey, A.; Cantrell, A. A systematic review of eculizumab for atypical haemolytic uraemic syndrome (aHUS). BMJ Open 2013, 3, e003573. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Copland, D.A.; Horie, S.; Morgan, B.P.; Nicholson, L.B.; Dick, A.D. Local Anti-C5 Therapy Suppresses Experimental Choroidal Neovascularization Through Reduction of Macrophage Infiltrate. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1236. [Google Scholar]
- Yehoshua, Z.; Alexandre de Amorim Garcia Filho, C.; Nunes, R.P.; Gregori, G.; Penha, F.M.; Moshfeghi, A.A.; Zhang, K.; Sadda, S.; Feuer, W.; Rosenfeld, P.J. Systemic Complement Inhibition with Eculizumab for Geographic Atrophy in Age-Related Macular Degeneration: The COMPLETE Study. Ophthalmology 2014, 121, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wirta, D.; Murahashi, W.; Mathur, V.; Sankaranarayanan, S.; Taylor, L.K.; Yednock, T.; Fong, D.S.; Goldberg, J.L. Safety and Target Engagement of Complement C1q Inhibitor ANX007 in Neurodegenerative Eye Disease: Results from Phase I Studies in Glaucoma. Ophthalmol. Sci. 2023, 3, 100290. [Google Scholar] [CrossRef]
- Eichenbaum, D.A.; Wykoff, C.C.; Hershberger, V.; Henry, E.; Younis, H.; Chandra, P.; Ly, N.; Yuan, N.; DePaoli, A. Inhibition of complement C3 in geographic atrophy with NGM621: Phase 1 study results. Investig. Ophthalmol. Vis. Sci. 2021, 62, 1214. [Google Scholar]
- Boyer, D.S. Protection Against Vision Loss by ANX007: Results from the Phase 2 ARCHER Clinical Trial. Investig. Ophthalmol. Vis. Sci. 2024, 65, 2791. [Google Scholar]
- Wykoff, C. The results of the CATALINA phase 2 study of NGM621 for geographic atrophy secondary to AMD. In Proceedings of the Retina Society Annual Meeting, Pasadena, CA, USA, 3–4 November 2022; pp. 2–5. [Google Scholar]
- Stein, J.D.; Newman-Casey, P.A.; Mrinalini, T.; Lee, P.P.; Hutton, D.W. Cost-Effectiveness of Bevacizumab and Ranibizumab for Newly Diagnosed Neovascular Macular Degeneration. Ophthalmology 2014, 121, 936–945. [Google Scholar] [CrossRef]
- Bermejo, I.; Squires, H.; Poku, E.N.; Cooper, K.; Stevens, J.W.; Hamilton, J.; Wong, R.; Pearce, I.; Quhill, F.M.; Denniston, A.K. Adalimumab for non-infectiousnoninfectious uveitis: Is it cost-effective? Br. J. Ophthalmol. 2019, 103, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, A.W.; Hlavka, J.P.; Case, S.R. Biosimilar Cost Savings in the United States: Initial Experience and Future Potential. Rand Health Q 2018, 7, 3. [Google Scholar] [PubMed]
Characteristics | Brand Name | Target | Molecular Weight | Structure | Administration | Ocular Indications | FDA Approval | Common Adverse Events | Serious Adverse Events | Link to the FDA Label |
---|---|---|---|---|---|---|---|---|---|---|
Ranibizumab | Lucentis | VEGF-A | 48 kDa | Fab fragment | Intravitreal injection | - Wet AMD - DME - RVO - Myopic CNV | Yes | - Eye pain - Conjunctival hemorrhage - Vitreous floaters - Retinal detachment | - Endophthalmitis - Retinal detachment - Intraocular inflammation | https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/125156lbl.pdf (accessed on 11 September 2024) |
Bevacizumab | Avastin | VEGF-A | 149 kDa | Full-length IgG1 | Intravitreal injection | - Wet AMD - DME - RVO - Myopic CNV | Off-label use for eye diseases | - Eye pain - Conjunctival hemorrhage - Vitreous floaters - Retinal detachment | - Endophthalmitis - Retinal detachment - Intraocular inflammation | https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/125085lbl.pdf (accessed on 11 September 2024) |
Brolucizumab | Beovu | VEGF-A | 26 kDa | scFv | Intravitreal injection | Wet AMD | Yes | - Eye pain - Conjunctival hemorrhage - Vitreous floaters - Retinal detachment | - Endophthalmitis - Retinal detachment - Intraocular inflammation | https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761125s000lbl.pdf (accessed on 11 September 2024) |
Faricimab | Vabysmo | VEGF-A, Ang-2 | 149 kDa | Full-length IgG1 | Intravitreal injection | - Wet AMD - DME | Yes | - Eye pain - Conjunctival hemorrhage - Vitreous floaters - Retinal detachment | - Endophthalmitis - Retinal detachment - Intraocular inflammation | https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761235s000lbl.pdf (accessed on 11 September 2024) |
Infliximab | Remicade | TNF-α | 149 kDa | Full-length IgG1 | Intravenous infusion | - Uveitis - Scleritis - Optic neuritis | Off-label use for eye diseases | - Headache - Fatigue - Nausea - Rash | - Serious infections - Malignancies - Heart failure | https://www.accessdata.fda.gov/drugsatfda_docs/label/1998/inflcen082498lb.pdf (accessed on 11 September 2024) |
Rituximab | Rituxan | CD20 | 144 kDa | Chimeric IgG1 | Intravenous infusion | - Ocular mucous membrane pemphigoid - Ocular cicatricial pemphigoid | Off-label use for eye diseases | - Infusion reactions - Headache - Fatigue - Nausea | - Serious infections - Progressive multifocal leukoencephalopathy - Hepatitis B reactivation | https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2017/761064Orig1s000ltr.pdf (accessed on 11 September 2024) |
Adalimumab | Humira | TNF-α | 148 kDa | Full-length IgG1 | Subcutaneous injection | - Uveitis - Scleritis - Optic neuritis | Off-label use for eye diseases | - Injection site reactions - Upper respiratory infections - Headache | - Serious infections - Malignancies - Demyelinating disorders | https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125057s0276lbl.pdf (accessed on 11 September 2024) |
Tocilizumab | Actemra | IL-6 | 148 kDa | Humanized IgG1 | Intravenous infusion | - Uveitis - Scleritis | Off-label use for eye diseases | - Headache - Infections - Elevated liver enzymes | - Serious infections - Gastrointestinal perforations - Elevated liver enzymes | https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125472s000lbl.pdf (accessed on 11 September 2024) |
Characteristics | Aflibercept | Ranibizumab | Bevacizumab | Brolucizumab | Faricimab |
---|---|---|---|---|---|
Binding affinity for VEGF-A165 | 0.5 pM [71] | 46 pM [72] | 58 pM [72] | 28.4 pM [73] | 3 nM [74] |
Systemic half-life | 5–6 days [75] | 2 h [76] | 20 days [75] | 5.6 ± 1.5 h [77] | 7.5 days [78] |
Ocular half-life | 9 days [79] | 7.19 days [80] | 4.9 days [81] | 5.1 ± 2.78 days [82] | 7.5 days [78] |
Average 12-month BCVA improvement in NVAMD study trials (letters) | VIEW1 IVT–0.5 mg–q4w: +6.9; IVT–2 mg–q4w: +10.9; IVT–2.0 mg–q8w: +7.9 [11]. VIEW2: IVT–0.5 mg–q4w: +9.7; IVT–2 mg–q4w: +7.6; IVT–2.0 mg–q8w: +8.9 [11] ALTAIR IVT–2 mg–3q4w/T&E–2W +9.0; IVT–AFL–2 mg–3q4w/T&E–4W +8.4 [83]. HAWK (48 weeks) IVT–2.0 mg–q8w: +6.8 [12]. HARRIER (48 weeks) IVT–2.0 mg–q8w: +7.6 [12]. CANDELA (44 weeks) IVT–8 mg–3q4w/fixed: +7.9; IVT–2 mg–3q4w/Fixed: +5.1 [84]. | CATT IVT–0.5 mg–q4w: +8.5; IVT–0.5 mg–PRN: +6.8 [85]. ANCHOR IVT–0.3 mg–q4w: +8.5; IVT–0.5 mg–q4w: +11.3 [86]. MARINA IVT–0.3 mg–q4w: +6.5; IVT–0.5 mg–q4w: +7.2 [9]. HARBOR IVT–0.5 mg–q4w: +10.1; IVT–0.5 mg–PRN: +8.2; IVT–2.0 mg–q4w: +9.2; IVT–2.0 mg–PRN: +8.6 [9]. TREX-AMD IVT–0.5 mg–q4w: +9.2; IVT–0.5 mg–PRN: +10.5 [87]. CANTREAT IVT–0.5 mg–q4w: +6.0; IVT–0.5 mg–PRN: +8.4 [88]. | CATT IVT–1.25 mg–q4w: +8.0; IVT–1.25 mg–PRN: +5.9 [85]. ABC IVT–1.25 mg–q4w: +7.0 [89] | HAWK (48 weeks) IVT–3 mg–q12w/q8w: +6.1; IVT–6 mg–q12w/q8w: +6.6 [12]. HARRIER (48 weeks) IVT–6 mg–q12w/q8w: +6.9 [12]. | STAIRWAY IVT–6 mg–q12w: +10.1; IVT–6 mg–q16w: +11.4 [90]. |
Average 24-month BCVA improvement in study trials | ALTAIR (96 weeks) IVT–2 mg–3q4w/T&E–2W +7.6; IVT–AFL–2 mg–3q4w/T&E–4W +6.1 [83]. TENAYA IVT–6 mg–q8w: +3.3 [91]; LUCERNE IVT–6 mg–q8w: +5.2 [91]. | CATT IVT–0.5 mg–q4w: +8.8; IVT–0.5 mg–PRN: +6.7 [92]; ANCHOR IVT–0.3 mg–q4w: +8.1; IVT–0.5 mg–q4w: +10.7 [93], MARINA IVT–0.3 mg–q4w: +5.4; IVT–0.5 mg–q4w: +6.6 [94], HARBOR IVT–0.5 mg–q4w: +9.1; IVT–0.5 mg–PRN: +7.9; IVT–2.0 mg–q4w: +8.0; IVT–2.0 mg–PRN: +7.6 [95], TREND IVT–0.5 mg–q4w: +7.9; IVT–0.5 mg–PRN: +6.6 [96]. CANTREAT IVT–0.5 mg–q4w: +6.0; IVT–0.5 mg–PRN: +6.8 [97]. | CATT IVT–1.25 mg–q4w: +7.8; IVT–1.25 mg–PRN: +5.0 [92]. | MERLIN (recalcitrant nAMD) IVT–6 mg–q4w: −0.8 [98]. | TENAYA IVT–6 mg–q4w–q16w: +3.7 [91]; LUCERNE IVT–6 mg–q4w–q16w: +5.0 [91] |
Single-dose cost | $1850 [99] | $1575 [100] | $50 [100] | $1418 [100] | $1350 [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, Y.; Miyagaki, M.; Yang, M.; Zhang, J.; Zou, Y.; Ohno-Matsui, K.; Kamoi, K. Ophthalmic Use of Targeted Biologics in the Management of Intraocular Diseases: Current and Emerging Therapies. Antibodies 2024, 13, 86. https://doi.org/10.3390/antib13040086
Zong Y, Miyagaki M, Yang M, Zhang J, Zou Y, Ohno-Matsui K, Kamoi K. Ophthalmic Use of Targeted Biologics in the Management of Intraocular Diseases: Current and Emerging Therapies. Antibodies. 2024; 13(4):86. https://doi.org/10.3390/antib13040086
Chicago/Turabian StyleZong, Yuan, Miki Miyagaki, Mingming Yang, Jing Zhang, Yaru Zou, Kyoko Ohno-Matsui, and Koju Kamoi. 2024. "Ophthalmic Use of Targeted Biologics in the Management of Intraocular Diseases: Current and Emerging Therapies" Antibodies 13, no. 4: 86. https://doi.org/10.3390/antib13040086
APA StyleZong, Y., Miyagaki, M., Yang, M., Zhang, J., Zou, Y., Ohno-Matsui, K., & Kamoi, K. (2024). Ophthalmic Use of Targeted Biologics in the Management of Intraocular Diseases: Current and Emerging Therapies. Antibodies, 13(4), 86. https://doi.org/10.3390/antib13040086