How Does Land Misallocation Weaken Economic Resilience? Evidence from China
Abstract
1. Introduction
2. Theoretical Model and Analysis
2.1. Theoretical Analysis of the Relationship Between Land Misallocation and Economic Resilience
2.2. The Underlying Mechanism of Land Misallocation on Economic Resilience
3. Research Design and Methodology
3.1. Key Variable Operationalization
3.1.1. Operationalization of Land Misallocation
3.1.2. Operationalization of Economic Resilience
3.2. Research Methods
3.2.1. Spatial Econometric Model
3.2.2. Mediation Model
4. Empirical Analysis
4.1. Baseline Tests
4.2. Robustness Tests
4.2.1. Endogeneity Treatment
4.2.2. Variable Refinement
4.3. Empirical Examination of the Underlying Mechanism
5. Conclusions and Policy Implications
- (1).
- Land misallocation significantly inhibits regional economic resilience. The research finds that the “Price Scissors Gap” strategy employed by local governments—supplying industrial land at lower prices and commercial land at higher prices—leads to land factor misallocation, thereby reducing regional economic resilience. Simultaneously, the negative impact of land misallocation on regional economic resilience exhibits spatial spillover effects.
- (2).
- Land misallocation indirectly weakens economic resilience by hindering technological progress. Using invention patents as the core proxy for regional technological level and employing the mediation model for empirical testing reveals that land misallocation significantly inhibits regional technological progress and further weakens economic resilience. This indicates that land misallocation, by “crowding out” efficient enterprises and delaying the exit of inefficient ones, hinders the flow of production factors to high-productivity sectors, ultimately reducing the region’s capacity to cope with shocks.
- (3).
- The agglomeration effect induced by land misallocation is characterized by “diseconomies of scale.” While the policy of low-price industrial land supply can foster initial clustering, empirical results confirm that this price misallocation enables the survival of low-efficiency enterprises, creating a pattern of “ineffective agglomeration.” This ultimately suppresses TFP and hinders the upgrading of the industrial structure, which is detrimental to the enhancement of long-term economic resilience.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| City Scale | Population | Distribution | Region | Distribution |
|---|---|---|---|---|
| Small City | ≤0.5 million | 3 | Eastern Region | 59 (61.4%) |
| Medium-sized City | 0.5–1 million | 10 | ||
| Type II Large City | 1–3 million | 50 | Central Region | 19 (19.7%) |
| Type I Large City | 3–5 million | 14 | ||
| Megacity | 5–10 million | 11 | Western Region | 17 (17.7%) |
| Super Megacity | >10 million | 7 |
Appendix B
| Variables | (1) SEM | (2) SARM | (3) SDM | (3) Han-Phillips GMM |
|---|---|---|---|---|
| L.RES | −0.093 *** (0.034) | |||
| LMC | −0.008 * (0.004) | −0.006 *** (0.002) | −0.006 *** (0.002) | −0.010 * (0.009) |
| Open | −0.004 (0.008) | −0.003 (0.003) | −0.001 (0.003) | 0.003 (0.014) |
| Urban | 1.736 * (7.663) | 1.796 * (4.983) | 1.545 * (5.239) | 10.505 *** (14.471) |
| lnIncome | 0.431 (0.366) | 0.504 ** (0.261) | −0.194 (2.645) | 1.921 (2.848) |
| lnMarket | −0.462 ** (0.208) | −0.454 ** (0.193) | −0.459 *** (0.170) | −3.432 *** (1.309) |
| W. RES | 0.254 ** (0.111) | 0.247 ** (0.113) | ||
| W. LMC | 0.021 * (0.016) | 0.001 (0.000) | ||
| Log-L | −219.961 | −224.368 | −198.054 | −199.082 |
| R2 | 0.354 | 0.429 | 0.573 | |
| Sargan [P] | 95.457 [0.440] |
References
- Peneder, M. Industrial Structure and Aggregate Growth. Struct. Change Econ. Dyn. 2003, 14, 427–448. [Google Scholar] [CrossRef]
- Restuccia, D.; Rogerson, R. Policy Distortions and Aggregate Productivity with Heterogeneous Establishments. Rev. Econ. Dyn. 2008, 11, 707–720. [Google Scholar] [CrossRef]
- Hsieh, C.; Klenow, P. Misallocation and Manufacturing TFP in China and India. Q. J. Econ. 2009, 4, 1403–1448. [Google Scholar] [CrossRef]
- Adamopoulos, T.; Restuccia, D. The Size Distribution of Farms and International Productivity Differences. Am. Econ. Rev. 2014, 104, 1667–1697. [Google Scholar] [CrossRef]
- Adamopoulos, T.; Restuccia, D. Land Reform and Productivity: A Quantitative Analysis with Micro Data. Am. Econ. J. Macroecon. 2020, 12, 1–39. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, X. The Impact of Industrial Land Misallocation on Sustainable Urban Development: Mechanisms and Spatial Spillover Effects. Land 2025, 14, 1976. [Google Scholar] [CrossRef]
- Cheng, K.; Zhao, J.; Zhang, Z. Industrial Land Efficiency, Institutional Friction and Misallocation: Evidence from China. Appl. Econ. 2025, 6, 1–17. [Google Scholar] [CrossRef]
- Melitz, M. The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity. Econometrica 2003, 71, 1695–1725. [Google Scholar] [CrossRef]
- Lu, S.; Wang, H. Local Economic Structure, Regional Competition and the Formation of Industrial Land Price in China: Combining Evidence from Process Tracing with Quantitative Results. Land Use Policy 2020, 97, 104704. [Google Scholar] [CrossRef]
- Peng, S.; Wang, J.; Sun, H.; Guo, Z. How Does the Spatial Misallocation of Land Resources Affect Urban Industrial Transformation and Upgrading? Evidence from China. Land 2022, 11, 1630. [Google Scholar] [CrossRef]
- Chen, C.; Restuccia, D.; Santaeulàlia-Llopis, R. Land Misallocation and Productivity. Am. Econ. J. Macroecon. 2023, 15, 441–465. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P.; Gardiner, B.; Tyler, P. How Regions React to Recessions: Resilience and the Role of Economic Structure. Reg. Stud. 2016, 50, 561–585. [Google Scholar] [CrossRef]
- Trippl, M.; Fastenrath, S.; Isaksen, A. Rethinking Regional Economic Resilience: Preconditions and Processes Shaping Transformative Resilience. Eur. Urban Reg. Stud. 2024, 31, 101–115. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Liu, Y.; Qian, J. Does the Land Price Subsidy Still Exist Against the Background of Market Reform of Industrial Land? Land 2021, 10, 963. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. How Does Land Subsidy Policy Affect Economic Performance? Theory and Evidence from China. Appl. Econ. 2024, 57, 9313–9327. [Google Scholar] [CrossRef]
- Loupias, C.; Wigniolle, B. Population, Land, and Growth. Econ. Model. 2013, 31, 223–237. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, F.; Hu, L. Mechanisms of How Private Equity Drives Industrial Upgrade: An Empirical Study Based on China’s Panel Data. Sustainability 2023, 15, 2570. [Google Scholar] [CrossRef]
- Olley, G.S.; Pakes, A. The Dynamics of Productivity in the Telecommunications Equipment Industry. Econometrica 1996, 64, 1263–1297. [Google Scholar] [CrossRef]
- Hansen, G.D.; Prescott, E.C. Malthus to Solow. Am. Econ. Rev. 2002, 92, 1205–1217. [Google Scholar] [CrossRef]
- Han, F.; Huang, M. Land Misallocation and Carbon Emissions: Evidence from China. Land 2022, 11, 1189. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Skitmore, M.; Song, Y.; Hui, E.C. Industrial Land Price and Its Impact on Urban Growth: A Chinese Case Study. Land Use Policy 2014, 36, 199–209. [Google Scholar] [CrossRef]
- Brakman, S.; Garretsen, H.; Van Marrewijk, C. Regional Resilience across Europe: On Urbanization and the Initial Impact of the Great Recession. Camb. J. Reg. Econ. Soc. 2015, 8, 309–312. [Google Scholar] [CrossRef]
- Martin, R. Regional Economic Resilience, Hysteresis and Recessionary Shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, W. Regional Economic Resilience in China: Measurement and Determinants. Reg. Stud. 2021, 55, 1228–1239. [Google Scholar] [CrossRef]
- Lu, R.; Yang, Z. Analysis on the Structure and Economic Resilience Capacity of China’s Regional Economic Network. Appl. Econ. 2024, 56, 3920–3938. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Krisztin, T.; Piribauer, P. A Bayesian Approach for the Estimation of Weight Matrices in Spatial Autoregressive Models. Spat. Econ. Anal. 2023, 18, 44–63. [Google Scholar] [CrossRef]
- Heredia, J.; Castillo-Vergara, M.; Geldes, C.; Gamarra, F.M.C.; Flores, A.; Heredia, W. How Do Digital Capabilities Affect Firm Performance? The Mediating Role of Technological Capabilities in the “New Normal”. J. Innov. Knowl. 2022, 7, 100171. [Google Scholar] [CrossRef]
- Lesage, J.P.; Pace, R.K. The Biggest Myth in Spatial Econometrics. Econometrics 2014, 2, 217–249. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Han, C.; Phillips, P.C. GMM with Many Moment Conditions. Econometrica 2006, 74, 147–192. [Google Scholar] [CrossRef]
- Qi, Y.; Lin, R.; Zhu, D. Impact of Rising Industrial Land Prices on Land-use Efficiency in China: A Study of Underpriced Land Price. Land Use Policy 2025, 151, 107490. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, L.; Song, X.; Zhang, Q.; Zhang, X. Spatial-temporal Coupling Characteristics and Interaction Effects of Economic Resilience and People’s Livelihoods and Well-being: An Analysis of 78 Cities in the Yellow River Basin. Sustain. Cities Soc. 2024, 112, 105638. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, Y.; Cao, H. The FDI-spawned Technological Spillover Effects on Innovation Quality of Local Enterprises: Evidence from Industrial Firms and the Patents in China. Appl. Econ. 2023, 55, 5800–5815. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Zhou, P. Role of digitalization in energy storage technological innovation: Evidence from China. Renew. Sustain. Energy Rev. 2023, 171, 113014. [Google Scholar] [CrossRef]
| Test Method | Test Statistic | Statistic Value | p-Value |
|---|---|---|---|
| LM Test | Moran’s I | 0.530 | 0.406 |
| Robust LM-lag | 0.859 *** | 0.004 | |
| Robust LM-error | 0.772 *** | 0.007 | |
| LR Test | LR-SDM/SEM | 3.56 ** | 0.045 |
| LR-SDM/SARM | 3.48 * | 0.068 | |
| Wald Test | Wald-SDM/SEM | 3.48 *** | 0.029 |
| Wald-SDM/SARM | 3.54 ** | 0.047 |
| Variables | (1) OLS | (2) SEM | (3) SARM | (4) SDM | (5) Dynamic-SDM |
|---|---|---|---|---|---|
| L.RES | −0.141 ** (0.132) | ||||
| LMC | −0.006 *** (0.002) | −0.006 * (0.005) | −0.007 *** (0.004) | −0.005 *** (0.004) | −0.008 ** (0.004) |
| Open | −0.003 (0.003) | −0.003 (0.004) | −0.003 (0.003) | −0.001 (0.005) | 0.003 (0.014) |
| Urban | 1.676 * (1.386) | 1.717 * (1.383) | 5.422 * (4.971) | 1.704 * (1.387) | 4.281 (4.119) |
| lnIncome | 0.791 *** (0.224) | 0.733 (0.580) | 2.603 ** (1.088) | −0.258 (0.677) | 1.594 ** (1.198) |
| lnMarket | −0.536 *** (0.208) | −0.530 ** (1.122) | −2.175 *** (0.937) | −0.509 *** (0.192) | −2.312 *** (1.310) |
| W. RES | 0.047 ** (0.040) | 0.049 ** (0.072) | 0.041 ** (0.040) | ||
| W. LMC | 0.014 * (0.013) | 0.017 * (0.020) | |||
| Log-L | −225.821 | −220.653 | −194.042 | −210.908 | |
| R2 | 0.112 | 0.346 | 0.392 | 0.504 | 0.496 |
| Variables | Direct Effect | Indirect Effect | Total Effect |
|---|---|---|---|
| LMC | −0.005 *** (0.004) | 0.014 * (0.014) | −0.008 *** (0.005) |
| Open | −0.001 (0.002) | −0.004 (0.014) | −0.003 (0.015) |
| Urban | 1.855 ** (1.334) | 0.352 (0.566) | 2.207 * (1.691) |
| lnIncome | 0.237 (0.683) | 1.435 ** (1.045) | 1.673 ** (1.131) |
| lnMarket | −0.518 *** (0.188) | −0.421 ** (0.172) | −0.939 ** (0.711) |
| Variables | (1) SYS-GMM | (2) Han-Phillips GMM | (3) IV 2SLS |
|---|---|---|---|
| L.RES | −0.094 *** (0.002) | −0.088 *** (0.033) | −0.074 ** (0.029) |
| LMC | −0.017 ** (0.013) | −0.009 * (0.008) | −0.004 ** (0.003) |
| IV (the first-stage) | −0.209 ** (0.110) | ||
| Open | −0.005 (0.003) | 0.002 (0.014) | −0.001 (0.004) |
| Urban | 10.052 *** (2.141) | 8.880 *** (13.611) | 1.814 * (1.097) |
| lnIncome | 2.308 *** (0.481) | 2.260 (2.517) | 0.260 ** (0.073) |
| lnMarket | −3.577 *** (0.134) | −3.466 *** (1.235) | −0.510 *** (0.192) |
| W. LMC | 0.001 (0.000) | −0.010 *** (0.008) | |
| R2 | 0.418 | ||
| LM/Wald | 70.598 ***/115.455 ** | ||
| Sargan [P] | 37.333 [0.318] | 92.800 [0.211] |
| Variables | Resilience of the Secondary Industry | Resilience of the Tertiary Industry | ||
|---|---|---|---|---|
| (1) OLS | (2) SDM | (3) OLS | (4) SDM | |
| LMC | −0.005 *** (0.002) | −0.007 ** (0.004) | −0.006 *** (0.002) | −0.008 * (0.004) |
| Open | −0.002 (0.003) | −0.003 (0.005) | −0.013 (0.025) | −0.002 (0.004) |
| Urban | 1.850 * (1.020) | 5.015 * (4.916) | 2.011 * (1.165) | 4.556 * (4.038) |
| lnIncome | 0.698 *** (0.236) | 0.976 * (0.771) | 0.780 *** (0.235) | 1.277 * (1.079) |
| lnMarket | −0.507 ** (0.202) | −2.378 ** (1.080) | −0.496 ** (0.204) | −2.254 ** (1.023) |
| W. RES | 0.031 * (0.027) | 0.030 ** (0.051) | ||
| W. LMC | 0.018 * (0.013) | 0.019 ** (0.013) | ||
| Log-L | −217.574 | −216.615 | ||
| R2 | 0.315 | 0.578 | 0.353 | 0.493 |
| Variables | (1) RES | (2) lnPatent | (3) RES |
|---|---|---|---|
| LMC | −0.005 *** (0.004) | −0.002 * (0.000) | −0.006 *** (0.002) |
| lnPatent | 0.633 (0.945) | ||
| Open | −0.001 (0.005) | 0.002 ** (0.001) | −0.002 (0.094) |
| Urban | 1.704 * (1.387) | 3.093 *** (1.052) | 1.628 * (1.012) |
| lnIncome | −0.258 (0.677) | 1.639 *** (0.288) | 0.282 (0.306) |
| lnMarket | −0.509 *** (0.192) | 0.054 *** (0.156) | −0.585 *** (0.204) |
| W. RES | 0.049 ** (0.072) | 0.047 ** (0.039) | |
| W. lnPatent | 0.358 *** (0.069) | −0.395 (0.599) | |
| W. LMC | 0.014 * (0.013) | 0.752 ** (0.407) | 0.014 * (0.012) |
| R2 | 0.504 | 0.731 | 0.312 |
| Sobel Z [p Value] | 0.652 [0.514] |
| Variables | (1) RES | (3) lnInvention | (3) RES | (4) lnDesign | (3) RES |
|---|---|---|---|---|---|
| LMC | −0.005 *** (0.004) | −0.004 * (0.004) | −0.007 *** (0.002) | 0.002 (0.001) | −0.005 *** (0.002) |
| lnInvention | 0.063 ** (0.055) | ||||
| lnDesign | −0.106 (0.095) | ||||
| Open | −0.001 (0.005) | 0.003 (0.002) | −0.001 (0.003) | 0.001 (0.001) | −0.001 (0.003) |
| Urban | 1.704 * (1.387) | 2.969 ** (1.202) | 1.6524 * (0.992) | 2.959 *** (0.985) | 1.997 * (1.091) |
| lnIncome | 0.258 (0.677) | 0.891 *** (0.598) | 0.232 (0.298) | 0.503 ** (0.446) | 0.409 ** (0.303) |
| lnMarket | −0.509 *** (0.192) | 0.588 *** (0.186) | −0.584 *** (0.214) | 0.677 *** (0.121) | −0.417 ** (0.164) |
| W. RES | 0.049 ** (0.072) | 0.048 ** (0.039) | 0.048 * (0.038) | ||
| W. lnInvention | 0.053 *** (0.037) | −0.182 ** (0.076) | |||
| W. lnDesign | 0.172 ** (0.073) | −0.133 (0.381) | |||
| W. LMC | 0.014 * (0.013) | 0.005 *** (0.001) | 0.014 ** (0.013) | 0.002 (0.001) | 0.014 (0.013) |
| R2 | 0.504 | 0.656 | 0.390 | 0.356 | 0.185 |
| Sobel Z [p Value] | 1.795 [0.073] | 0.345 [0.730] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhu, L.; Zhang, B.; Wu, Z. How Does Land Misallocation Weaken Economic Resilience? Evidence from China. Land 2026, 15, 219. https://doi.org/10.3390/land15020219
Zhu L, Zhang B, Wu Z. How Does Land Misallocation Weaken Economic Resilience? Evidence from China. Land. 2026; 15(2):219. https://doi.org/10.3390/land15020219
Chicago/Turabian StyleZhu, Lin, Bo Zhang, and Zijing Wu. 2026. "How Does Land Misallocation Weaken Economic Resilience? Evidence from China" Land 15, no. 2: 219. https://doi.org/10.3390/land15020219
APA StyleZhu, L., Zhang, B., & Wu, Z. (2026). How Does Land Misallocation Weaken Economic Resilience? Evidence from China. Land, 15(2), 219. https://doi.org/10.3390/land15020219
