Integrated Assessment of Soil Loss and Sediment Delivery Using USLE, Sediment Yield, and Principal Component Analysis in the Mun River Basin, Thailand
Abstract
1. Introduction
- This study addresses four key knowledge gaps:
- Integrated erosion-delivery assessment: Previous studies in the Mekong basin have focused either on hillslope erosion modeling or on channel sediment transport but rarely integrate these components to quantify sediment connectivity [12]. The role of reservoirs in sediment trapping and their contribution to low sediment delivery ratios remains poorly quantified in this region.
- Spatial heterogeneity in controls: The Mun Basin exhibits strong spatial gradients in topography, rainfall, and land use. Understanding how these factors interact across sub-watersheds to control both gross erosion and net sediment delivery is essential for prioritizing conservation interventions.
- Multivariate controls and multicollinearity: Land-use fractions, topographic factors, and hydroclimatic variables are often strongly intercorrelated, making it difficult to isolate their individual effects on erosion and delivery. Statistical methods that can resolve these interdependencies are needed to build robust predictive frameworks.
- Validation and contextualization: Erosion estimates derived from empirical models like USLE require validation against observed sediment yield and comparison with published regional studies to assess their reliability and generalizability.
- Our specific objectives are to:
- Quantify spatial patterns of soil loss across the Mun River Basin using the Universal Soil Loss Equation (USLE) framework;
- Calculate sediment yield (SY) and sediment delivery ratio (SDR) for 19 sub-watersheds using observed discharge and total suspended solids data;
- Identify the dominant hydroclimatic, topographic, and land-use controls on soil loss, sediment yield, and sediment delivery through correlation analysis;
- Apply Principal Component Analysis to resolve predictor multicollinearity and construct a predictive model for sediment yield;
- Compare results with published studies from similar tropical watersheds to validate model performance and contextualize findings.
- We hypothesize the following:
- H1: The low sediment delivery ratio (SDR) in the Mun Basin is primarily controlled by artificial reservoirs rather than natural sediment sinks, resulting in SDR values comparable to other large tropical watersheds with extensive impoundment infrastructure.
- H2: Hillslope soil loss is predominantly controlled by topographic steepness (LS factor) and land cover, whereas sediment yield is more strongly influenced by hydroclimatic forcing (precipitation and runoff) and specific land-use types (e.g., tree plantations and rice fields).
- H3: Principal Component Analysis can effectively resolve multicollinearity among predictors and produce a parsimonious predictive model for sediment yield across sub-watersheds.
- Unique Contributions:
- The first quantitative assessment of reservoir sediment trapping efficiency and its contribution to low SDR in the Mun Basin;
- A systematic multivariate framework for disentangling the effects of correlated predictors on erosion and delivery;
- A transferable methodology for data-limited large basins in tropical monsoonal climates.
2. Materials and Methods
2.1. The Mun River Basin
2.2. Data Sources
2.3. Watershed Subdivision and Overall Approach
2.4. Universal Soil Loss Equation (USLE)
2.4.1. Rainfall Erosivity Factor (R)
2.4.2. Slope Length and Steepness Factor (LS)
2.4.3. Soil Erodibility Factor (K)
2.4.4. Cover-Management Factor (C)
- Rice fields (A1): C = 0.28 (reflecting seasonal bare soil exposure during land preparation and post-harvest).
- Other upland crops (A2; maize, sugarcane, cassava): C = 0.40–0.60 depending on crop type and management intensity.
- Tree plantations (A3; eucalyptus, rubber, teak, oil palm): C = 0.10–0.20 (lower than upland crops but higher than natural forest due to understory clearing).
- Orchards (A4): C = 0.15.
- Other agriculture (A5; aquaculture, farm buildings): C = 0.05–0.10.
- Forest (F): C = 0.001 (reflecting high protective capacity of natural forest).
- Urban/residential (U): C = 0.01 (impervious surfaces and managed landscapes).
- Water bodies (W): C = 0.
- Miscellaneous (M: bare soil, mining, rocky areas): C = 0.50–0.80.
2.4.5. Support Practice Factor (P)
- Rice fields with bund terraces: P = 0.10 (highly effective sediment trapping).
- Upland crops with contour plowing: P = 0.50.
- Tree plantations without conservation measures: P = 1.0.
- All non-agricultural lands: P = 1.0.
2.4.6. Limitations of USLE and Rationale for Coupling with Observed Sediment Yield
2.5. Sediment Yield and Sediment Delivery Ratio
2.6. Correlation Analysis
2.7. Principal Component Analysis (PCA) and Predictive Modeling
2.7.1. Purpose and Theory of PCA
2.7.2. PCA Implementation
2.7.3. Interpretation of Principal Components
2.7.4. PCA-Based Regression Model
- Pearson correlation coefficient (r) between observed and predicted values.
- Coefficient of determination (R2).
- Root mean square error (RMSE).
3. Results
3.1. Spatial Patterns of Erosion, Sediment Export, and Basin-Scale Connectivity
- Extensive sediment trapping by major reservoirs (Lam Takhong, Lam Phraploeng, Lam Mun Bon, Sirindhorn).
- Deposition in floodplains and rice paddies with bunded terraces.
- Large drainage area (>70,000 km2), which generally correlates with lower SDR [13]).
3.2. Model Validation and Comparison with Tropical Watersheds
3.3. Environmental Controls on Soil Loss and Sediment Delivery
- Forest vs. LS: r = +0.76.
- Agriculture vs. rice: r = +0.69.
- Agriculture vs. forest: r = −0.93.
- Agriculture vs. LS: r = −0.77.
3.4. Multivariate Analysis and Identification of Controlling Factors
Interpretation
3.5. Predictive Framework for Sediment Export Across Sub-Watersheds
4. Discussion
4.1. Soil Loss Controls and Apparent Paradoxes
4.2. Sediment Yield and Delivery: The Role of Reservoirs
- Rice paddies with bunded terraces: Estimated to trap 1–2 million t y−1 during flooding events.
- Floodplain deposition: Particularly in the lower basin during overbank flows.
- Channel storage: Sediment temporarily stored in channel bars and pools, remobilized during high-flow events.
4.3. Comparison with Alternative Sediment Modeling Approaches: MUSLE and USPED
4.4. Principal Component Analysis and Multivariate Controls
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Valentin, C.; Agus, F.; Alamban, R.; Boosaner, A.; Bricquet, J.P.; Chaplot, V.; de Guzman, T.; de Rouw, A.; Janeau, J.L.; Orange, D.; et al. Runoff and sediment losses from 27 upland catchments in Southeast Asia: Impact of rapid land use changes and conservation practices. Agric. Ecosyst. Environ. 2008, 128, 225–238. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef]
- Walling, D.E. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J.; Verstraeten, G.; Govers, G.; Vanmaercke, M.; Van Rompaey, A.; Arabkhedri, M.; Boix-Fayos, C. Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Sci. Rev. 2013, 127, 16–29. [Google Scholar] [CrossRef]
- Annandale, G.W.; Morris, G.L.; Karki, P. Present and Future Losses of Storage in Large Reservoirs Due to Sedimentation: A Country-Wise Global Assessment. Sustainability 2023, 15, 219. [Google Scholar] [CrossRef]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Rubin, Z.K.; Minear, J.T. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 2014, 50, 5158–5169. [Google Scholar] [CrossRef]
- Walling, D.E. The sediment delivery problem. J. Hydrol. 1983, 65, 209–237. [Google Scholar] [CrossRef]
- Lu, H.; Moran, C.J.; Prosser, I.P. Modelling sediment delivery ratio over the Murray Darling Basin. Environ. Model. Softw. 2006, 21, 1297–1308. [Google Scholar] [CrossRef]
- López-Vicente, M.; Guzmán, G. Measuring soil erosion and sediment connectivity at distinct scales. In Precipitation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 287–326. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Handbook No. 537; USDA Science and Education Administration: Washington, DC, USA, 1978.
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook No. 703; USDA Agricultural Research Service: Washington, DC, USA, 1997.
- Li, D.; Lu, X.X.; Walling, D.E.; Zhang, T.; Steiger, J.; Fang, H.; Yang, Z.Y.; Qi, Y.Q.; Li, M.T.; Sun, H.G.; et al. Estimation of Soil Erosion and Sediment Yield in the Lancang–Mekong River Using the Modified Revised Universal Soil Loss Equation and GIS Techniques. Water 2020, 12, 135. [Google Scholar] [CrossRef]
- Sanitthong, S.; Babel, M.S.; Shrestha, S.; Parkpian, P. Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang–Mekong River by using the modified RUSLE model. Int. Soil Water Conserv. Res. 2020, 8, 213–227. [Google Scholar] [CrossRef]
- Ngo, L.A.; Masih, I.; Jiang, Y.; Douven, W. Projected seasonal changes in future rainfall erosivity over the Lancang-Mekong River basin under the CMIP6 scenarios. J. Hydrol. 2023, 620, 129444. [Google Scholar] [CrossRef]
- National Economic and Social Development Council (NESDC). Gross Regional and Provincial Product Chain Volume Measures 2017 Edition. 2017. Available online: https://www.nesdc.go.th/ (accessed on 1 September 2025).
- Blanco, H.; Lal, R. Principles of Soil Conservation and Management; Springer Science & Business Media: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Labrière, N.; Locatelli, B.; Laumonier, Y.; Freycon, V.; Bernoux, M. Soil erosion in the humid tropics: A systematic quantitative review. Agric. Ecosyst. Environ. 2015, 203, 127–139. [Google Scholar] [CrossRef]
- Goh, K.J.; Härdter, R.; Fairhurst, T. Fertilizing for maximum return. In Oil Palm: Management for Large and Sustainable Yields; Fairhurst, T., Härdter, R., Eds.; Potash & Phosphate Institute/Potash & Phosphate Institute of Canada: Singapore, 2010; pp. 279–306. [Google Scholar]
- Arsyad, S.; Rustiadi, E. (Eds.) Penyelamatan Tanah, Air, Dan Lingkungan; Yayasan Pustaka Obor Indonesia: Jakarta Pusat, Indonesia, 2008. [Google Scholar]
- Hudson, N. Field Measurement of Soil Erosion and Runoff; Food & Agriculture Org: Rome, Italy, 1993; Volume 68. [Google Scholar]
- Kinnell, P.I.A. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Ferro, V.; Minacapilli, M. Sediment delivery processes at basin scale. Hydrol. Sci. J. 1995, 40, 703–717. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J.; Arabkhedri, M.; Verstraeten, G. The sediment delivery problem revisited. Prog. Phys. Geogr. 2007, 31, 155–178. [Google Scholar] [CrossRef]
- United States Department of Agriculture-Soil Conservation Service (USDA SCS). SCS National Engineering Handbook, Section 4, Hydrology. In Estimation of Direct Runoff from Storm Rainfall; United States Department of Agriculture, Soil Conservation Service: Washington, DC, USA, 1972; Chapter 10, pp. 10.1–10.24. [Google Scholar]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Vigiak, O.; Borselli, L.; Newham, L.T.H.; McInnes, J.; Roberts, A.M. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 2012, 138, 74–88. [Google Scholar] [CrossRef]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524–525, 166–177. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, S.; Hu, X.; Zhou, Y. Construction of a monthly dynamic sediment delivery ratio model at the hillslope scale: A case study from a hilly loess region. Front. Environ. Sci. 2024, 12, 1341868. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Liu, L.; Li, Y.; Gao, H.; Gao, B.; Dong, G. Defining watershed-scale sediment delivery ratio using functional connectivity: Exploring the relationship between monthly-scale sediment delivery ratio and soil erosion. Catena 2024, 243, 108255. [Google Scholar] [CrossRef]
- Brune, G.M. Trap efficiency of reservoirs. Trans. Am. Geophys. Union 1953, 34, 407–418. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Yu, B.; Xu, C.; Liu, M.; Wang, K. Characteristics of sedimentation and sediment trapping efficiency in the Three Gorges Reservoir, China. Catena 2021, 199, 105116. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.L.; Chappell, R.W.; Loftis, J.C. Water quality sample collection, data treatment and results presentation for principal components analysis—Literature review and Illinois River watershed case study. Water Res. 2012, 46, 3110–3122. [Google Scholar] [CrossRef] [PubMed]
- Zavareh, M.; Maggioni, V.; Sokolov, V. Investigating Water Quality Data Using Principal Component Analysis and Granger Causality. Water 2021, 13, 343. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Gajbhiye, S.; Mishra, S.K.; Pandey, A. Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective. Appl. Water Sci. 2014, 4, 51–61. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Pearson Education: Boston, MA, USA, 2007. [Google Scholar]
- Jolliffe, I. Principal component analysis. In International Encyclopedia of Statistical Science; Springer: Berlin, Heidelberg, 2002; pp. 1094–1096. [Google Scholar]
- Land Development Department (LDD). National Soil Erosion Assessment and Monitoring; Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2015. (In Thai)
- Land Development Department (LDD). Soil Erosion in Thailand; Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2000. (In Thai)
- Xue, Z.; Liu, J.P.; Ge, Q. Changes in hydrology and sediment delivery of the Mekong River in the last 50 years: Connection to damming, monsoon, and ENSO. Earth Surf. Process. Landf. 2011, 36, 296–308. [Google Scholar] [CrossRef]
- Nampak, H.; Pradhan, B.; Abd Manap, M. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J. Hydrol. 2018, 513, 283–300. [Google Scholar] [CrossRef]
- Department of Mineral Resources (DMR). Geologic Map by Province [Scale 1:50,000]; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2010. Available online: https://www.dmr.go.th (accessed on 1 September 2025).
- Northeastern Meteorological Center (Upper Part). Daily Rainfall Data; Thai Meteorological Department: Bangkok, Thailand, 2024. Available online: https://khonkaen.tmd.go.th/ (accessed on 1 September 2025).
- Northeastern Meteorological Center (Lower Part). Daily Rainfall Data; Thai Meteorological Department: Bangkok, Thailand, 2024. Available online: https://ubonmet.tmd.go.th/ (accessed on 1 September 2025).
- Land Development Department (LDD). Land Use Map Land Use Map of the Northeastern Region in 2019; Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2019. Available online: https://dinonline.ldd.go.th (accessed on 1 September 2025).
- United States Department of Agriculture (USDA). Agriculture Handbook No.282. Predicting Rainfall–erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection Practices for Soil and Water Conservation. 1965. Available online: https://www.ars.usda.gov/ (accessed on 1 July 2025).
- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA). Universal Soil Loss Equation (USLE). 2015. Available online: http://www.omafra.gov.on.ca/ (accessed on 1 July 2025).
- Prasuhn, V.; Liniger, H.; Gisler, S.; Herweg, K.; Candinas, A.; Clément, J.P. A high-resolution soil erosion risk map of Switzerland as strategic policy support system. Land Use Policy 2013, 32, 281–291. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Shuttle Radar Topography Mission (SRTM) 1 Arc–Second Global. Digital Object Identifier (DOI) number:/10.5066/F7PR7TFT. 2018. Available online: https://earthexplorer.usgs.gov/ (accessed on 1 July 2025).
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar] [CrossRef]
- Mitasova, H.; Barton, M.; Ullah, I.; Hofierka, J.; Harmon, R.S. GIS-based soil erosion modeling. In Treatise on Geomorphology; Academic Press: Cambridge, MA, USA, 2013; Volume 3, pp. 228–258. [Google Scholar]
- Mccool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Mitasova, H.; Hofierka, J.; Zlocha, M.; Iverson, L.R. Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 1996, 10, 629–641. [Google Scholar]
- Williams, J.R. Sediment routing for agricultural watersheds 1. JAWRA J. Am. Water Resour. Assoc. 1975, 11, 965–974. [Google Scholar]
- Vanmaercke, M.; Poesen, J.; Verstraeten, G.; de Vente, J.; Ocakoglu, F. Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology 2011, 130, 142–161. [Google Scholar] [CrossRef]
- Royal Irrigation Department (RID). Reservoir Sedimentation Survey Report for Major Reservoirs in Northeast Thailand; Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2024.
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Shi, Z.H.; Cai, C.F.; Ding, S.W.; Wang, T.W.; Chow, T.L. Soil conservation planning at the small watershed level using RUSLE with GIS: A case study in the Three Gorge Area of China. Catena 2013, 55, 33–48. [Google Scholar] [CrossRef]
- Choudhury, B.U.; Fiyaz, A.R.; Mohapatra, K.P.; Ngachan, S. Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of North-Eastern Himalayan Region of India. Land Degrad. Dev. 2021, 27, 1163–1174. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Turkelboom, F.; Poesen, J.; Trébuil, G. The multiple land degradation effects caused by land-use intensification in tropical steeplands: A catchment study from northern Thailand. Catena 2008, 75, 102–116. [Google Scholar] [CrossRef]
- Kummu, M.; Varis, O. Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River. Geomorphology 2007, 85, 275–293. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]









| Data Type | Source | Resolution/ Period | Purpose |
|---|---|---|---|
| Digital Elevation Model | USGS SRTM | 30 m | Topographic analysis, LS factor |
| Rainfall | Upper and Lower NE Meteorological Centers, TMD | Daily, 2024 | R factor calculation |
| Soil map | Land Development Department (LDD) | 1:50,000 | K factor assignment |
| Land use map | Land Development Department (LDD) | 1:25,000, 2019 | C and P factor assignment |
| Discharge (Q) | Lower NE Region Hydrological Irrigation Center | Daily, 2024 | Sediment yield calculation |
| Total Suspended Solids (TSS) | Lower NE Region Hydrological Irrigation Center | Monthly, 2024 |
| Sub Watershed | Agriculture Area (A) | Urban (U) | Forest (F) | Water (W) | Miscellaneous (M) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Rice (A1) | Others Crop (A2) | Tree Plantation (A3) | Orchard (A4) | Others (A5) | Sum | |||||
| 1 | 12.62 | 37.66 | 5.47 | 1.01 | 2.10 | 58.87 | 15.42 | 16.75 | 2.21 | 6.76 |
| 2 | 14.43 | 32.85 | 6.43 | 0.25 | 1.03 | 54.99 | 7.22 | 30.67 | 2.22 | 4.90 |
| 3 | 37.25 | 45.32 | 1.70 | 0.03 | 0.68 | 84.98 | 6.55 | 1.70 | 2.48 | 4.29 |
| 4 | 16.92 | 28.46 | 4.59 | 0.09 | 0.49 | 50.54 | 7.41 | 36.52 | 2.44 | 3.09 |
| 5 | 58.97 | 22.55 | 2.84 | 0.03 | 0.59 | 84.98 | 7.91 | 0.38 | 3.06 | 3.67 |
| 6 | 27.48 | 53.28 | 4.46 | 0.11 | 0.59 | 85.92 | 5.94 | 4.48 | 2.30 | 1.36 |
| 7 | 33.85 | 25.31 | 7.53 | 0.09 | 0.36 | 67.14 | 6.03 | 22.09 | 3.19 | 1.54 |
| 8 | 71.29 | 9.73 | 2.05 | 0.02 | 0.83 | 83.92 | 6.82 | 2.52 | 3.76 | 2.98 |
| 9 | 60.56 | 12.93 | 6.90 | 0.02 | 0.55 | 80.96 | 6.53 | 3.86 | 4.57 | 4.07 |
| 10 | 57.92 | 10.73 | 8.24 | 0.02 | 0.32 | 77.23 | 8.41 | 7.75 | 4.28 | 2.33 |
| 11 | 74.07 | 3.98 | 2.77 | 0.02 | 1.18 | 82.02 | 6.27 | 5.15 | 3.28 | 3.29 |
| 12 | 65.73 | 7.64 | 7.54 | 0.02 | 0.11 | 81.03 | 6.40 | 7.76 | 3.17 | 1.64 |
| 13 | 61.26 | 5.61 | 8.70 | 0.06 | 0.07 | 75.70 | 6.53 | 13.24 | 2.62 | 1.90 |
| 14 | 62.11 | 2.11 | 4.07 | 1.67 | 0.43 | 70.40 | 10.29 | 6.77 | 4.58 | 7.96 |
| 15 | 48.39 | 6.51 | 19.07 | 0.14 | 0.10 | 74.21 | 5.00 | 16.13 | 2.49 | 2.18 |
| 16 | 48.79 | 10.26 | 13.50 | 0.12 | 0.28 | 72.94 | 5.07 | 16.70 | 1.82 | 3.47 |
| 17 | 40.37 | 5.49 | 11.58 | 0.01 | 0.14 | 57.59 | 3.64 | 23.57 | 7.64 | 7.56 |
| 18 | 67.57 | 6.08 | 4.61 | 0.03 | 0.21 | 78.50 | 4.71 | 10.42 | 2.17 | 4.20 |
| 19 | 57.17 | 12.50 | 8.44 | 0.07 | 0.25 | 78.42 | 5.28 | 8.27 | 2.79 | 5.23 |
| Mun basin | 50.17 | 15.66 | 7.31 | 0.17 | 0.52 | 73.82 | 6.75 | 12.32 | 3.37 | 3.74 |
| Category | Soil Loss Rate (t ha−1 y−1) | Area | |
|---|---|---|---|
| km2 | Percentage | ||
| No erosion | 0 to 0.1 | 13,013 | 18.44 |
| Very low | 0.1 to 6.7 | 46,657 | 66.10 |
| Low | 6.7 to 11.2 | 3807 | 5.39 |
| Moderate | 11.2 to 22.4 | 3910 | 5.54 |
| High | 22.4 to 33.6 | 1415 | 2.00 |
| Severe | more than 33.6 | 1785 | 2.53 |
| Total | 70,587 | 100.00 | |
| Sub-Watershed | Area (km2) | Soil Loss, A (t ha−1 y−1) | Total Soil Loss (t y−1) | Mean TSS (g m−3) | Mean Q (m3 s−1) | SY (t y−1) | SDR (%) | |
|---|---|---|---|---|---|---|---|---|
| Mean | Median | |||||||
| 1 | 3420 | 11.28 | 2.83 | 3,800,437.59 | 33.28 | 0.97 | 1020.49 | 0.03 |
| 2 | 2319 | 12.53 | 1.22 | 2,908,562.04 | 249.45 | 1.72 | 13,521.58 | 0.46 |
| 3 | 2888 | 4.28 | 0.62 | 1,230,391.74 | 113.54 | 3.18 | 11,403.37 | 0.93 |
| 4 | 2897 | 5.96 | 0.53 | 1,730,916.12 | 59.21 | 1.65 | 3090.07 | 0.18 |
| 5 | 1061 | 2.12 | 0.26 | 225,389.33 | 44.97 | 1.50 | 2124.51 | 0.94 |
| 6 | 1654 | 4.97 | 2.92 | 823,776.26 | 198.43 | 1.39 | 8685.00 | 1.05 |
| 7 | 5934 | 4.56 | 0.48 | 2,714,974.45 | 741.15 | 0.69 | 16,211.88 | 0.60 |
| 8 | 3666 | 1.35 | 0.39 | 493,101.70 | 126.83 | 2.53 | 10,140.84 | 2.06 |
| 9 | 7869 | 2.30 | 0.48 | 1,815,590.51 | 55.80 | 22.26 | 39,207.52 | 2.16 |
| 10 | 4966 | 2.44 | 0.47 | 1,217,923.62 | 47.04 | 7.82 | 11,610.53 | 0.95 |
| 11 | 4443 | 1.20 | 0.40 | 533,742.60 | 73.74 | 6.05 | 14,075.15 | 2.64 |
| 12 | 3803 | 2.15 | 0.48 | 823,358.45 | 38.99 | 6.90 | 8492.45 | 1.03 |
| 13 | 3376 | 3.11 | 0.40 | 1,054,535.39 | 46.03 | 4.25 | 6177.12 | 0.59 |
| 14 | 2681 | 1.88 | 0.51 | 495,647.91 | 1.66 | 210.05 | 10,997.06 | 2.22 |
| 15 | 3360 | 5.14 | 0.65 | 1,738,620.01 | 60.77 | 22.09 | 42,358.02 | 2.44 |
| 16 | 4840 | 8.12 | 1.07 | 3,963,462.96 | 68.23 | 42.34 | 91,164.17 | 2.30 |
| 17 | 4041 | 14.40 | 0.99 | 5,768,595.93 | 81.09 | 5.25 | 13,437.30 | 0.23 |
| 18 | 3493 | 4.04 | 0.75 | 1,422,984.74 | 74.54 | 12.33 | 29,011.10 | 2.04 |
| 19 | 3878 | 5.94 | 1.16 | 2,288,298.08 | 36.44 | 60.60 | 69,677.26 | 3.04 |
| Mun Watershed | 70,587 | 4.96 | 0.58 | 35,050,309.42 | 30.83 | 413.59 | 402,405.42 | 1.15 |
| Study | Location | Watershed Area (km2) | Erosion Model | Mean Soil Loss (t ha−1 y−1) | SDR (%) | Key Features |
|---|---|---|---|---|---|---|
| This study | Mun Basin, Thailand | 70,587 | USLE | 4.96 | 1.15 | Multiple large reservoirs, extensive rice terraces |
| Valentin et al. [6] | Northern Laos | 850 | RUSLE | 8.2 | 3.5 | Steep terrain, slash-and-burn agriculture |
| Nampak et al. [50] | Northeastern Thailand | 3200 | USLE | 6.7 | 2.1 | Mixed agriculture and forest |
| Kondolf et al. [12] | Lower Mekong | 795,000 | Sediment budget | — | 15–25 | Natural sediment connectivity, minimal impoundments |
| Vanmaercke et al. [65] | Global compilation (large basins) | >10,000 | Various | — | 5–30 | Meta-analysis; higher SDR in basins without major reservoirs |
| Independent Variable | Soil Loss Rate, A (USLE) | SY/Area | SDR |
|---|---|---|---|
| Watershed Area | −0.15 | −0.22 | +0.19 |
| Precipitation | +0.28 | +0.59 | +0.47 |
| Runoff | +0.12 | +0.31 | +0.38 |
| Rice (A1) | −0.71 | −0.18 | +0.66 |
| Other Crops (A2) | +0.27 | −0.22 | −0.50 |
| Tree Plantation (A3) | +0.35 | +0.55 | +0.18 |
| Orchard (A4) | +0.09 | −0.05 | −0.12 |
| Other Agriculture (A5) | +0.24 | −0.34 | −0.25 |
| Total Agriculture | −0.73 | −0.29 | +0.54 |
| Urban (U) | −0.38 | −0.45 | −0.22 |
| Forest (F) | +0.67 | +0.21 | −0.49 |
| Water (W) | −0.18 | −0.28 | −0.19 |
| Miscellaneous (M) | +0.49 | +0.12 | −0.08 |
| LS Factor | +0.62 | +0.19 | −0.47 |
| PC No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| Eigen value | 4.41 | 3.08 | 2.78 | 1.13 | 0.91 | 0.56 | 0.50 | 0.39 | 0.11 | 0.08 | 0.03 | 0.01 | 0.00 | 0.00 |
| Proportion | 0.32 | 0.22 | 0.20 | 0.08 | 0.07 | 0.04 | 0.04 | 0.03 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
| Cumulative | 0.32 | 0.54 | 0.73 | 0.82 | 0.88 | 0.92 | 0.96 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Variable | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |
|---|---|---|---|---|---|---|---|
| Symbol | Meaning | ||||||
| v01 | Watershed area | −0.16 | −0.11 | −0.14 | −0.63 | −0.47 | −0.39 |
| v02 | Precipitation | −0.26 | −0.41 | −0.07 | 0.10 | 0.08 | 0.17 |
| v03 | Runoff | −0.07 | −0.35 | 0.35 | 0.35 | −0.11 | −0.31 |
| v04 | Rice fields | 0.30 | −0.02 | 0.37 | −0.14 | −0.35 | 0.05 |
| v05 | Other crop fields | −0.43 | 0.00 | 0.17 | −0.04 | −0.16 | 0.39 |
| v06 | Tree plantations | 0.32 | 0.31 | 0.02 | 0.06 | 0.27 | −0.51 |
| v07 | Orchards | −0.09 | −0.26 | −0.37 | 0.19 | −0.35 | −0.22 |
| v08 | Other types of agriculture | 0.18 | −0.29 | 0.41 | 0.19 | −0.20 | −0.20 |
| v09 | Total agricultural area | 0.32 | 0.11 | 0.26 | −0.36 | −0.14 | 0.30 |
| v10 | Urban area | −0.33 | 0.33 | 0.21 | 0.08 | −0.06 | −0.09 |
| v11 | Forest area | 0.29 | −0.24 | −0.38 | 0.04 | 0.02 | 0.09 |
| v12 | Water body | −0.16 | −0.30 | 0.04 | −0.48 | 0.48 | −0.22 |
| v13 | Miscellaneous areas | 0.12 | −0.40 | 0.27 | −0.13 | 0.33 | 0.11 |
| v14 | LS factor | 0.40 | −0.16 | −0.25 | 0.02 | −0.12 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Poatprommanee, P.; Suntikoon, S.; Khebchareon, M.; Saenton, S. Integrated Assessment of Soil Loss and Sediment Delivery Using USLE, Sediment Yield, and Principal Component Analysis in the Mun River Basin, Thailand. Land 2026, 15, 220. https://doi.org/10.3390/land15020220
Poatprommanee P, Suntikoon S, Khebchareon M, Saenton S. Integrated Assessment of Soil Loss and Sediment Delivery Using USLE, Sediment Yield, and Principal Component Analysis in the Mun River Basin, Thailand. Land. 2026; 15(2):220. https://doi.org/10.3390/land15020220
Chicago/Turabian StylePoatprommanee, Pee, Supanut Suntikoon, Morrakot Khebchareon, and Schradh Saenton. 2026. "Integrated Assessment of Soil Loss and Sediment Delivery Using USLE, Sediment Yield, and Principal Component Analysis in the Mun River Basin, Thailand" Land 15, no. 2: 220. https://doi.org/10.3390/land15020220
APA StylePoatprommanee, P., Suntikoon, S., Khebchareon, M., & Saenton, S. (2026). Integrated Assessment of Soil Loss and Sediment Delivery Using USLE, Sediment Yield, and Principal Component Analysis in the Mun River Basin, Thailand. Land, 15(2), 220. https://doi.org/10.3390/land15020220

