VegeT: An Easy Tool to Classify and Facilitate the Management of Seminatural Grasslands and Dynamically Connected Vegetation of the Alps
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation Sampling
- A—meadows: grasslands regularly mowed (from one to three times a year) and manured once a year for the past 10 years or more;
- B—meadows-pastures: grasslands that have been managed as meadows (mowed and manured) or pastures (grazed by cattle) alternatively for at least five years or that are regularly mowed once a year (on May–June) and then grazed (August–September);
- C—pastures: grasslands, with the occasional presence of small shrubs that have been grazed by cattle for more than ten years;
- D—shrublands: areas dominated by shrubs grown where grasslands have not been managed for at least five years;
- E—forests: vegetation dominated by woody species (trees cover over 60%), Fagus sylvatica (beech) in particular, managed to produce firewood or unmanaged (current potential vegetation [27]).
2.3. Ecological Indices and Data Analysis
3. Results and Discussion
3.1. Floristic and Ecological Features
3.2. VegeT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; Springer: Berlin, Germany, 2003. [Google Scholar]
- Bucher, R.; Andres, C.; Wedel, M.F.; Entling, M.H.; Nickel, H. Biodiversity in low-intensity pastures, straw meadows, and fallows of a fen area—A multitrophic comparison. Agric. Ecosyst. Environ. 2016, 219, 190–196. [Google Scholar] [CrossRef]
- Pierik, M.E.; Gusmeroli, F.; Della Marianna, G.; Tamburini, A.; Bocchi, S. Meadows species composition, biodiversity and forage value in an Alpine district: Relationships with environmental and dairy farm management variables. Agric. Ecosyst. Environ. 2017, 244, 14–21. [Google Scholar] [CrossRef]
- Ceballos, G.; Davidson, A.; List, R.; Pacheco, J.; Manzano-Fischer, P.; Santos-Barrera, G.; Cruzado, J. Rapid Decline of a Grassland System and Its Ecological and Conservation Implications. PLoS ONE 2010, 5, e8562. [Google Scholar] [CrossRef] [PubMed]
- Pruchniewicz, D. Abandonment of traditionally managed mesic mountain meadows affects plant species composition and diversity. Basic Appl. Ecol. 2017, 20, 10–18. [Google Scholar] [CrossRef]
- Tarolli, P.; Straffelini, E. Agriculture in Hilly and Mountainous Landscapes: Threats, Monitoring and Sustainable Management. Geogr. Sustain. 2020, 1, 70–76. [Google Scholar] [CrossRef]
- Körber-Grohne, U. Gramineen und Grünlandvegetation vom Neolithikum bis zum Mittelalter in Mitteleuropa. Bibl. Bot. 1990, 139, 1–105. [Google Scholar]
- Körber-Grohne, U. Urwiesen im Berg und Hügelland aus archäobotanischer Sicht. Diss. Bot. 1993, 196, 453–468. [Google Scholar]
- Gusmeroli, F. Prati, Pascoli e Paesaggio Alpino; SoZooAlp: San Michele all’Adige, Italy, 2012. [Google Scholar]
- Leuschner, C.; Ellenberg, H. Ecology of Central European Non-Forest Vegetation: Coastal to Alpine, Natural to Man-Made Habitats; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Bouton, Y.; Leys, B.; Ferrez, Y.; Manneville, V.; Mouly, A.; Greffier, B.; Hennequin, C.; Bouton, Y.; Prévost-Bouré, N.C.; Gillet, F. Towards the assessment of biodiversity and management practices in mountain pastures using diagnostic species? Ecol. Indic. 2019, 107, 105584. [Google Scholar] [CrossRef]
- Nordregio. Mountain Areas in Europe: Analysis of Mountain Areas in EU Member States, Acceding and Other European Countries. Commissioned Report by the European Commission; DG Regional Policy: Brussels, Belgium, 2004. [Google Scholar]
- Macdonald, D.; Crabtree, J.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Keenleyside, C.; Tucker, G.M. Farmland Abandonment in the EU: An Assessment of Trends and Prospects Report Prepared for WWF; Institute for European Environmental Policy: London, UK, 2010. [Google Scholar]
- Terres, J.M.; Nisini, L.; Anguiano, E. Assessing the Risk of Farmland Abandonment in the EU. Final Report EUR 25783EN; Joint Research Centre of the European Commission: Brussels, Belgium, 2013.
- Targetti, S.; Staglianò, N.; Messeri, A.; Argenti, G. A state-and-transition approach to alpine grasslands under abandonment. iForest Biogeosci. For. 2010, 3, 44–51. [Google Scholar] [CrossRef]
- Monteiro, A.; Fava, F.; Hiltbrunner, E.; Della Marianna, G.; Bocchi, S. Assessment of land cover changes and spatial drivers behind loss of permanent meadows in the lowlands of Italian Alps. Landsc. Urban Plan. 2011, 100, 287–294. [Google Scholar] [CrossRef]
- Cislaghi, A.; Giupponi, L.; Tamburini, A.; Giorgi, A.; Bischetti, G.B. The effects of mountain grazing abandonment on plant community, forage value and soil properties: Observations and field measurements in an alpine area. Catena 2019, 181, 104086. [Google Scholar] [CrossRef]
- Loidi, J. Dynamism in vegetation. Vegetation changes on a short time scale. In The Vegetation of the Iberian Peninsula; Loidi, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 81–99. [Google Scholar]
- Prach, K.; Walker, L.R. Differences between primary and secondary plant succession among biomes of the world. J. Ecol. 2018, 107, 510–516. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity †ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Niedrist, G.; Tasser, E.; Lüth, C.; Via, J.D.; Tappeiner, U. Plant diversity declines with recent land use changes in European Alps. Plant Ecol. 2009, 202, 195–210. [Google Scholar] [CrossRef]
- Chiesa, L.; Labella, G.; Giorgi, A.; Panseri, S.; Pavlovic, R.; Bonacci, S.; Arioli, F. The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution. Chemosphere 2016, 154, 482–490. [Google Scholar] [CrossRef]
- Lakner, S.; Zinngrebe, Y.; Koemle, D. Combining management plans and payment schemes for targeted grassland conservation within the Habitats Directive in Saxony, Eastern Germany. Land Use Policy 2020, 97, 104642. [Google Scholar] [CrossRef]
- Luoni, F.; Rossi, P.; Celada, C. Programmi di Sviluppo Rurale 2014–2020 Delle Regioni Lombardia e Piemonte e Biodiversità: Un Approccio Analitico. Lipu, WWF, Legambiente; FAI: Milan, Italy, 2018. [Google Scholar]
- Argenti, G.; Lombardi, G. The pasture-type approach for mountain pasture description and management. Ital. J. Agron. 2012, 7, 39. [Google Scholar] [CrossRef]
- Biondi, E. Phytosociology today: Methodological and conceptual evolution. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2011, 145, 19–29. [Google Scholar] [CrossRef]
- Dengler, J.; Chytry, M.; Ewald, J. Phytosociology; Elsevier BV: Amsterdam, The Netherlands, 2008; pp. 2767–2779. [Google Scholar]
- Pagliacci, F.; Pavone, P.; Russo, M.; Giorgi, A. Regional structural heterogeneity: Evidence and policy implications for RIS3 in macro-regional strategies. Reg. Stud. 2019, 54, 765–775. [Google Scholar] [CrossRef]
- Giupponi, L.; Giorgi, A. Mount Cavallo Botanical Path: A proposal for the valorization of an area of the Orobie Bergamasche Regional Park (Southern Alps). Eco. Mont 2017, 9, 5–15. [Google Scholar] [CrossRef]
- Giupponi, L.; Giorgi, A. A contribution to the knowledge of Linaria tonzigii Lona, a steno-endemic species of the Orobie Bergamasche Regional Park (Italian Alps). Eco. Mont 2019, 11, 16–24. [Google Scholar] [CrossRef]
- ISTAT—National Institute of Statistics. Bilancio Demografico Anno 2018. Available online: http://demo.istat.it/bilmens2018gen/index.html (accessed on 20 August 2020).
- RGDB—Regional Geographical Database. Geographical Database of Regione Lombardia. 2018. Available online: http://www.geoportale.regione.lombardia.it (accessed on 20 August 2020).
- Bergamo Province. Carta Geologica Della Provincia di Bergamo; Grafica Monti s.n.c.: Bergamo, Italy, 2002. [Google Scholar]
- Rivas-Martínez, S.; Penas, A.; Díaz, T.E. Biogeographic map of Europe. 2004. Available online: http://www.globalbioclimatics.org/form/maps.htm (accessed on 20 August 2020).
- Andreis, C. I distretti geobotanici. In I Tipi Forestali della Lombardia; Del Favero, R., Ed.; Cierre: Verona, Italy, 2002; pp. 36–40. [Google Scholar]
- Di Blasi, C.; Capotorti, G.; Copiz, R.; Guida, D.; Mollo, B.; Smiraglia, D.; Zavattero, L. Classification and mapping of the ecoregions of Italy. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2014, 148, 1255–1345. [Google Scholar] [CrossRef]
- Del Favero, R. I Tipi Forestali della Lombardia; Cierre: Verona, Italy, 2002. [Google Scholar]
- Verde, S.; Assini, S.; Andreis, C. Le serie di vegetazione della regione Lombardia. In La Vegetazione d’Italia; Blasi, C., Ed.; Palombi and Partner, S.r.l: Roma, Italy, 2010; pp. 181–203. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1964. [Google Scholar]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 2017. [Google Scholar]
- Canullo, R.; Allegrini, M.C.; Campetella, G. Reference field manual for vegetation surveys on the Conecofor Lii network, Italy (National Programme of Forest Ecosystems Control—Unece, ICP Forests). Braun-Blanquetia 2012, 48, 5–65. [Google Scholar]
- Biondi, E.; Blasi, C. Prodromo Della Vegetazione d’Italia. 2015. Available online: http://www.prodromo-vegetazione-italia.org (accessed on 20 August 2020).
- Landolt, E. Ökologische Zeigerwerte zur Schweizer Flora; Geobotanisch Institut ETH: Zurich, Switzerland, 1977. [Google Scholar]
- Landolt, E.; Bäumler, B.; Erhardt, A.; Hegg, O.; Klötzli, F.; Lämmle, R.W.; Nobis, M.; Rudmann-Maurer, K.; Schweingruber, F.H.; Theurillat, J.-P.; et al. Flora Indicative: Ecological Indicator Values and Biological Attributes of the Flora of Switzerland and the Alps; Haupt Verlag: Bern, Switzerland; Stuttgart, Germany; Wien, Austria, 2010. [Google Scholar]
- Tukey, J.W. On the Comparative Anatomy of Transformations. Ann. Math. Stat. 1957, 28, 602–632. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Stachurska-Swakon, A. Synanthropic communities with Rumex alpinus in the Tatra National Park (Western Carpathians). Scr. Fac. Rerum Nat. Ostrav. 2008, 186, 321–330. [Google Scholar]
- Schmid, R.; Aeschimann, D.; Lauber, K.; Moser, D.M.; Theurillat, J.-P.; Price, M. Flora Alpina: Atlas des 4500 Plantes Vascularies des Alpes. TAXON 2005, 54, 843. [Google Scholar] [CrossRef]
- Giupponi, L.; Pentimalli, D.; Manzo, A.; Panseri, S.; Giorgi, A. Effectiveness of fine root fingerprinting as a tool to identify plants of the Alps: Results of a preliminary study. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2017, 152, 464–473. [Google Scholar] [CrossRef]
- Mucina, L.; Grabherr, G.; Ellmauer, T.; Wallnöfer, S. Die Pfanzengesellschaften Österreichs; Gustav Fischer Verlag: Jena, Germany, 1993. [Google Scholar]
- Biondi, E.; Di Blasi, C.; Allegrezza, M.; Anzellotti, I.; Azzella, M.M.; Carli, E.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Facioni, L.; et al. Plant communities of Italy: The Vegetation Prodrome. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2014, 148, 728–814. [Google Scholar] [CrossRef]
- Pignatti, E.; Pignatti, S. Plant Life of the Dolomites; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Scotton, M.; Sicher, L.; Kasal, A. Semi-natural grasslands of the Non Valley (Eastern Italian Alps): Agronomic and environmental value of traditional and new Alpine hay-meadow types. Agric. Ecosyst. Environ. 2014, 197, 243–254. [Google Scholar] [CrossRef]
- Briemble, G.; Ellenberg, H. Zur Mahdverträglichkeit von Grünlandpflanzen. Möglichkeiten der praktischen Anwendung von Zeigerwerten. Nat. Landsch. 1994, 69, 139–147. [Google Scholar]
- Briemble, G.; Nitsche, S.; Nitsche, L. Nutzungswertzahlen für gefässpflanzen des grünlandes. In Biolflor–Eine Datenbank Mit Biologisch-Ökologischen Merkmalen zur Flora von Deutschland; Klotz, S., Kuhn, I., Figa, B., Durka, W., Eds.; Landwirtschaftsverlag: Zurich, Switzerland, 2002; pp. 203–225. [Google Scholar]
- Argenti, G.; Staglianò, N.; Bellini, E.; Messeri, A.; Targetti, S. Environmental and management drivers of alpine grassland vegetation types. Ital. J. Agron. 2020, 15, 156–164. [Google Scholar] [CrossRef]
- Rivas-Martinez, S. Notions on dynamic-catenal phytosociology as a basis of landscape science. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2005, 139, 135–144. [Google Scholar] [CrossRef]
- Van Der Maabel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Plant Ecol. 1979, 39, 97–114. [Google Scholar] [CrossRef]
- Van Der Maarel, E. Transformation of cover-abundance values for appropriate numerical treatment—Alternatives to the proposals by Podani. J. Veg. Sci. 2007, 18, 767–770. [Google Scholar] [CrossRef]
- Whittaker, R.H. Evolution and Measurement of Species Diversity. TAXON 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Häupler, H. Evenness Als Ausdruck der Vielfalt in der Vegetation; Cramer: Vaduz, Liechtenstein, 1982. [Google Scholar]
- Ewald, J. A critique for phytosociology. J. Veg. Sci. 2003, 14, 291–296. [Google Scholar] [CrossRef]
- Chytrý, M.; Tichý, L.; Hennekens, S.M.; Knollová, I.; Janssen, J.A.M.; Rodwell, J.S.; Peterka, T.; Marcenò, C.; Landucci, F.; Danihelka, J.; et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 2020, 1–28. [Google Scholar] [CrossRef]
- Rojo, M.P.R.; Font, X.; García-Mijangos, I.; Crespo, G.; Fernández-González, F. An expert system as an applied tool for the conservation of semi-natural grasslands on the Iberian Peninsula. Biodivers. Conserv. 2020, 29, 1977–1992. [Google Scholar] [CrossRef]
- Berauer, B.J.; Wilfahrt, P.A.; Reu, B.; Schuchardt, M.A.; Garcia-Franco, N.; Zistl-Schlingmann, M.; Dannenmann, M.; Kiese, R.; Kühnel, A.; Jentsch, A. Predicting forage quality of species-rich pasture grasslands using vis-NIRS to reveal effects of management intensity and climate change. Agric. Ecosyst. Environ. 2020, 296, 106929. [Google Scholar] [CrossRef]
- Gao, X.; Dong, S.; Li, S.; Xu, Y.; Liu, S.; Zhao, H.; Yeomans, J.; Li, Y.; Shen, H.; Wu, S.; et al. Using the random forest model and validated MODIS with the field spectrometer measurement promote the accuracy of estimating aboveground biomass and coverage of alpine grasslands on the Qinghai-Tibetan Plateau. Ecol. Indic. 2020, 112, 106114. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Dang, D.; Dou, H.; Xuan, X.; Liu, S.; Li, M.; Gong, J. A new method for grassland degradation monitoring by vegetation species composition using hyperspectral remote sensing. Ecol. Indic. 2020, 114, 106310. [Google Scholar] [CrossRef]
- Giorgi, A.; Scheurer, T. Alpine Resources: Assets for a Promising Future—Conclusions from the ForumAlpinum 2014. Mt. Res. Dev. 2015, 35, 414–415. [Google Scholar] [CrossRef]
Abundance/Dominance Indexes of Braun-Blanquet | Plant Coverage | Transformation Values of Abundance/Dominance Indexes |
---|---|---|
r | rare species in the relevés | 0.01% |
+ | <1% | 0.50% |
1 | 1%–5% | 3.00% |
2 | 6%–25% | 15.00% |
3 | 26%–50% | 37.50% |
4 | 51%–75% | 62.50% |
5 | 76%–100% | 87.50% |
Source of Variance | Mean Square | F4,43 | p | |
---|---|---|---|---|
T | 0.55 | 14.99 | <0.01 | * |
K | 0.71 | 7.91 | <0.01 | * |
L | 7.71 | 54.56 | <0.01 | * |
F | 0.11 | 1.73 | 0.16 | ns |
R | 0.03 | 0.23 | 0.91 | ns |
N | 1.06 | 4.67 | <0.01 | * |
H | 0.16 | 1.14 | 0.35 | ns |
D | 1.21 | 8.39 | <0.01 | * |
MV | 14.63 | 54.01 | <0.01 | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giupponi, L.; Leoni, V. VegeT: An Easy Tool to Classify and Facilitate the Management of Seminatural Grasslands and Dynamically Connected Vegetation of the Alps. Land 2020, 9, 473. https://doi.org/10.3390/land9120473
Giupponi L, Leoni V. VegeT: An Easy Tool to Classify and Facilitate the Management of Seminatural Grasslands and Dynamically Connected Vegetation of the Alps. Land. 2020; 9(12):473. https://doi.org/10.3390/land9120473
Chicago/Turabian StyleGiupponi, Luca, and Valeria Leoni. 2020. "VegeT: An Easy Tool to Classify and Facilitate the Management of Seminatural Grasslands and Dynamically Connected Vegetation of the Alps" Land 9, no. 12: 473. https://doi.org/10.3390/land9120473
APA StyleGiupponi, L., & Leoni, V. (2020). VegeT: An Easy Tool to Classify and Facilitate the Management of Seminatural Grasslands and Dynamically Connected Vegetation of the Alps. Land, 9(12), 473. https://doi.org/10.3390/land9120473