Operationalizing Vulnerability: Land System Dynamics in a Transfrontier Conservation Area
Abstract
:1. Introduction
1.1. Theoretical Framing
1.2. A Structural Equation Model of Vulnerability
2. Conceptual Approach and Methods
2.1. A Structural Model for Household Vulnerability
2.2. The Measurement Model
3. Illustration from a Motivating, Agripastoral Context
3.1. The Kavango–Zambezi Transboundary Dryland System
3.2. Testing Assumptions and Simulating Hypothesized Outcomes
4. Discussion
4.1. Vulnerability in the Agripastoral Context
4.2. Introducing Interventions, Assessing Leverage Points
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Verburg, P.H.; Erb, K.H.; Mertz, O.; Espindola, G. Land system science: Between global challenges and local realities. Curr. Opin. Environ. Sustain. 2013, 5, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; Dearing, J.A.; Dyke, J.G.; Leeuw, S.; van der Seitzinger, S.; Steffen, W.; Syvitski, J. Methods and approaches to modelling the Anthropocene. Glob. Environ. Chang. 2016, 39, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Seppelt, R.; Lautenbach, S.; Volk, M. Identifying trade-offs between ecosystem services, land use, and biodiversity: A plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 2013, 55, 458–463. [Google Scholar] [CrossRef]
- Nielsen, J.Ø.; de Bremond, A.; Roy Chowdhury, R.; Friis, C.; Metternicht, G.; Meyfroidt, P.; Munroe, D.; Pascual, U.; Thomson, A. Toward a normative land systems science. Curr. Opin. Environ. Sustain. 2019, 38, 1–6. [Google Scholar] [CrossRef]
- Luers, A.L.; Lobell, D.B.; Sklar, L.S.; Addams, C.L.; Matson, P.A. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob. Environ. Chang. 2003, 13, 255–267. [Google Scholar] [CrossRef]
- Turner, B.L.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Hovelsrud-Broda, G.K.; Kasperson, J.X.; Kasperson, R.E.; Luers, A.; et al. Illustrating the coupled human-environment system for vulnerability analysis: Three case studies. Proc. Natl. Acad. Sci. USA 2003, 100, 8080–8085. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.; Leichenko, R.; Kelkar, U.; Venema, H.; Aandahl, G.; Tompkins, H.; Javed, A.; Bhadwal, S.; Barg, S.; Nygaard, L.; et al. Mapping vulnerability to multiple stressors: Climate change and globalization in India. Glob. Environ. Chang. 2004, 14, 303–313. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Eakin, H.; Luers, A.L. Assessing the vulnerability of social-environmental systems. Annu. Rev. Environ. Resour. 2006, 31, 365–394. [Google Scholar] [CrossRef]
- Hinkel, J. Indicators of vulnerability and adaptive capacity: Towards a clarification of the science-policy interface. Glob. Environ. Chang. 2011, 21, 198–208. [Google Scholar] [CrossRef]
- Birkmann, J.; Cardona, O.D.; Carreño, M.L.; Barbat, A.H.; Pelling, M.; Schneiderbauer, S.; Kienberger, S.; Keiler, M.; Alexander, D.; Zeil, P.; et al. Framing vulnerability, risk and societal responses: The MOVE framework. Nat. Hazards 2013, 67, 193–211. [Google Scholar] [CrossRef]
- Blaikie, P.; Terry, C.; Ian, D.; Ben, W. At Risk: Natural hazards, people’s vulnerability, and disasters. Hum. Ecol. 1996, 24, 141–145. [Google Scholar]
- Kasperson, R.E.; Kasperson, J.X. Climate Change, Vulnerability and Social Justice; Stockholm Environment Institute: Stockholm, Sweden, 2001; Volume 26, pp. 1–18. [Google Scholar]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Leichenko, R.; O’Brien, K. Environmental Change and Globalization; Oxford University Press: Oxford, UK, 2008; ISBN 9780195177329. [Google Scholar]
- Young, O.R.; Berkhout, F.; Gallopin, G.C.; Janssen, M.A.; Ostrom, E.; van der Leeuw, S. The globalization of socio-ecological systems: An agenda for scientific research. Glob. Environ. Chang. 2006, 16, 304–316. [Google Scholar] [CrossRef]
- Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, L.; Kropp, J.P. Linking components of vulnerability in theoretic frameworks and case studies. Sustain. Sci. 2013, 8, 1–9. [Google Scholar] [CrossRef]
- Wisner, B.; Luce, H.R. Disaster vulnerability: Scale, power and daily life. GeoJournal 1993, 30, 127–140. [Google Scholar] [CrossRef]
- Gunderson, L. Ecological and human community resilience in response to natural disasters. Ecol. Soc. 2010, 15, 29. [Google Scholar] [CrossRef]
- Sen, A. Concepts of Poverty. In Poverty and Famines: An Essay on Entitlement and Deprivation; Oxford University Press: Oxford, UK, 1981; ISBN 9780198284635. [Google Scholar]
- Scoones, I. Sustainable rural livelihoods: A framework for analysis. IDS Work. Pap. 1998, 72, 22. [Google Scholar]
- Peduzzi, P.; Dao, H.; Herold, C.; Mouton, F. Assessing global exposure and vulnerability towards natural hazards: The disaster risk index. Nat. Hazards Earth Syst. Sci. 2009, 9, 1149–1159. [Google Scholar] [CrossRef]
- Thomalla, F.; Downing, T.; Spanger-Siegfried, E.; Han, G.; Rockström, J. Reducing hazard vulnerability: Towards a common approach between disaster risk reduction and climate adaptation. Disasters 2006, 30, 39–48. [Google Scholar] [CrossRef] [PubMed]
- IPCC TAR IPCC. Third Assessment Report (TAR); IPCC: Geneva, Switzerland, 2001; p. 995. [Google Scholar]
- IPCC IPCC. Fourth Assessment Report (AR4); IPCC: Geneva, Switzerland, 2007; Volume 1, p. 976. [Google Scholar]
- IPCC IPCC. Fifth Assessment Report (AR5); IPCC: Geneva, Switzerland, 2013; pp. 10–12. [Google Scholar]
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk: Natural Hazards, People’ s Vulnerability and Disasters, 2nd ed.; Routledge: Abingdon, UK, 2003; p. 134. [Google Scholar]
- Metcalf, S.J.; van Putten, E.I.; Frusher, S.; Marshall, N.A.; Tull, M.; Caputi, N.; Haward, M.; Hobday, A.J.; Holbrook, N.J.; Jennings, S.M.; et al. Measuring the vulnerability of marine social-ecological systems: A prerequisite for the identification of climate change adaptations. Ecol. Soc. 2015, 20, 35. [Google Scholar] [CrossRef]
- Turner, B.L.; Janetos, A.C.; Verburg, P.H.; Murray, A.T. Land system architecture: Using land systems to adapt and mitigate global environmental change. Glob. Environ. Chang. 2013, 23, 395–397. [Google Scholar] [CrossRef]
- Fraser, E.D.G.; Dougill, A.J.; Hubacek, K.; Quinn, C.H.; Sendzimir, J.; Termansen, M. Assessing vulnerability to climate change in dryland livelihood systems: Conceptual challenges and interdisciplinary solutions. Ecol. Soc. 2011, 16, 1. [Google Scholar] [CrossRef]
- Walker, B.; Carpenter, S.; Anderies, J.; Abel, N.; Cumming, G.; Janssen, M.; Lebel, L.; Norberg, J.; Peterson, G.D.; Pritchard, R. Resilience management in social-ecological systems: A working hypothesis for a participatory approach. Ecol. Soc. 2002, 6, 14. [Google Scholar] [CrossRef]
- Tanner, T.; Lewis, D.; Wrathall, D.; Bronen, R.; Cradock-Henry, N.; Huq, S.; Lawless, C.; Nawrotzki, R.; Prasad, V.; Rahman, M.A.; et al. Livelihood resilience in the face of climate change. Nat. Clim. Chang. 2014, 5, 23–26. [Google Scholar] [CrossRef]
- Leichenko, R.M.; O’Brien, K.L. The dynamics of rural vulnerability to global change: The case of southern Africa. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 1–18. [Google Scholar] [CrossRef]
- Hoyle, R.H. Handbook of Structural Equation Modeling; Guilford Press: New York, NY, USA, 2012. [Google Scholar]
- Gerlitz, J.Y.; Macchi, M.; Brooks, N.; Pandey, R.; Banerjee, S.; Jha, S.K. The multidimensional livelihood vulnerability index–an instrument to measure livelihood vulnerability to change in the Hindu Kush Himalayas. Clim. Dev. 2017, 9, 124–140. [Google Scholar] [CrossRef]
- Asah, S.T. Empirical social-ecological system analysis: From theoretical framework to latent variable structural equation model. Environ. Manag. 2008, 42, 1077–1090. [Google Scholar] [CrossRef]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling, 4th ed.; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; Guilford Press: New York, NY, USA, 2011; ISBN 978-1-60623-877-6 978-1-60623-876-9. [Google Scholar]
- Lei, P.W.; Wu, Q. An NCME instructional module on: Introduction to structural equation modeling: Issues and practical considerations. Educ. Meas. Issues Pract. 2007, 26, 33–43. [Google Scholar] [CrossRef]
- Roberts, D. The role of households in sustaining rural economies: A structural path analysis. Eur. Rev. Agric. Econ. 2005, 32, 393–420. [Google Scholar] [CrossRef]
- Zakour, M.J.; Gillespie, D.F. Community Disaster Vulnerability: Theory, Research, and Practice; Springer: Berlin, Germany, 2013; ISBN 978-1461457367. [Google Scholar]
- Dang, H.L.; Li, E.; Nuberg, I.; Bruwer, J. Understanding farmers’ adaptation intention to climate change: A structural equation modelling study in the Mekong Delta, Vietnam. Environ. Sci. Policy 2014, 41, 11–22. [Google Scholar] [CrossRef]
- Grootaert, C.; Kanbur, R.; Oh, G.T. The dynamics of welfare gains and losses: An African case study. J. Dev. Stud. 1997, 33, 635–657. [Google Scholar] [CrossRef]
- Brown, D.G.; Verburg, P.H.; Pontius, R.G.; Lange, M.D. Opportunities to improve impact, integration, and evaluation of land change models. Curr. Opin. Environ. Sustain. 2013, 5, 452–457. [Google Scholar] [CrossRef]
- Wirth, R.J.; Edwards, M.C. Item factor analysis: Current approaches and future directions. Psychol. Methods 2007, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Mîndrilă, D. Maximum likelihood (ML) and diagonally weighted least squares (DWLS) estimation procedures: A comparison of estimation bias with ordinal and multivariate non-normal data. Int. J. Digit. Soc. 2016, 1, 60–66. [Google Scholar] [CrossRef]
- Palomo, J.; Dunson, D.B.; Bollen, K. Bayesian structural equation modeling. In Handbook of Latent Variable and Related Models; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780444520449. [Google Scholar]
- DiStefano, C. The impact of categorization with confirmatory factor analysis. Struct. Equ. Model. 2002, 9, 327–346. [Google Scholar] [CrossRef]
- Munafò, M.R.; Nosek, B.A.; Bishop, D.V.M.; Button, K.S.; Chambers, C.D.; Percie Du Sert, N.; Simonsohn, U.; Wagenmakers, E.J.; Ware, J.J.; Ioannidis, J.P.A. A manifesto for reproducible science. Nat. Hum. Behav. 2017, 1, 21. [Google Scholar] [CrossRef]
- Munthali, S.M.; Smart, N.; Siamudaala, V.; Mtsambiwa, M.; Harvie, E. Integration of ecological and socioeconomic factors in securing wildlife dispersal corridors in the Kavango-Zambezi transfrontier conservation area, Southern Africa. In Selected Studies in Biodiversity; Books on Demand: Norderstedt, Germany, 2018. [Google Scholar]
- WorldPop, Global High Resolution Population Denominators Project. Available online: https://www.worldpop.org/ (accessed on 2 July 2019).
- Gibbes, C.; Cassidy, L.; Hartter, J.; Southworth, J. The monitoring of land-cover change and management across gradient landscapes in Africa. In Human-Environment Interactions: Current and Future Directions; Springer: Dordrecht, The Netherlands, 2013; pp. 165–209. ISBN 9789400747807. [Google Scholar]
- Gaughan, A.E.; Waylen, P.R. Spatial and temporal precipitation variability in the Okavango-Kwando-Zambezi catchment, southern Africa. J. Arid Environ. 2012, 82, 19–30. [Google Scholar] [CrossRef]
- Pricope, N.G.; Binford, M.W. A spatio-temporal analysis of fire recurrence and extent for semi-arid savanna ecosystems in southern Africa using moderate-resolution satellite imagery. J. Environ. Manag. 2012, 100, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, A.E.; Stevens, F.R.; Gibbes, C.; Southworth, J.; Binford, M.W. Linking vegetation response to seasonal precipitation in the Okavango-Kwando-Zambezi catchment of southern Africa. Int. J. Remote Sens. 2012, 33, 6783–6804. [Google Scholar] [CrossRef]
- Archibald, S.; Scholes, R.J. Leaf green-up in a semi-arid African savanna—Separating tree and grass responses to environmental cues. J. Veg. Sci. 2007, 18, 583. [Google Scholar]
- Sankaran, M.; Hanan, N.P.; Scholes, R.J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le Roux, X.; Ludwig, F.; et al. Determinants of woody cover in African savannas. Nature 2005, 438, 846. [Google Scholar] [CrossRef] [PubMed]
- Pricope, N.G.; Gaughan, A.E.; All, J.D.; Binford, M.W.; Rutina, L.P. Spatio-temporal analysis of vegetation dynamics in relation to shifting inundation and fire regimes: Disentangling environmental variability from land management decisions in a southern african transboundary watershed. Land 2015, 4, 627–655. [Google Scholar] [CrossRef]
- Cumming, D.H.M. Large Scale Conservation Planning and Priorities for the Kavango-Zambezi Transfrontier Conservation Area; Conservation International: Arlington, VA, USA, 2008. [Google Scholar]
- Carney, D.; Drinkwater, M.; Neefjes, K.; Rusinow, T.; Wanmali, S.; Singh, N. Livelihoods Approaches Compared; Department for International Development (DFID): London, UK, 1999; pp. 1–19. [Google Scholar]
- Carney, D. Sustainable livelihoods approaches: Progress and possibilities for change. Secretary 2003, 2008, 67. [Google Scholar]
- Adger, W.N.; Brooks, N.; Bentham, G.; Agnew, M. New indicators of vulnerability and adaptive capacity. Change 2004, 5, 128. [Google Scholar]
- Vincent, K. Uncertainty in adaptive capacity and the importance of scale. Glob. Environ. Chang. 2007, 17, 12–24. [Google Scholar] [CrossRef]
- Sallu, S.M.; Twyman, C.; Stringer, L.C. Resilient or vulnerable livelihoods? assessing livelihood dynamics and trajectories in rural Botswana. Ecol. Soc. 2010, 15, 3. [Google Scholar] [CrossRef]
- Goldstein, H.; McDonald, R.P. A general model for the analysis of multilevel data. Psychometrika 1988, 3, 455–467. [Google Scholar] [CrossRef]
- Muthén, B. Moments of the censored and truncated bivariate normal distribution. Br. J. Math. Stat. Psychol. 1990, 43, 131–143. [Google Scholar] [CrossRef]
- Wolf, E.J.; Harrington, K.M.; Clark, S.L.; Miller, M.W. Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. Educ. Psychol. Meas. 2013, 73, 913–934. [Google Scholar] [CrossRef] [PubMed]
- Kanapaux, W.; Child, B. Livelihood activities in a Namibian wildlife conservancy: A case study of variation within a CBNRM programme. ORYX 2011, 45, 365–372. [Google Scholar] [CrossRef]
- Andersson, J.A.; de Garine-Wichatitsky, M.; Cumming, D.H.M.; Dzingirai, V.; Giller, K.E. Transfrontier Conservation Areas: People Living on the Edge; Taylor & Francis: Abingdon, UK, 2017; ISBN 9781351376747. [Google Scholar]
- Munthali, S.M. Transfrontier conservation areas: Integrating biodiversity and poverty alleviation in Southern Africa. Nat. Resour. Forum 2007, 31, 51–60. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Fawcett, D.; Pearce, T.; Ford, J.D.; Archer, L. Operationalizing longitudinal approaches to climate change vulnerability assessment. Glob. Environ. Chang. 2017, 45, 79–88. [Google Scholar] [CrossRef]
- Grace, J.B.; Anderson, T.M.; Olff, H.; Scheiner, S.M. On the specification of structural equation models for ecological systems. Ecol. Monogr. 2010, 80, 67–87. [Google Scholar] [CrossRef] [Green Version]
- Marshall, N.A.; Tobin, R.C.; Marshall, P.A.; Gooch, M.; Hobday, A.J. Social vulnerability of marine resource users to extreme weather events. Ecosystems 2013, 16, 797–809. [Google Scholar] [CrossRef]
- Pandey, R.; Jha, S.K.; Alatalo, J.M.; Archie, K.M.; Gupta, A.K. Sustainable livelihood framework-based indicators for assessing climate change vulnerability and adaptation for Himalayan communities. Ecol. Indic. 2017, 79, 338–346. [Google Scholar] [CrossRef]
Indicator For | Name | Data Source | Quantified As |
---|---|---|---|
Vulnerability | # Mo. Food Insecure Last Yr. | HH Survey | Numeric, continuous between 1–12 |
Vulnerability | # Mo. Food Insecure In Average Yr. | HH Survey | Numeric, continuous between 1–12 |
Vulnerability | Current Yr. Food Cat. | HH Survey | Ordered categorical, 1–10 |
Sensitivity | Crop Yields | HH Survey | Numeric, continuous, bounded at 0 kg/ha, quantified across all crop types |
Sensitivity | Grazer Yields | HH Survey | Numeric, continuous, bounded at 0 measured in offspring per unit livestock |
Sensitivity | Total Resources Gathered | HH Survey | Numeric, continuous, bounded at 0 kg |
Adapt. Cap. | Prop. Income From Welfare | HH Survey | Calculated as a proportion, assumed to be non-zero for nearly all of the population, and a distribution between 0–1 |
Adapt. Cap. | # of Healthy HH Workers | HH Survey | Summarized as the number of HH members capable of working a majority of the week |
Adapt. Cap. | Highest Education of Any HH Member | HH Survey | Ordered categorical, summarized by the level of education by country |
Adapt. Cap. | Durable Assets Index | HH Survey | Numeric, continuous, scaled to 0–1, calculated as a composite index from a host of questions regarding ownership of durable assets |
Adapt. Cap. | Social Connection Index | HH Survey | Numeric, continuous, scaled to 0–1, calculated as a composite index from a host of questions regarding participation in community and social groups/committees, etc. |
Exposure | Hectares Cropped | HH Survey | Numeric, continuous, bounded at 0 |
Exposure | # of Grazers | HH Survey | Numeric, continuous, bounded at 0 |
Exposure | # of Resources Types Gathered | HH Survey | Numeric, continuous, bounded at 0 |
Pred. of Exposure | Rainy Season Length | Remotely Sensed | Numeric, continuous, estimated from modeled, satellite supplemented pentadal rainfall estimates, and associated with a household by averaging to a HH buffer |
Pred. of Exposure | Distance to Floodplain Edge | Remotely Sensed | Numeric, continuous, estimated from satellite-derived floodplain delineation, and associated with a household by averaging to a HH buffer |
Pred. of Exposure | Median Dry Season NDVI | Remotely Sensed | Numeric, continuous, and constitutes and estimate of dry-season vegetation productivity, a proxy for agropastoral potential, associated with a household by averaging to a HH buffer. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaughan, A.E.; Stevens, F.R.; Pricope, N.G.; Hartter, J.; Cassidy, L.; Salerno, J. Operationalizing Vulnerability: Land System Dynamics in a Transfrontier Conservation Area. Land 2019, 8, 111. https://doi.org/10.3390/land8070111
Gaughan AE, Stevens FR, Pricope NG, Hartter J, Cassidy L, Salerno J. Operationalizing Vulnerability: Land System Dynamics in a Transfrontier Conservation Area. Land. 2019; 8(7):111. https://doi.org/10.3390/land8070111
Chicago/Turabian StyleGaughan, Andrea Elizabeth, Forrest Robert Stevens, Narcisa Gabriela Pricope, Joel Hartter, Lin Cassidy, and Jonathan Salerno. 2019. "Operationalizing Vulnerability: Land System Dynamics in a Transfrontier Conservation Area" Land 8, no. 7: 111. https://doi.org/10.3390/land8070111