Spatiotemporal Dynamics and Driving Mechanisms of Vegetation Net Primary Productivity in the Giant Panda National Park Under the Context of Ecological Conservation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
3. Methodology
3.1. CASA Model
3.2. Global Moran’s I Index and Getis-Ord Gi* Hotspot Analysis
3.3. Theil–Sen Median Slope Estimation and Mann–Kendall Trend Test
3.4. Coefficient of Variation Method
3.5. Methods for Analyzing Influencing Factors
3.5.1. Partial Correlation Analysis
3.5.2. Statistical Analysis
3.5.3. Geographical Detector
4. Results
4.1. Spatiotemporal Variations in Vegetation NPP
4.1.1. Spatial Distribution Characteristics
4.1.2. Temporal Variations in Vegetation NPP
4.1.3. Spatial Variations in Vegetation NPP
4.2. Analysis of Factors Influencing Vegetation NPP
4.2.1. Impacts of Climate Change on Vegetation NPP
4.2.2. Influence of Topographic Variation on Vegetation Productivity
4.2.3. Effects of Vegetation and Soil Types on the Spatial Distribution of NPP
4.2.4. Impacts of Human Activities on Vegetation NPP
4.3. Quantitative Detection of Drivers of Vegetation NPP
5. Discussion
5.1. Accuracy of NPP Estimation and Cross-Regional Comparisons
5.2. Spatiotemporal Differentiation of NPP
5.3. Core Driving Mechanisms of Ecosystem Quality Dynamics
5.4. Uncertainty Analysis and Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, Z.; Fang, J.; Sun, J.; Gaston, K.J. Effectiveness of Protected Areas in Maintaining Plant Production. PLoS ONE 2024, 6, e19116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Dong, Q.; Pan, Y.; Yang, F.; He, M.; Huang, X.; Xu, J. Spatiotemporal Variations and Driving Forces of Regional-Scale NPP Based on a Multi-Method Integration: A Case Study in the Beibu Gulf Economic Zone. Ecol. Indic. 2025, 174, 113453. [Google Scholar] [CrossRef]
- Lyu, J.; Fu, X.; Lu, C.; Zhang, Y.; Luo, P.; Guo, P.; Huo, A.; Zhou, M. Quantitative Assessment of Spatiotemporal Dynamics in Vegetation NPP, NEP and Carbon Sink Capacity in the Weihe River Basin from 2001 to 2020. J. Clean. Prod. 2023, 428, 139384. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Y.; Wu, H.; Mohamed Shariff, A.R.B.; Zhou, H.; Fan, K. Unveiling the Impacts of Climate Change and Human Activities on Land-Use Evolution in Ecologically Fragile Urbanizing Areas: A Case Study of China’s Central Plains Urban Agglomeration. Ecol. Indic. 2024, 169, 112936. [Google Scholar] [CrossRef]
- Liu, G.; Pan, J.; Jiang, Y.; Ye, X.; Shao, F. Exploring the Effects of Urban Development in Ten Chinese Node Cities along the Belt and Road Initiative on Vegetation Net Primary Productivity. Sustainability 2024, 16, 4845. [Google Scholar] [CrossRef]
- Vačkář, D.; Harmáčková, Z.V.; Kaňková, H.; Stupková, K. Human Transformation of Ecosystems: Comparing Protected and Unprotected Areas with Natural Baselines. Ecol. Indic. 2016, 66, 321–328. [Google Scholar] [CrossRef]
- Pettorelli, N.; Chauvenet, A.L.M.; Duffy, J.P.; Cornforth, W.A.; Meillere, A.; Baillie, J.E.M. Tracking the Effect of Climate Change on Ecosystem Functioning Using Protected Areas: Africa as a Case Study. Ecol. Indic. 2012, 20, 269–276. [Google Scholar] [CrossRef]
- Lieth, H. Modeling the Primary Productivity of the World. In Primary Productivity of the Biosphere; Springer: Berlin/Heidelberg, Germany, 1975; pp. 237–263. ISBN 978-3-642-80913-2. [Google Scholar]
- Pranuthi, G.; Dubey, S.K.; Tripathi, S.K. Comparison of Different Models for Estimation of Net Primary Productivity in India. J. Agrometeorol. 2012, 14, 105–110. [Google Scholar] [CrossRef]
- Sun, Q.; Li, B.; Zhang, T.; Yuan, Y.; Gao, X.; Ge, J.; Li, F.; Zhang, Z. An Improved Biome-BGC Model for Estimating Net Primary Productivity of Alpine Meadow on the Qinghai-Tibet Plateau. Ecol. Model. 2017, 350, 55–68. [Google Scholar] [CrossRef]
- Kang, F.; Li, X.; Du, H.; Mao, F.; Zhou, G.; Xu, Y.; Huang, Z.; Ji, J.; Wang, J. Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and Their Response to Climate Change Based on a BEPS Model in China. Remote Sens. 2022, 14, 366. [Google Scholar] [CrossRef]
- Wu, C.; Chen, K.; E, C.; You, X.; He, D.; Hu, L.; Liu, B.; Wang, R.; Shi, Y.; Li, C.; et al. Improved CASA Model Based on Satellite Remote Sensing Data: Simulating Net Primary Productivity of Qinghai Lake Basin Alpine Grassland. Geosci. Model Dev. 2022, 15, 6919–6933. [Google Scholar] [CrossRef]
- Zhou, L. Study on Temporal and Spacial Characteristics of Jiangxi NPP Based on GLO-PEM Model. J. Simul. 2021, 9, 123. [Google Scholar]
- Ren, J.; Wang, W.J.; Fei, L.; Wang, L.; Xing, S.; Cong, Y. Impacts of Climate Change and Land Use/Cover Change on Ecological Security Networks in Changbai Mountains, Northeast China. Ecol. Indic. 2024, 169, 112849. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global Net Primary Production: Combining Ecology and Remote Sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Potter, C.; Klooster, S.; Huete, A.; Genovese, V. Terrestrial Carbon Sinks for the United States Predicted from MODIS Satellite Data and Ecosystem Modeling. Earth Interact. 2007, 11, 1–21. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of Maximum Light Use Efficiency for Some Typical Vegetation Types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, H.; Chiaka, J.C.; Jiang, C.; Wei, N.; Liang, Y. Spatiotemporal Patterns and Driving Mechanism of Tourism Ecological Security in Guangxi, China. Front. Ecol. Evol. 2023, 11, 1163498. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. BioScience 2004, 54, 547. [Google Scholar] [CrossRef]
- Jay, S.; Potter, C.; Crabtree, R.; Genovese, V.; Weiss, D.J.; Kraft, M. Evaluation of Modelled Net Primary Production Using MODIS and Landsat Satellite Data Fusion. Carbon Balance Manag. 2016, 11, 8. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Y.; Xiong, J.; Ye, C.; Yong, Z.; Wang, Y.; He, D.; Xu, S. Relationships between Climate Change, Phenology, Edaphic Factors, and Net Primary Productivity across the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102708. [Google Scholar] [CrossRef]
- Whitlock, C.; Bartlein, P.J. Vegetation and Climate Change in Northwest America during the Past 125 Kyr. Nature 1997, 388, 57–61. [Google Scholar] [CrossRef]
- Chen, S.; Ma, M.; Wu, S.; Tang, Q.; Wen, Z. Topography Intensifies Variations in the Effect of Human Activities on Forest NPP across Altitude and Slope Gradients. Environ. Dev. 2023, 45, 100826. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, W.T.; Zheng, Z.W.; Dai, Q.Y.; Li, X.Y. Detecting Influencing Factor of Vegetation NPP in Southwest China Based on Spatial Scale Effect. Huan Jing Ke Xue 2023, 44, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Fang, J.; Yuan, J. Climate Change and Land Use/Land Cover Change (LUCC) Leading to Spatial Shifts in Net Primary Productivity in Anhui Province, China. PLoS ONE 2024, 19, e0307516. [Google Scholar] [CrossRef]
- Liang, W.; Yang, Y.; Fan, D.; Guan, H.; Zhang, T.; Long, D.; Zhou, Y.; Bai, D. Analysis of Spatial and Temporal Patterns of Net Primary Production and Their Climate Controls in China from 1982 to 2010. Agric. For. Meteorol. 2015, 204, 22–36. [Google Scholar] [CrossRef]
- Yang, Z.I.; Zhang, T.; Yi, G.; Li, J.; Qin, Y.; Chen, Y. Spatio-Temporal Variation of Fraction of Photosynthetically Active Radiation Absorbed by Vegetation in the Hengduan Mountains, China. J. Mt. Sci. 2021, 18, 891–906. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation Dynamics and Its Driving Forces from Climate Change and Human Activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563–564, 210–220. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Wu, C.; Song, K.; Ren, C. Examining Forest Net Primary Productivity Dynamics and Driving Forces in Northeastern China during 1982–2010. Chin. Geogr. Sci. 2014, 24, 631–646. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Z.F.; Cheng, J.; Yu, Q.; Rao, X.Q. Impacts of Urbanization on Net Primary Productivity in the Pearl River Delta, China. Int. J. Plant Prod. 2015, 9, 581–598. [Google Scholar]
- Yang, F.; Wang, J.; Zhang, C.; Li, J.; Xie, H.; Zhuoge, Z. The Impact of Human Activities on Net Primary Productivity in a Grassland Open-Pit Mine: The Case Study of the Shengli Mining Area in Inner Mongolia, China. Land 2022, 11, 743. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Y.; Chaudhary, P.; Ju, P.; Zhu, Q.; Kang, X.; Chen, H.; He, Y. Effects of Climate Change and Human Activities on Net Primary Production of Wetlands on the Zoige Plateau from 1990 to 2015. Glob. Ecol. Conserv. 2022, 35, e02052. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Wang, Y.; Wu, L.; Ding, K.; Xing, S.; Zhang, Y.; Zhang, L. Dynamic Response of Vegetation Net Primary Productivity to Climate and Human Impacts in Mining-Dominated Basin in Inner Mongolia, China. Atmosphere 2024, 15, 1457. [Google Scholar] [CrossRef]
- Yu, H.; Zhong, L.; Wang, Q. Identification and Analysis of Conservation Gap of National Nature Reserves in China. Ecol. Indic. 2024, 158, 111525. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, T. Relative Contributions of Climate Change and Human Activities on Vegetation Productivity Variation in National Nature Reserves on the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 4626. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, G.; Shen, W.; Wei, B.; Jiang, J.; Zhang, X. Estimation of Net Primary Productivity of Sanhu National Nature Reserve in China by Integrating HJ-1 Remote Sensing Image with Surface Energy Balance Algorithm for Land Model. Sens. Lett. 2013, 11, 1121–1127. [Google Scholar] [CrossRef]
- Zhou, K.; Du, J.; Shen, X.; Pu, G.; Zhang, D.; Dang, X. Spatial and Temporal Variability of Vegetation Net Primary Productivity in Qiangtang National Nature Reserve under Climate Change. Chin. J. Agrometeorol. 2021, 42, 627. [Google Scholar] [CrossRef]
- Hong, W.; Guo, R.; Su, M.; Tang, H.; Chen, L.; Hu, W. Sensitivity Evaluation and Land-Use Control of Urban Ecological Corridors: A Case Study of Shenzhen, China. Land Use Policy 2017, 62, 316–325. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, H.; Chen, X.; Shang, X.; Yang, Z.; Yang, X.; Gu, X.; Yang, B.; Zhang, L. Species Identification and Spatial Diversity Patterns of the Giant Panda National Park (GPNP) in Ya’an, Sichuan, China. Glob. Ecol. Conserv. 2024, 81, e19116. [Google Scholar] [CrossRef]
- Huang, Q.; Fei, Y.; Yang, H.; Gu, X.; Songer, M. Giant Panda National Park, a Step towards Streamlining Protected Areas and Cohesive Conservation Management in China. Glob. Ecol. Conserv. 2020, 22, e00947. [Google Scholar] [CrossRef]
- Li, X.; Zhu, G.; Sun, J.; Wu, L.; Peng, Y. Research on the Coordination of Transportation Network and Ecological Corridors Based on Maxent Model and Circuit Theory in the Giant Panda National Park, China. Land 2025, 14, 1465. [Google Scholar] [CrossRef]
- Bai, Y.; Li, A.; Lei, G.; Bian, J.; Zhang, Z.; Nan, X.; Chen, L.; Lin, X.; Deng, Y.; Shao, H. Identifying Spatiotemporal Dynamics and Driving Factors of Landscape Pattern in Giant Panda National Park (GPNP) Using an Interpretable Machine Learning Technology. Ecol. Indic. 2025, 178, 114121. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, R.; Xue, C.; Xia, Z. Ecological Sensitivity Evaluation and Explanatory Power Analysis of the Giant Panda National Park in China. Ecol. Indic. 2023, 146, 109792. [Google Scholar] [CrossRef]
- Pu, M.; Zhao, Y.; Ni, Z.; Huang, Z.; Peng, W.; Zhou, Y.; Liu, J.; Gong, Y. Spatial-Temporal Evolution and Driving Forces of NDVI in China’s Giant Panda National Park. Remote Sens. 2023, 19, 6722. [Google Scholar] [CrossRef]
- Dong, D.; Zhao, Z.; Gao, H.; Zhou, Y.; Gong, D.; Du, H.; Fujioka, Y. Analysis of Spatiotemporal Evolution and Driving Forces of Vegetation from 2001 to 2020: A Case Study of Shandong Province, China. Forests 2017, 15, 1245. [Google Scholar] [CrossRef]
- Geng, X.; Wang, X.; Yan, H.; Zhang, Q.; Jin, G. Land Use/Land Cover Change Induced Impacts on Water Supply Service in the Upper Reach of Heihe River Basin. Sustainability 2015, 7, 366–383. [Google Scholar] [CrossRef]
- Pu, M.; Zhao, Y.; Ni, Z.; Huang, Z.; Peng, W.; Zhou, Y.; Liu, J.; Gong, Y.; Yu, D.; Shi, P.; et al. Spatiotemporal Variation in Fractional Vegetation Coverage and Quantitative Analysis of Its Driving Forces: A Case Study in the Tabu River Basin, Northern China, 1986–2023. Remote Sens. 2009, 17, 2490. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Chen, Y.; Huang, S.; Liang, B. Spatiotemporal Variation and Prediction of NPP in Beijing-Tianjin-Hebei Region by Coupling PLUS and CASA Models. PLoS ONE 2024, 81, 102620. [Google Scholar] [CrossRef]
- Yu, D.; Shi, P.; Shao, H.; Zhu, W.; Pan, Y. Modelling Net Primary Productivity of Terrestrial Ecosystems in East Asia Based on an Improved CASA Ecosystem Model. PLoS ONE 2024, 66, e02938. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of net primary productivity of chinese vegetation based on remote sensing. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Chen, Y. New Approaches for Calculating Moran’s Index of Spatial Autocorrelation. PLoS ONE 2013, 8, e68336. [Google Scholar] [CrossRef]
- Meru, L.B.; Pandey, R. Climate Change Ecological Vulnerability and Hotspot Analysis of Himalayan Forests in North-Eastern Region, India. Environ. Sustain. Indic. 2024, 24, 100472. [Google Scholar] [CrossRef]
- Jin, G.; Li, Z.; Deng, X.; Yang, J.; Chen, D.; Li, W. An Analysis of Spatiotemporal Patterns in Chinese Agricultural Productivity between 2004 and 2014. Ecol. Indic. 2019, 105, 591–600. [Google Scholar] [CrossRef]
- Manepalli, U.R.R.; Bham, G.H.; Kandada, S. Evaluation of Hotspots Identification Using Kernel Density Estimation (K) and Getis-Ord (Gi*) on I-630. In Proceedings of the 3rd International Conference on Road Safety and Simulation, Indianapolis, IN, USA, 14–16 September 2011. [Google Scholar]
- Muia, V.K.; Opere, A.O.; Ndunda, E.; Amwata, D.A. Rainfall and Temperature Trend Analysis Using Mann-Kendall and Sen’s Slope Estimator Test in Makueni County, Kenya. J. Mater. Environ. Sci. 2024, 15, 349–367. [Google Scholar]
- Arachchige, C.N.P.G.; Prendergast, L.A.; Staudte, R.G.; Zhang, J.; Wang, J.; Chen, Y.; Huang, S.; Liang, B.; Tang, Z.; Fang, J.; et al. Desertification of Iran in the Early Twenty-First Century: Assessment Using Climate and Vegetation Indices. Glob. Ecol. Conserv. 2025, 11, 20548. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, H.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y.; Wang, A. Vegetation Responses to Extreme Climatic Indices in Coastal China from 1986 to 2015. Sci. Total Environ. 2020, 744, 140784. [Google Scholar] [CrossRef] [PubMed]
- Arachchige, C.N.P.G.; Prendergast, L.A.; Staudte, R.G. Robust Analogs to the Coefficient of Variation. PLoS ONE 2024, 81, 102620. [Google Scholar] [CrossRef]
- Wei, X.; Yang, J.; Luo, P.; Lin, L.; Lin, K.; Guan, J. Assessment of the Variation and Influencing Factors of Vegetation NPP and Carbon Sink Capacity under Different Natural Conditions. Ecol. Indic. 2022, 138, 108834. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Chen, Y.; Fan, M.; Chen, Y.; Gang, C.; You, Y.; Wang, Z. Dynamics of Global Dryland Vegetation Were More Sensitive to Soil Moisture: Evidence from Multiple Vegetation Indices. Agric. For. Meteorol. 2023, 331, 109327. [Google Scholar] [CrossRef]
- Luo, J.; Abudureheman, H.; Duan, Y.; Yao, K.; Yao, L.; Tang, H.; Buweiayixiemu, T. Spatiotemporal dynamics and driving factors of net primary productivity in the Ebinur Lake Basin. Acta Ecol. Sin. 2025, 45, 182–196. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Z.; Liao, S.; Wu, W.; Li, L.; Liu, W. Remote sensing estimation of forest aboveground biomass in Potatso NationalPark using GF-1 images. Trans. Chin. Soc. Agric. Eng. 2021, 37, 216–223. Available online: https://kns.cnki.net/kcms2/article/abstract?v=4J3GFaKSuTMKJDbVT-XHGYkRgtsMhFaNZ9f2F5o-KkYsGlgujGs-aru68NmrUvtbsNLpV4146QFDGZ_KDPxB4N51EJfWb9c5VB7M7qgARy0GeDObYBThB904WIxb-WzfF85n84VlVbVUaU0sUjM4rBqysxPKJBbFRmbPjlHVfq5ba-SVr9tIzvnb371wD3kQ8ts5FpTU1MY=&uniplatform=NZKPT (accessed on 4 December 2025).
- Su, Y.; Guo, Q.; Hu, T.; Guan, H.; Jin, S.; An, S.; Chen, X.; Guo, K.; Hao, Z.; Hu, Y.; et al. An Updated Vegetation Map of China (1:1,000,000). Sci. Bull. 2020, 65, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; He, W.; Xue, L.; Chen, F.; Jia, P.; Hu, Y.; Zamanian, K. Particle Size Distribution and Depth to Bedrock of Chinese Cultivated Soils: Implications for Soil Classification and Management. Agronomy 2023, 13, 1248. [Google Scholar] [CrossRef]
- Li, C.; Lei, L.; Jia, X.; Xiong, X.; Zhang, X. Accuracy and Applicability Assessment of Vegetation Types of the Land Cover Products Produced in China. Ecol. Indic. 2025, 174, 113506. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, M.; Hu, Y.; Wang, G. Estimation of Net Primary Productivity of Forests by Modified CASA Models and Remotely Sensed Data. Int. J. Remote Sens. 2018, 39, 1092–1116. [Google Scholar] [CrossRef]
- Sun, J.; Yue, Y.; Niu, H. Evaluation of NPP Using Three Models Compared with MODIS-NPP Data over China. PLoS ONE 2021, 16, e0252149. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP Products across Multiple Biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS Terrestrial Gross and Net Primary Production Global Data Set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Wang, X.; Ling, Z.; Chen, Y.; Zhai, J.; Deng, Y.; Li, Z.; Peng, K. Remote Sensing Monitoring of Vegetation Growth Status about Nature Reserves in the Middle of Qinling Mountains. Nat. Prot. Areas 2022, 2, 48–59. [Google Scholar] [CrossRef]
- Zhou, N.; Gong, E.; Bai, T.; Zhao, T.; Bai, H.; Wang, J. Analysis of temporal and spatial dynamics and its influencing factors of NPP in Qinba Mountain Area based on the CASA model. Acta Ecol. Sin. 2025, 45, 1829–1843. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Shen, M.; Chen, X.; Chen, R. Spatiotemporal variation of net primary productivity and response to climatic factors in the Yangtze River Basin. Water Resour. Hydropower Eng. 2022, 53, 165–176. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.; Dong, T.; Ma, L.; Zhu, X.; Huang, T. Variation characteristic of NDVI and its response to climate change in the Sichuan-Chongqing region. Acta Ecol. Sin. 2023, 43, 6743–6757. Available online: https://kns.cnki.net/kcms2/article/abstract?v=4J3GFaKSuTNtCotc42VCVUMg0oexTAOrrb89VNxdso3mD_8HTrxc8-1J1PFf-LA_7S7j0Qyzmc52oJAVFWIkU4YapV_a9z0fdnjVpTP8Ssl75CskMS0NHeOQPvvJt9PUYjTRjzpFW9iKENZGU2bNur5a9ghg6X6G4pK2ZW82NllboKj0RKIGrEKb_gVR8aHUB_kIGxBpVz0=&uniplatform=NZKPT (accessed on 4 December 2025).
- Huang, X.; Li, X.; Mu, X.; Wang, K.; Tian, K.; Duan, C.; Yu, F. The severe drought occurred in Southwest China in 2010: An examination from perspective of ecology. Res. Soil Water Conserv. 2013, 20, 282–287, 292. Available online: https://kns.cnki.net/kcms2/article/abstract?v=VkQzIsHyPdhyNeCJPi5klx7uDyIGvYKm3woJnDIEm6c3y8AsOhAjpktP3XN2SxYYyLziwmV1gCOBlVH4ZD4ds_7nT8uekdRiePLGZG54dBZNiwRkG2kQu0gDv86V6mqpgPo0ghRSuw7PNndnRMYrTrrRlo_dTUg0Bt4i3Vdy75nG348O7tWAqg==&uniplatform=NZKPT&language=CHS (accessed on 4 December 2025).
- Luo, R.; Yu, H.; Zhang, W.; Yang, X. Temporal and Spatial Pattern Changes of Vegetation Net Primary Productivity in Sichuan Province and the Analysis of Its Driving Factors. Environ. Sci. 2025. [Google Scholar] [CrossRef]
- Xiao, H.; Zhou, C.; Long, K.; Chen, Y.; Dan, B. Comparative analyses of two persistent extreme rainstorms in Sichuan Basin. Meteorol. Mon. 2025, 51, 269–284. Available online: https://kns.cnki.net/kcms2/article/abstract?v=4J3GFaKSuTPz-GX8eSj6BNBGLN9S9IP_7NpnV6onhHYZLTCYxOijLyPKtQXHb-suI2bUMp6tBRraGLg1aJMS5Z7UivcQVS9V7Lq3JAuJcMrpIiM5IuH-vSZQ__Q4qTA_bxN1Nom8yp6WvD2SNC13CeBiUERgEl_ZAZ_dg7uPNBTTCJk3Cgzkwwe5fuhGMrTXXTvNLqVArPA=&uniplatform=NZKPT (accessed on 4 December 2025).
- Li, J.; Xie, X.; Zhao, B.; Xiao, X.; Xue, B. Spatio-Temporal Processes and Characteristics of Vegetation Recovery in the Earthquake Area: A Case Study of Wenchuan, China. Land 2022, 11, 477. [Google Scholar] [CrossRef]
- Sun, X.; Yuan, L.; Zhou, Y.; Shao, H.; Li, X.; Zhong, P. Spatiotemporal Change of Vegetation Coverage Recovery and Its Driving Factors in the Wenchuan Earthquake-Hit Areas. J. Mt. Sci. 2021, 18, 2854–2869. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. The Impact of Vegetation Phenology Changes on the Relationship between Climate and Net Primary Productivity in Yunnan, China, under Global Warming. Front. Plant Sci. 2023, 14, 1248482. [Google Scholar] [CrossRef]
- Chen, C.; Li, T.; Sivakumar, B.; Li, J.; Wang, G. Attribution of Growing Season Vegetation Activity to Climate Change and Human Activities in the Three-River Headwaters Region, China. J. Hydroinform. 2020, 22, 186–204. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Fu, J. Vegetation Response to Precipitation Anomalies under Different Climatic and Biogeographical Conditions in China. Sci. Rep. 2020, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, X.; Abla, M.; Lü, D.; Yan, R.; Ren, Q.; Ren, Z.; Yang, Y.; Zhao, W.; Lin, P.; et al. Effects of Vegetation and Rainfall Types on Surface Runoff and Soil Erosion on Steep Slopes on the Loess Plateau, China. CATENA 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Y.; Wang, Y.; Liu, J. The Spatio-Temporal Evolution of the Soil Conservation Function of Ecosystems in the North–South Transition Zone in China: A Case Study of the Qinling-Daba Mountains. Sustainability 2022, 14, 5829. [Google Scholar] [CrossRef]
- Qi, G.; Bai, H.; Zhao, T.; Meng, Q.; Zhang, S. Sensitivity and Areal Differentiation of Vegetation Responses to Hydrothermal Dynamics on the Northern and Southern Slopes of the Qinling Mountains in Shaanxi Province. J. Geogr. Sci. 2021, 31, 785–801. [Google Scholar] [CrossRef]
- Xiao, X.; Li, X.; Jiang, T.; Tan, M.; Hu, M.; Liu, Y.; Zeng, W. Response of Net Primary Production to Land Use and Climate Changes in the Middle-Reaches of the Heihe River Basin. Ecol. Evol. 2019, 9, 4651–4666. [Google Scholar] [CrossRef]
- Rietra, R.; Heinen, M.; Oenema, O. A Review of Crop Husbandry and Soil Management Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems. Land 2022, 11, 255. [Google Scholar] [CrossRef]
- Wang, G.; Peng, W.; Zhang, L.; Zhang, J. Quantifying the Impacts of Natural and Human Factors on Changes in NPP Using an Optimal Parameters-Based Geographical Detector. Ecol. Indic. 2023, 155, 111018. [Google Scholar] [CrossRef]
- Körner, C. The Use of ‘Altitude’ in Ecological Research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Xu, H.; Wang, H.; Prentice, I.C.; Harrison, S.P.; Wang, G.; Sun, X. Predictability of Leaf Traits with Climate and Elevation: A Case Study in Gongga Mountain, China. Tree Physiol. 2021, 41, 1336–1352. [Google Scholar] [CrossRef]
- Piao, S.; Zhang, X.; Chen, A.; Liu, Q.; Lian, X.; Wang, X.; Peng, S.; Wu, X. The Impacts of Climate Extremes on the Terrestrial Carbon Cycle: A Review. Sci. China Earth Sci. 2019, 62, 1551–1563. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R. Regional Hydrologic and Carbon Balance Responses of Forests Resulting from Potential Climate Change. Clim. Change 1991, 19, 349–368. [Google Scholar] [CrossRef]
- Ding, Z.; Zheng, H.; Li, H.; Yu, P.; Man, W.; Liu, M.; Tang, X.; Liu, Y. Afforestation-Driven Increases in Terrestrial Gross Primary Productivity Are Partly Offset by Urban Expansion in Southwest China. Ecol. Indic. 2021, 127, 107641. [Google Scholar] [CrossRef]
- Ma, B.; Jing, J.; Liu, B.; Wang, Y.; He, H. Assessing the Contribution of Human Activities and Climate Change to the Dynamics of NPP in Ecologically Fragile Regions. Glob. Ecol. Conserv. 2023, 42, e02393. [Google Scholar] [CrossRef]
- Tang, J.; Peng, X.; Peng, W. Nonlinear Variations and Drivers of Vegetation NPP on the Tibetan Plateau: Interaction of Natural and Human Factors. PLoS ONE 2025, 20, e0320370. [Google Scholar] [CrossRef] [PubMed]











| Data Type | Data Name | Abbreviation | Data Source | Native Resolution | Resampling Method |
|---|---|---|---|---|---|
| Climate | Mean annual temperature | MAT | 1 km monthly mean temperature dataset for China (1901–2024) (https://www.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf/) (accessed on 27 May 2025) | 1 km | Bilinear |
| Mean annual precipitation | PR | 1 km monthly precipitation dataset for China (1901–2024) (https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2) (accessed on 27 May 2025) | 1 km | Bilinear | |
| Solar radiation | SR | Terra Climate (https://earthengine.google.com/) | 1 km | Bilinear | |
| Topography | Elevation | Elevation | Geospatial data cloud (https://www.gscloud.cn/) | 30 m | Bilinear |
| Slope | Slope | 30 m | Bilinear | ||
| Aspect | Aspect | 30 m | Nearest | ||
| Soil | Soil type | Soil_type | Harmonized World Soil Database (https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/) (accessed on 28 May 2025) | 1 km | Nearest |
| Soil texture | Silt, Clay, Sand | Spatial distribution data of soil texture in China (https://www.resdc.cn//data.aspx?DATAID=260) (accessed on 28 May 2025) | 1 km | Bilinear | |
| Soil macro-nutrients | TN, TP, TK | Dataset of soil properties for land surface modeling over China (https://data.tpdc.ac.cn/zh-hans/data/8ba0a731-5b0b-4e2f-8b95-8b29cc3c0f3a) (accessed on 28 May 2025) | 1 km | Bilinear | |
| Vegetation | Vegetation type | Veg | China 1:1 million vegetation type spatial distribution data (https://www.resdc.cn/data.aspx?DATAID=122) (accessed on 30 July 2025) | 1 km | Nearest |
| Normalized Difference Vegetation Index | NDVI | MOD13Q1 dataset (https://earthengine.google.com/) | 250 m | Bilinear | |
| Net Primary Productivity | NPP | MOD17A3 product (https://earthengine.google.com/) | 500 m | - | |
| Human activity | Land use classification | CLCD | The 30 m annual land cover datasets and its dynamics in China from 1985 to 2023 (http://zenodo.org) | 30 m | Majority |
| Gross Domestic Product per capita | GDP | China GDP Spatial Distribution Kilometer Grid Dataset (https://www.resdc.cn/DOI/DOI.aspx?DOIID=33) (accessed on 30 July 2025) | 1 km | Bilinear | |
| Population density | POP | China Population Spatial Distribution Kilometer Grid Dataset (https://www.resdc.cn/DOI/DOI.aspx?DOIID=32) (accessed on 30 July 2025) | 1 km | Bilinear |
| Sen’s Slope | Z (Absolute Value) | Trend Features |
|---|---|---|
| S > 0 | Z > 2.576 | Highly significant increase |
| 1.960 < Z ≤ 2.576 | Significant increase | |
| 1.645 < Z ≤ 1.960 | Slightly significant increase | |
| Z ≤ 1.645 | Non-significant increase | |
| S = 0 | Z = 0 | No change |
| S < 0 | Z ≤ 1.645 | Non-significant decrease |
| 1.645 < Z ≤ 1.960 | Slightly significant decrease | |
| 1.960 < Z ≤ 2.576 | Significant decrease | |
| Z > 2.576 | Highly significant decrease |
| Variable Type | Variable | Classification Criterion | Range | Categories/Number of Classes |
|---|---|---|---|---|
| Continuous | Elevation | 200 m | 566~6567 m | 31 |
| Slope | 2° | 0~78.00° | 39 | |
| Aspect | Cardinal directions and slope orientation | 0~360° | 8/4 | |
| Categorical | Vegetation type | Vegetation formation groups | - | Cultivated vegetation, Broadleaf, Coniferous forest, Mixed forest, Thickets, Grassland, Alpine vegetation |
| Soil type | FAO90 classification system | - | Argosols, Semi-Luvisols, Semi-hydromorphic soil, Calcium layer soil, Aridosols, desert soil, Primary soil, hydromorphic soil, Saline soil, Anthrosols, Ferralosols, Alpine soil | |
| Land use | CLCD classification system | - | Crop land, Forest, Shrub, Grassland, Water, Snow/ice, Barren, Construction |
| Study Period | Study Area | Model/Product | Mean Value of NPP |
|---|---|---|---|
| 2001–2023 | GPNP (This study) | CASA model | 601.54–710.84 |
| 2001–2023 | GPNP (This study) | MOD17A3 | 646.39–782.42 |
| 2001–2018 | Qinling Region of the GPNP (This study) | CASA model | 757.91 |
| 2000–2018 | Zhouzhi National Nature Reserve | MODIS NPP | 670 |
| 2000–2018 | Foping National Nature Reserve | MODIS NPP | 660 |
| 2000–2018 | Laoxiancheng National Nature Reserve | MODIS NPP | 640 |
| 2000–2018 | Taibaishan National Nature Reserve | MODIS NPP | 610 |
| 1982–2017 | National Forest Parks of China | CEVSA2 model | 667 |
| 2000–2020 | Yangtze River Basin | MODIS NPP | 528.02 |
| 2000–2020 | China | MODIS NPP | 514.48 |
| 2001–2022 | Qinba Mountains | CASA model | 585.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Chen, S.; Han, D.; Liu, J.; Zheng, P.; Huang, X.; Zhao, R. Spatiotemporal Dynamics and Driving Mechanisms of Vegetation Net Primary Productivity in the Giant Panda National Park Under the Context of Ecological Conservation. Land 2025, 14, 2394. https://doi.org/10.3390/land14122394
Liu W, Chen S, Han D, Liu J, Zheng P, Huang X, Zhao R. Spatiotemporal Dynamics and Driving Mechanisms of Vegetation Net Primary Productivity in the Giant Panda National Park Under the Context of Ecological Conservation. Land. 2025; 14(12):2394. https://doi.org/10.3390/land14122394
Chicago/Turabian StyleLiu, Wendou, Shaozhi Chen, Dongyang Han, Jiang Liu, Pengfei Zheng, Xin Huang, and Rong Zhao. 2025. "Spatiotemporal Dynamics and Driving Mechanisms of Vegetation Net Primary Productivity in the Giant Panda National Park Under the Context of Ecological Conservation" Land 14, no. 12: 2394. https://doi.org/10.3390/land14122394
APA StyleLiu, W., Chen, S., Han, D., Liu, J., Zheng, P., Huang, X., & Zhao, R. (2025). Spatiotemporal Dynamics and Driving Mechanisms of Vegetation Net Primary Productivity in the Giant Panda National Park Under the Context of Ecological Conservation. Land, 14(12), 2394. https://doi.org/10.3390/land14122394

