Dual Targeting of Tumor Cells with Bispecific Single-Chain Fv-Immunoliposomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Generation of scFv' Fragments
2.3. Protein Melting Points
2.4. Preparation of Immunoliposomes
2.5. Flow Cytometry Analysis of Cell Binding
2.6. ELISA
2.7. Flow Cytometry Analysis of Liposomes
3. Results
3.1. Expression of EGFR and CEA by Tumor Cell Lines
3.2. Post-Insertion of Micellar Lipid/Dye Preparations
3.3. Antibody Fragments for the Generation of Immunoliposomes
3.4. Immunoliposomes
3.5. Dual-Targeted Immunoliposomes
4. Discussion
5. Conclusions
Acknowledgements
Conflict of Interest
References
- Fenske, D.B.; Cullis, P.R. Liposomal nanomedicines. Expert Opin. Drug. Deliv. 2008, 5, 25–44. [Google Scholar] [CrossRef]
- Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592–599. [Google Scholar] [CrossRef]
- Buse, J.; El-Aneed, A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: Current research and advances. Nanomedicine 2010, 5, 1237–1260. [Google Scholar] [CrossRef]
- Al-Jamal, W.T.; Kostarelos, K. Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 1094–1104. [Google Scholar] [CrossRef]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef]
- Gabizon, A.; Shmeeda, H.; Grenader, T. Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy. Eur. J. Pharm. Sci. 2012, 45, 388–398. [Google Scholar] [CrossRef]
- Woodle, M.C. Sterically stabilized liposome therapeutics. Adv. Drug Deliv. Rev. 1995, 16, 249–265. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 2003, 42, 463–478. [Google Scholar] [CrossRef]
- Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 2010, 21, 797–802. [Google Scholar] [CrossRef]
- Jain, R.K.; Styllanopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283–318. [Google Scholar]
- Bryne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug. Deliv. Rev. 2008, 60, 1615–1626. [Google Scholar] [CrossRef]
- Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99. [Google Scholar] [CrossRef]
- Maruyama, K.; Ishida, O.; Takizawa, T.; Moribe, K. Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev. 1999, 40, 89–102. [Google Scholar] [CrossRef]
- Kontermann, R.E. Immunoliposomes for cancer therapy. Curr. Opin. Mol. Ther. 2006, 8, 39–45. [Google Scholar]
- Torchilin, V. Antibody-modified liposomes for cancer chemotherapy. Expert Opin. Drug. Deliv. 2008, 5, 1003–1025. [Google Scholar] [CrossRef]
- Ishida, T.; Iden, D.L.; Allen, T.M. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett. 1999, 460, 129–133. [Google Scholar] [CrossRef]
- Nielsen, U.B.; Kirpotin, D.B.; Pickering, E.M.; Hong, K.; Park, J.W.; Shalaby, M.R.; Shao, Y.; Benz, C.C.; Marks, J.D. Therapeutic efficacy of anti-erbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta 1591, 109–118. [Google Scholar]
- Baum, P.; Müller, D.; Rüger, R.; Kontermann, R.E. Single-chain Fv immunoliposomes for the targeting of fibroblast activation protein-expressing tumor stromal cells. J. Drug Target. 2007, 15, 399–406. [Google Scholar] [CrossRef]
- Messerschmidt, S.K.E.; Kolbe, A.; Müller, D.; Knoll, M.; Pleiss, J.; Kontermann, R.E. Novel single-chain Fv' formats for the generation of immunoliposomes by site-directed coupling. Bioconjug. Chem. 2008, 19, 362–369. [Google Scholar] [CrossRef]
- Chhieng, D.C.; Frost, A.R.; Niwas, S.; Weiss, H.; Grizzle, W.E.; Beeken, S. Intratumoral heterogeneity of biomoarker expression in breast carcinomas. Biotech. Histochem. 2004, 79, 25–36. [Google Scholar] [CrossRef]
- Campbell, L.L.; Polyak, K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 2007, 6, 2332–2338. [Google Scholar] [CrossRef]
- Torres, L.; Ribeiro, F.R.; Pandis, N.; Andersen, J.A.; Heim, S.; Teixeira, M.R. Intratumor genomic heterogenity in breast cancer with clonal divergence between primary carcinomas and lymph node metastasis. Breast Cancer Res. Treat. 2007, 102, 143–155. [Google Scholar] [CrossRef]
- Nassar, A.; Radhakrishnan, A.; Cabrero, I.A.; Cotsonis, G.A.; Cohen, C. Intratumoral heterogeneity of immunohistochemical marker expression in breast carcinoma. Appl. Immunohistochem. Mol. Morphol. 2010, 18, 433–441. [Google Scholar]
- Marusyk, A.; Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta 1805, 105–117. [Google Scholar]
- Kontermann, R.E. Dual targeting strategies using bispecific antibodies. mAbs 2012, 4, 182–197. [Google Scholar] [CrossRef]
- Laginha, K.; Mumbengegwi, D.; Allen, T. Liposomes targeted via two different antibodies: Assay, B-cell binding and cytotoxicity. Biochem. Biophys. Acta 1711, 25–32. [Google Scholar]
- Ferrante, E.A.; Pickard, J.E.; Rychak, J.; Klibanov, A.; Ley, K. Dual targeting improves microbubble contras agent adhesion to VCAM-1 and P-selectin under flow. J. Control. Release 2009, 140, 100–107. [Google Scholar] [CrossRef]
- Meng, S.; Su, B.; Li, W.; Ding, Y.; Tang, L.; Zhou, W.; Song, Y.; Li, H.; Zhou, C. Enhanced antitumor effect of novel dual-targeted paclitaxel liposomes. Nanotechnology 2010, 21, 415103. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, B.; Yang, Z. Dual targeting of glioma U251 cells with nanoparticles prevents tumor angiogenesis and inhibits tumor growth. Curr. Neurovasc. Res. 2012. Epup ahead of print. [Google Scholar]
- Saul, J.M.; Annapragada, A.V.; Bellamkonda, R.V. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J. Control. Release 2006, 114, 277–287. [Google Scholar] [CrossRef]
- Rocha-Lima, C.M.; Soares, H.P.; Raez, L.E.; Singal, R. EGFR targeting of solid tumors. Cancer Control 2007, 14, 295–304. [Google Scholar]
- Wieduwilt, M.J.; Moasser, M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell Mol. Life Sci. 2008, 65, 1566–1584. [Google Scholar] [CrossRef]
- Hammarström, S. The carcinoembryonic antigen (CEA) family: Structure, suggested fucntions and expression in normal and malignant tissues. Semin. Cancer Biol. 1999, 9, 67–81. [Google Scholar] [CrossRef]
- Rüger, R.; Müller, D.; Fahr, A.; Kontermann, R.E. Generation of immunoliposomes using recombinant single-chain Fv fragments bound to Ni-NTA-liposomes. J. Drug Target. 2005, 13, 399–406. [Google Scholar] [CrossRef]
- Kastantin, M.; Ananthanarayanan, B.; Karmali, P.; Ruoslahti, E.; Tirrell, M. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. Langmuir 2009, 25, 7279–7286. [Google Scholar]
- Iden, D.L.; Allen, T.M. In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion approach. Biochim. Biophys. Acta 1513, 207–216. [Google Scholar]
- Allen, T.M.; Sapra, P.; Moase, E. Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell. Mol. Biol. Lett. 2002, 7, 889–894. [Google Scholar]
- Arleth, L.; Ashok, B.; Onyuksel, H.; Thiyagarajan, P.; Jacob, J.; Hjelm, R.P. Detailed structure of hairy mixed micelles fomred by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir 2005, 21, 3279–3290. [Google Scholar] [CrossRef]
- Adams, G.P.; Weiner, L.M. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 2005, 23, 1147–1157. [Google Scholar] [CrossRef]
- Deonarain, M.P.; Kousparou, C.A.; Epenetos, A.A. Antibodies targeting cancer stem cells: A new paradigm in immunotherapy? mAbs 2005, 1, 12–27. [Google Scholar]
- Schliemann, C.; Neri, D. Antibody-based vascular tumor targeting. Recent Results Cancer Res. 2010, 180, 201–216. [Google Scholar] [CrossRef]
- Gunawan, R.C.; Almeda, D.; Augute, D.T. Complementary targeting of liposomes to IL-1a and TNF-a activated endothelial cells via the transient expression of VCAM1 and E-selectin. Biomaterials 2011, 32, 9848–9853. [Google Scholar] [CrossRef]
- Gunawan, R.C.; Auguste, D.T. The role of antibody synergy and membrane fluidity in the vascular targeting of immunoliposomes. Biomaterials 2010, 31, 900–907. [Google Scholar] [CrossRef]
- Gunawan, R.C.; Auguste, D.T. Immunoliposomes that targeted endothelium in vitro are dependent on lipid raft formation. Mol. Pharma. 2010, 7, 1569–1575. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mack, K.; Rüger, R.; Fellermeier, S.; Seifert, O.; Kontermann, R.E. Dual Targeting of Tumor Cells with Bispecific Single-Chain Fv-Immunoliposomes. Antibodies 2012, 1, 199-214. https://doi.org/10.3390/antib1020199
Mack K, Rüger R, Fellermeier S, Seifert O, Kontermann RE. Dual Targeting of Tumor Cells with Bispecific Single-Chain Fv-Immunoliposomes. Antibodies. 2012; 1(2):199-214. https://doi.org/10.3390/antib1020199
Chicago/Turabian StyleMack, Katharina, Ronny Rüger, Sina Fellermeier, Oliver Seifert, and Roland E. Kontermann. 2012. "Dual Targeting of Tumor Cells with Bispecific Single-Chain Fv-Immunoliposomes" Antibodies 1, no. 2: 199-214. https://doi.org/10.3390/antib1020199
APA StyleMack, K., Rüger, R., Fellermeier, S., Seifert, O., & Kontermann, R. E. (2012). Dual Targeting of Tumor Cells with Bispecific Single-Chain Fv-Immunoliposomes. Antibodies, 1(2), 199-214. https://doi.org/10.3390/antib1020199