The Influence of Built Environment on Travel Carbon Emissions in Old Communities: A Case Study of Chengdu
Abstract
1. Introduction
- (1)
- In old communities in China, which key elements of the built environment are significantly effective in reducing residents’ travel carbon emissions? What are their degrees and directions of impact?
- (2)
- Do the effects of the same built environment variables vary across groups, and what are the implications for designing old communities?
2. Methods and Materials
2.1. Study Design
2.2. Study Area and Data Collection
2.3. Research Data
2.3.1. Reliability and Validity Verification
2.3.2. Exploratory Factor Analysis of Built Environment Elements
2.3.3. Exploratory Factor Analysis of Carbon Awareness
2.4. Questionnaire Adjustment
- Inconsistency with Life Scenarios: Q8_1 “How common are detached single-family houses around your home?” is a typical low-density residential form in the original scale. However, it has almost no practical basis in the old communities in the central urban area of Chengdu. In Chengdu, the housing types in old communities are mainly brick-concrete structures with 4–6 floors, and detached houses are extremely rare. Similarly, Q9_7 (post office), Q9_10 (other schools), and Q9_16 (audio-visual store) in the Q9 module also showed low factor loadings and communality. This reflects that the frequency of use of these facilities in residents’ daily lives is low, or they have lost their representativeness. In particular, the audio-visual store is clearly no longer recognized by most residents.
- Insufficient Semantic Adaptability: The item Q11_6 “It is safe to ride a bicycle near my home” in the original Q11 module had the lowest factor loading (0.516) and a communality of only 0.266. During the survey, residents also frequently reported that they “did not know how to judge”.
- Insufficient Label Distinction: Q13_3 and Q13_4 in the Q13 infrastructure and safety for walking dimension are reverse items. If they are not clearly marked or distinguished by typesetting, it is easy to cause misunderstanding among respondents during on-site questionnaire distribution, affecting the stability and interpretability of answers. In subsequent structural optimization, the accuracy of expression and item reconstruction of this module was focused on.
2.5. Data Processing
3. Data Analysis
3.1. Sample Characteristic Analysis
3.2. Descriptive Analysis
3.3. Correlation Analysis
4. Results
4.1. Built Environment
4.2. Age Heterogeneity
4.3. Gender Heterogeneity
5. Discussion
6. Conclusions
- (1)
- Diversity, accessibility, street connectivity, and aesthetics consistently demonstrated significant negative effects across demographic groups. Increased land-use mix helps shorten daily travel distances and reduce trip generation. The presence of informal micro-pathways enhances actual pedestrian permeability, reducing reliance on motorized transport. Preserved high-density street networks improve route flexibility and comfort, strengthening the appeal of non-motorized travel. Livable aesthetics significantly increase residents’ walking frequency and willingness.
- (2)
- Overall, travel carbon emissions decrease with age, and males tend to have higher emissions than females. In terms of the built environment, street connectivity has a significantly stronger effect on reducing travel carbon emissions among younger groups compared to middle-aged and older adults.
- (3)
- No significant correlation was found between residents’ low-carbon awareness, attitudes, and their actual travel behavior. This indicates that travel choices may be more strongly constrained by socio-economic factors and built environment conditions rather than solely determined by policy advocacy or individual intentions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| NEWS-CFA | Neighborhood Environment Walkability Scale—Confirmatory Factor Analysis |
Appendix A
Appendix A.1. Reliability Analysis
| Question | Mean After Item Deletion | Variance After Item Deletion | Correlation Between Deleted Item and Overall Scale After Deletion | Cronbach’s α After Item Deletion | Cronbach’s α Coefficient | Standardized Cronbach’s α Coefficient | |
|---|---|---|---|---|---|---|---|
| Q8 | Q8_1 | 14.879 | 21.607 | 0.437 | 0.803 | ||
| Q8_2 | 14.837 | 21.416 | 0.577 | 0.766 | |||
| Q8_3 | 14.914 | 21.587 | 0.584 | 0.765 | |||
| Q8_4 | 14.805 | 20.89 | 0.617 | 0.757 | |||
| Q8_5 | 14.85 | 21.055 | 0.598 | 0.762 | |||
| Q8_6 | 14.829 | 21.557 | 0.555 | 0.771 | |||
| Summary | 0.801 | 0.805 | |||||
| Q9 | Q9_1 | 65.916 | 363.176 | 0.694 | 0.943 | ||
| Q9_2 | 66.016 | 367.041 | 0.653 | 0.944 | |||
| Q9_3 | 66.014 | 366.325 | 0.664 | 0.943 | |||
| Q9_4 | 65.992 | 365.528 | 0.644 | 0.944 | |||
| Q9_5 | 66.033 | 363.849 | 0.694 | 0.943 | |||
| Q9_6 | 66.033 | 367.697 | 0.614 | 0.944 | |||
| Q9_7 | 65.895 | 370.242 | 0.482 | 0.946 | |||
| Q9_8 | 65.914 | 364.706 | 0.693 | 0.943 | |||
| Q9_9 | 65.934 | 366.506 | 0.643 | 0.944 | |||
| Q9_10 | 65.961 | 366.182 | 0.674 | 0.943 | |||
| Q9_11 | 66.088 | 370.969 | 0.482 | 0.946 | |||
| Q9_12 | 65.971 | 367.253 | 0.643 | 0.944 | |||
| Q9_13 | 66.039 | 365.531 | 0.663 | 0.943 | |||
| Q9_14 | 65.99 | 367.378 | 0.646 | 0.944 | |||
| Q9_15 | 66.066 | 366.007 | 0.656 | 0.943 | |||
| Q9_16 | 66.053 | 370.143 | 0.511 | 0.946 | |||
| Q9_17 | 66.008 | 366.483 | 0.647 | 0.944 | |||
| Q9_18 | 66.002 | 363.986 | 0.691 | 0.943 | |||
| Q9_19 | 66.056 | 365.324 | 0.664 | 0.943 | |||
| Q9_20 | 66.01 | 363.511 | 0.723 | 0.943 | |||
| Q9_21 | 65.975 | 368.064 | 0.647 | 0.944 | |||
| Q9_22 | 65.932 | 365.116 | 0.676 | 0.943 | |||
| Q9_23 | 65.975 | 365.225 | 0.665 | 0.943 | |||
| Summary | 0.946 | 0.947 | |||||
| Q10 | Q10_1 | 9.315 | 8.996 | 0.538 | 0.7 | ||
| Q10_2 | 9.307 | 8.977 | 0.53 | 0.705 | |||
| Q10_3 | 9.309 | 8.666 | 0.574 | 0.68 | |||
| Q10_4 | 9.305 | 9.059 | 0.549 | 0.695 | |||
| Summary | 0.752 | 0.752 | |||||
| Q11 | Q11_1 | 26.294 | 63.14 | 0.643 | 0.856 | ||
| Q11_2 | 26.358 | 64.226 | 0.59 | 0.86 | |||
| Q11_3 | 26.34 | 63.835 | 0.625 | 0.858 | |||
| Q11_4 | 26.393 | 63.596 | 0.61 | 0.859 | |||
| Q11_5 | 26.342 | 65.138 | 0.476 | 0.87 | |||
| Q11_6 | 26.346 | 65.724 | 0.429 | 0.875 | |||
| Q11_7 | 26.461 | 63.707 | 0.647 | 0.856 | |||
| Q11_8 | 26.405 | 63.391 | 0.669 | 0.855 | |||
| Q11_9 | 26.442 | 63.744 | 0.618 | 0.858 | |||
| Q11_10 | 26.438 | 62.812 | 0.658 | 0.855 | |||
| Summary | 0.873 | 0.875 | |||||
| Q12 | Q12_1 | 14.827 | 24.6 | 0.633 | 0.806 | ||
| Q12_2 | 14.792 | 24.469 | 0.635 | 0.806 | |||
| Q12_3 | 14.749 | 24.188 | 0.523 | 0.831 | |||
| Q12_4 | 14.823 | 24.017 | 0.638 | 0.805 | |||
| Q12_5 | 14.778 | 24.469 | 0.623 | 0.808 | |||
| Q12_6 | 14.737 | 24.065 | 0.635 | 0.806 | |||
| Summary | 0.837 | 0.839 | |||||
| Q13 | Q13_2 | 12.13 | 15.147 | 0.586 | 0.677 | ||
| Q13_3 | 12.125 | 15.006 | 0.588 | 0.676 | |||
| Q13_4 | 12.206 | 15.517 | 0.413 | 0.742 | |||
| Q13_5 | 12.196 | 15.519 | 0.517 | 0.701 | |||
| Q13_6 | 12.237 | 14.801 | 0.479 | 0.716 | |||
| Summary | 0.747 | 0.753 | |||||
| Q14 | Q14_1 | 6.002 | 4.914 | 0.525 | 0.558 | ||
| Q14_2 | 5.99 | 5.027 | 0.542 | 0.54 | |||
| Q14_3 | 6.097 | 4.821 | 0.438 | 0.679 | |||
| Summary | 0.685 | 0.69 | |||||
| Q15 | Q14_1 | 6.002 | 4.914 | 0.525 | 0.558 | ||
| Q14_2 | 5.99 | 5.027 | 0.542 | 0.54 | |||
| Q14_3 | 6.097 | 4.821 | 0.438 | 0.679 | |||
| Summary | 0.685 | 0.69 | |||||
Appendix A.2. Table of KMO and Bartlett’s Test (Before Correction)
| Question | KMO and Bartlett’s Test | ||
|---|---|---|---|
| Q8 | KMO Value | 0.868 | |
| Q8—Bartlett’s Test of Sphericity | Approx. Chi-Square | 807.643 | |
| df | 15 | ||
| p | 0.000 *** | ||
| Q9 | KMO Value | 0.979 | |
| Q9—Bartlett’s Test of Sphericity | Approx. Chi-Square | 5598.073 | |
| df | 253 | ||
| p | 0.000 *** | ||
| Q10 | KMO Value | 0.771 | |
| Q10—Bartlett’s Test of Sphericity | Approx. Chi-Square | 446.111 | |
| df | 6 | ||
| p | 0.000 *** | ||
| Q11 | KMO Value | 0.94 | |
| Q11—Bartlett’s Test of Sphericity | Approx. Chi-Square | 1771.308 | |
| df | 45 | ||
| p | 0.000 *** | ||
| Q12 | KMO Value | 0.884 | |
| Q12—Bartlett’s Test of Sphericity | Approx. Chi-Square | 1014.437 | |
| df | 15 | ||
| p | 0.000 *** | ||
| Q13 | KMO Value | 0.859 | |
| Q13—Bartlett’s Test of Sphericity | Approx. Chi-Square | 747.623 | |
| df | 15 | ||
| p | 0.000 *** | ||
| Q14 | KMO Value | 0.652 | |
| Q14—Bartlett’s Test of Sphericity | Approx. Chi-Square | 266.107 | |
| df | 3 | ||
| p | 0.000 *** | ||
| Q15 | KMO Value | 0.67 | |
| Q15—Bartlett’s Test of Sphericity | Approx. Chi-Square | 275.619 | |
| df | 3 | ||
| p | 0.000 *** | ||
Appendix A.3. Validity Analysis—Rotated Factor Loading Coefficients
| Question | Rotated Factor Loading Coefficient | Communality (Common Factor Variance) | |
|---|---|---|---|
| Q8 | Q8_1 | 0.587 | 0.344 |
| Q8_2 | 0.727 | 0.528 | |
| Q8_4 | 0.764 | 0.584 | |
| Q8_3 | 0.732 | 0.536 | |
| Q8_5 | 0.745 | 0.555 | |
| Q8_6 | 0.713 | 0.509 | |
| Q9 | Q9_1 | 0.73 | 0.532 |
| Q9_2 | 0.691 | 0.478 | |
| Q9_3 | 0.699 | 0.489 | |
| Q9_4 | 0.684 | 0.468 | |
| Q9_5 | 0.73 | 0.532 | |
| Q9_6 | 0.651 | 0.424 | |
| Q9_7 | 0.519 | 0.27 | |
| Q9_8 | 0.727 | 0.528 | |
| Q9_9 | 0.68 | 0.463 | |
| Q9_10 | 0.711 | 0.506 | |
| Q9_11 | 0.518 | 0.269 | |
| Q9_12 | 0.68 | 0.462 | |
| Q9_13 | 0.699 | 0.489 | |
| Q9_14 | 0.684 | 0.467 | |
| Q9_15 | 0.691 | 0.477 | |
| Q9_16 | 0.549 | 0.301 | |
| Q9_17 | 0.686 | 0.47 | |
| Q9_18 | 0.725 | 0.526 | |
| Q9_19 | 0.701 | 0.491 | |
| Q9_20 | 0.756 | 0.572 | |
| Q9_21 | 0.687 | 0.473 | |
| Q9_22 | 0.714 | 0.509 | |
| Q9_23 | 0.702 | 0.493 | |
| Q10 | Q10_1 | 0.75 | 0.562 |
| Q10_2 | 0.742 | 0.551 | |
| Q10_3 | 0.779 | 0.607 | |
| Q10_4 | 0.759 | 0.576 | |
| Q11 | Q11_1 | 0.732 | 0.535 |
| Q11_2 | 0.683 | 0.467 | |
| Q11_3 | 0.715 | 0.511 | |
| Q11_4 | 0.703 | 0.494 | |
| Q11_5 | 0.567 | 0.322 | |
| Q11_6 | 0.516 | 0.266 | |
| Q11_7 | 0.732 | 0.536 | |
| Q11_8 | 0.754 | 0.568 | |
| Q11_9 | 0.713 | 0.509 | |
| Q11_10 | 0.745 | 0.555 | |
| Q12 | Q12_1 | 0.76 | 0.578 |
| Q12_2 | 0.763 | 0.582 | |
| Q12_3 | 0.659 | 0.435 | |
| Q12_4 | 0.766 | 0.587 | |
| Q12_5 | 0.754 | 0.568 | |
| Q12_6 | 0.765 | 0.585 | |
| Q13 | Q13_1 | 0.726 | 0.527 |
| Q13_2 | 0.772 | 0.596 | |
| Q13_3 | 0.768 | 0.59 | |
| Q13_4 | 0.586 | 0.343 | |
| Q13_5 | 0.69 | 0.476 | |
| Q13_6 | 0.651 | 0.424 | |
| Q14 | Q14_1 | 0.809 | 0.655 |
| Q14_2 | 0.819 | 0.671 | |
| Q14_3 | 0.727 | 0.528 | |
| Q15 | Q15_1 | 0.803 | 0.645 |
| Q15_2 | 0.809 | 0.654 | |
| Q15_3 | 0.764 | 0.584 | |
Appendix A.4. Validity Analysis—Total Variance Explained (Pre-Rotation)
| Question | Total Variance Explained | ||||||
|---|---|---|---|---|---|---|---|
| Component | Eigenvalue | Variance Explained After Rotation (%) | |||||
| Eigenvalue | Variance Explained (%) | Cumulative Percentage (%) | Eigenvalue | Variance Explained (%) | Cumulative Percentage (%) | ||
| Q8 | Q8_1 | 3.056 | 50.93% | 50.93% | 3.056 | 50.93% | 50.93% |
| Q8_2 | 0.756 | 12.60% | 63.53% | ||||
| Q8_3 | 0.596 | 9.94% | 73.47% | ||||
| Q8_4 | 0.548 | 9.13% | 82.60% | ||||
| Q8_5 | 0.543 | 9.06% | 91.66% | ||||
| Q8_6 | 0.501 | 8.35% | 100% | ||||
| Q9 | Q9_1 | 10.69 | 46.48% | 46.48% | 10.69 | 46.48% | 46.48% |
| Q9_2 | 0.859 | 3.74% | 50.21% | ||||
| Q9_3 | 0.84 | 3.65% | 53.87% | ||||
| Q9_4 | 0.767 | 3.34% | 57.20% | ||||
| Q9_5 | 0.7 | 3.04% | 60.25% | ||||
| Q9_6 | 0.673 | 2.93% | 63.17% | ||||
| Q9_7 | 0.646 | 2.81% | 65.98% | ||||
| Q9_8 | 0.632 | 2.75% | 68.73% | ||||
| Q9_9 | 0.605 | 2.63% | 71.36% | ||||
| Q9_10 | 0.586 | 2.55% | 73.91% | ||||
| Q9_11 | 0.57 | 2.48% | 76.38% | ||||
| Q9_12 | 0.566 | 2.46% | 78.84% | ||||
| Q9_13 | 0.529 | 2.30% | 81.14% | ||||
| Q9_14 | 0.497 | 2.16% | 83.30% | ||||
| Q9_15 | 0.488 | 2.12% | 85.42% | ||||
| Q9_16 | 0.486 | 2.11% | 87.53% | ||||
| Q9_17 | 0.46 | 2.00% | 89.53% | ||||
| Q9_18 | 0.447 | 1.94% | 91.48% | ||||
| Q9_19 | 0.432 | 1.88% | 93.35% | ||||
| Q9_20 | 0.416 | 1.81% | 95.16% | ||||
| Q9_21 | 0.4 | 1.74% | 96.90% | ||||
| Q9_22 | 0.362 | 1.57% | 98.48% | ||||
| Q9_23 | 0.351 | 1.52% | 100% | ||||
| Q10 | Q10_1 | 2.296 | 57.39% | 57.39% | 2.296 | 57.39% | 57.39% |
| Q10_2 | 0.609 | 15.23% | 72.62% | ||||
| Q10_3 | 0.583 | 14.57% | 87.19% | ||||
| Q10_4 | 0.512 | 12.81% | 100% | ||||
| Q11 | Q11_1 | 4.763 | 47.63% | 47.63% | 4.763 | 47.63% | 47.63% |
| Q11_2 | 0.792 | 7.92% | 55.54% | ||||
| Q11_3 | 0.749 | 7.49% | 63.03% | ||||
| Q11_4 | 0.635 | 6.35% | 69.38% | ||||
| Q11_5 | 0.574 | 5.74% | 75.12% | ||||
| Q11_6 | 0.565 | 5.65% | 80.77% | ||||
| Q11_7 | 0.535 | 5.35% | 86.12% | ||||
| Q11_8 | 0.475 | 4.75% | 90.88% | ||||
| Q11_9 | 0.463 | 4.63% | 95.51% | ||||
| Q11_10 | 0.45 | 4.50% | 100% | ||||
| Q12 | Q12_1 | 3.335 | 55.59% | 55.59% | 3.335 | 55.59% | 55.59% |
| Q12_2 | 0.658 | 10.97% | 66.56% | ||||
| Q12_3 | 0.562 | 9.37% | 75.93% | ||||
| Q12_4 | 0.518 | 8.63% | 84.56% | ||||
| Q12_5 | 0.483 | 8.05% | 92.61% | ||||
| Q12_6 | 0.444 | 7.39% | 100% | ||||
| Q13 | Q13_1 | 2.955 | 49.26% | 49.26% | 2.955 | 49.26% | 49.26% |
| Q13_2 | 0.758 | 12.63% | 61.89% | ||||
| Q13_3 | 0.66 | 11.01% | 72.89% | ||||
| Q13_4 | 0.627 | 10.45% | 83.34% | ||||
| Q13_5 | 0.525 | 8.76% | 92.10% | ||||
| Q13_6 | 0.474 | 7.90% | 100% | ||||
| Q14 | Q14_1 | 1.854 | 61.81% | 61.81% | 1.854 | 61.81% | 61.81% |
| Q14_2 | 0.661 | 22.03% | 83.84% | ||||
| Q14_3 | 0.485 | 16.16% | 100% | ||||
| Q15 | Q15_1 | 1.883 | 62.78% | 62.78% | 1.883 | 62.78% | 62.78% |
| Q15_2 | 0.604 | 20.12% | 82.90% | ||||
| Q15_3 | 0.513 | 17.10% | 100% | ||||
Appendix A.5. Tables Related to Exploratory Factor Analysis
| Total Variance Explained | ||||||
|---|---|---|---|---|---|---|
| Component | Variance Explained Before Rotation | Variance Explained After Rotation | ||||
| Eigenvalue | Variance Explained (%) | Cumulative Variance Explained (%) | Eigenvalue | Variance Explained (%) | Cumulative Variance Explained (%) | |
| 1 | 10.783 | 19.605 | 19.605 | 1069.153 | 19.439 | 19.439 |
| 2 | 4.848 | 8.814 | 28.419 | 480.638 | 8.739 | 28.178 |
| 3 | 3.451 | 6.274 | 34.694 | 340.848 | 6.197 | 34.375 |
| 4 | 3.132 | 5.695 | 40.388 | 312.499 | 5.682 | 40.057 |
| 5 | 2.924 | 5.316 | 45.704 | 303.897 | 5.525 | 45.582 |
| 6 | 2.321 | 4.219 | 49.924 | 235.308 | 4.278 | 49.861 |
| 7 | 1.008 | 1.832 | 51.756 | 102.494 | 1.864 | 51.724 |
| 8 | 0.989 | 1.797 | 53.553 | |||
| 9 | 0.882 | 1.604 | 55.158 | |||
| 10 | 0.871 | 1.584 | 56.742 | |||
| 11 | 0.839 | 1.525 | 58.267 | |||
| 12 | 0.822 | 1.494 | 59.761 | |||
| 13 | 0.79 | 1.436 | 61.197 | |||
| 14 | 0.779 | 1.416 | 62.614 | |||
| 15 | 0.751 | 1.365 | 63.978 | |||
| 16 | 0.745 | 1.355 | 65.333 | |||
| 17 | 0.711 | 1.294 | 66.627 | |||
| 18 | 0.692 | 1.258 | 67.885 | |||
| 19 | 0.686 | 1.248 | 69.132 | |||
| 20 | 0.679 | 1.234 | 70.366 | |||
| 21 | 0.66 | 1.199 | 71.566 | |||
| 22 | 0.651 | 1.185 | 72.75 | |||
| 23 | 0.637 | 1.158 | 73.908 | |||
| 24 | 0.629 | 1.144 | 75.053 | |||
| 25 | 0.619 | 1.125 | 76.178 | |||
| 26 | 0.609 | 1.108 | 77.286 | |||
| 27 | 0.594 | 1.081 | 78.367 | |||
| 28 | 0.593 | 1.078 | 79.445 | |||
| 29 | 0.572 | 1.041 | 80.486 | |||
| 30 | 0.565 | 1.027 | 81.512 | |||
| 31 | 0.544 | 0.988 | 82.501 | |||
| 32 | 0.526 | 0.956 | 83.457 | |||
| 33 | 0.518 | 0.941 | 84.398 | |||
| 34 | 0.505 | 0.918 | 85.316 | |||
| 35 | 0.504 | 0.916 | 86.232 | |||
| 36 | 0.488 | 0.888 | 87.12 | |||
| 37 | 0.477 | 0.867 | 87.987 | |||
| 38 | 0.466 | 0.848 | 88.835 | |||
| 39 | 0.443 | 0.805 | 89.639 | |||
| 40 | 0.439 | 0.797 | 90.437 | |||
| 41 | 0.427 | 0.776 | 91.212 | |||
| 42 | 0.421 | 0.765 | 91.977 | |||
| 43 | 0.397 | 0.721 | 92.698 | |||
| 44 | 0.387 | 0.704 | 93.402 | |||
| 45 | 0.384 | 0.698 | 94.1 | |||
| 46 | 0.368 | 0.668 | 94.768 | |||
| 47 | 0.36 | 0.654 | 95.423 | |||
| 48 | 0.35 | 0.636 | 96.059 | |||
| 49 | 0.342 | 0.621 | 96.68 | |||
| 50 | 0.332 | 0.604 | 97.284 | |||
| 51 | 0.325 | 0.591 | 97.875 | |||
| 52 | 0.318 | 0.579 | 98.454 | |||
| 53 | 0.303 | 0.551 | 99.005 | |||
| 54 | 0.282 | 0.512 | 99.517 | |||
| 55 | 0.266 | 0.483 | 100 | |||
| Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | Factor 7 | Communality | |
|---|---|---|---|---|---|---|---|---|
| Q8_1 | −0.076 | 0.062 | 0.081 | 0.579 | 0.044 | 0.003 | −0.022 | 0.353 |
| Q8_2 | 0.022 | 0.044 | 0.029 | 0.716 | 0.109 | −0.084 | 0.026 | 0.536 |
| Q8_3 | −0.049 | −0.02 | −0.059 | 0.739 | −0.06 | −0.005 | 0.052 | 0.559 |
| Q8_4 | 0.003 | 0.026 | 0.068 | 0.759 | 0.021 | 0.03 | −0.038 | 0.584 |
| Q8_5 | −0.002 | 0.032 | 0.005 | 0.745 | −0.032 | 0.004 | 0.042 | 0.559 |
| Q8_6 | 0.002 | 0.02 | −0.052 | 0.713 | −0.021 | 0.02 | −0.092 | 0.52 |
| Q9_1 | 0.72 | 0.002 | 0.009 | −0.066 | 0.072 | −0.048 | 0.158 | 0.555 |
| Q9_2 | 0.704 | 0.012 | −0.02 | −0.021 | 0.069 | 0.043 | −0.241 | 0.561 |
| Q9_3 | 0.696 | 0.024 | 0.012 | −0.044 | 0.023 | 0.03 | 0.056 | 0.492 |
| Q9_4 | 0.675 | 0.108 | 0.104 | 0.064 | 0.016 | −0.054 | 0.104 | 0.497 |
| Q9_5 | 0.73 | −0.017 | 0.01 | 0.035 | 0.016 | −0.047 | 0.008 | 0.537 |
| Q9_6 | 0.643 | −0.02 | −0.044 | −0.01 | 0.043 | 0.118 | 0.265 | 0.502 |
| Q9_7 | 0.518 | −0.018 | −0.014 | −0.035 | −0.066 | −0.047 | 0.054 | 0.28 |
| Q9_8 | 0.724 | 0.045 | 0.073 | −0.058 | 0.005 | −0.014 | 0.031 | 0.536 |
| Q9_9 | 0.677 | 0.03 | 0.049 | −0.014 | 0.072 | −0.089 | −0.011 | 0.474 |
| Q9_10 | 0.714 | 0.021 | −0.006 | 0.046 | −0.063 | 0.008 | 0.02 | 0.517 |
| Q9_11 | 0.488 | 0.05 | −0.065 | −0.055 | 0.039 | 0.011 | 0.593 | 0.601 |
| Q9_12 | 0.681 | −0.01 | 0.077 | −0.046 | 0.06 | 0.042 | −0.031 | 0.478 |
| Q9_13 | 0.702 | 0.015 | −0.061 | −0.03 | −0.025 | −0.042 | −0.013 | 0.5 |
| Q9_14 | 0.683 | −0.012 | −0.062 | 0.02 | 0.084 | −0.061 | 0.013 | 0.482 |
| Q9_15 | 0.688 | 0.087 | −0.023 | 0.034 | −0.022 | −0.047 | 0.056 | 0.488 |
| Q9_16 | 0.555 | −0.055 | −0.027 | 0.018 | −0.023 | 0.015 | −0.025 | 0.313 |
| Q9_17 | 0.688 | 0.016 | 0.074 | −0.077 | −0.014 | 0.003 | −0.09 | 0.494 |
| Q9_18 | 0.724 | −0.011 | 0.043 | −0.017 | −0.043 | −0.016 | 0.051 | 0.532 |
| Q9_19 | 0.695 | 0.084 | −0.02 | 0.034 | 0.034 | −0.024 | 0.079 | 0.5 |
| Q9_20 | 0.753 | −0.01 | −0.025 | −0.031 | 0.01 | −0.031 | 0.1 | 0.58 |
| Q9_21 | 0.693 | 0.062 | 0.045 | 0.013 | 0.009 | 0.011 | −0.127 | 0.503 |
| Q9_22 | 0.716 | −0.034 | 0.086 | 0.016 | 0.023 | −0.086 | −0.089 | 0.538 |
| Q9_23 | 0.706 | −0.004 | 0.015 | −0.024 | 0.009 | 0.022 | −0.036 | 0.501 |
| Q10_1 | −0.062 | 0.015 | −0.009 | −0.001 | 0.069 | 0.737 | −0.111 | 0.564 |
| Q10_2 | −0.022 | 0.027 | −0.03 | 0.003 | −0.032 | 0.736 | 0.142 | 0.565 |
| Q10_3 | −0.02 | −0.004 | −0.015 | −0.04 | −0.036 | 0.781 | 0.029 | 0.615 |
| Q10_4 | −0.085 | 0.036 | 0.009 | 0.011 | −0.019 | 0.755 | −0.055 | 0.582 |
| Q11_1 | 0.045 | 0.727 | −0.028 | 0.037 | −0.024 | 0.054 | −0.089 | 0.544 |
| Q11_2 | 0.038 | 0.692 | −0.002 | −0.073 | 0.022 | 0.076 | 0.154 | 0.516 |
| Q11_3 | 0.018 | 0.714 | −0.014 | 0.008 | −0.016 | 0.01 | −0.041 | 0.513 |
| Q11_4 | 0.066 | 0.703 | 0.019 | 0.000 | 0.06 | 0.01 | 0.037 | 0.504 |
| Q11_5 | 0.014 | 0.55 | −0.056 | 0.141 | 0.129 | 0.006 | −0.118 | 0.357 |
| Q11_6 | 0.029 | 0.499 | −0.008 | 0.01 | −0.007 | 0.025 | −0.465 | 0.467 |
| Q11_7 | −0.034 | 0.736 | 0.021 | 0.029 | 0.027 | −0.006 | 0.081 | 0.551 |
| Q11_8 | 0.062 | 0.747 | −0.003 | 0.037 | −0.021 | −0.011 | −0.079 | 0.571 |
| Q11_9 | −0.026 | 0.724 | 0.043 | −0.031 | −0.056 | −0.002 | 0.164 | 0.558 |
| Q11_10 | −0.011 | 0.741 | −0.032 | 0.05 | 0.019 | −0.059 | −0.076 | 0.563 |
| Q12_1 | 0.025 | −0.06 | 0.758 | 0.041 | 0.044 | 0.056 | 0.028 | 0.586 |
| Q12_2 | 0.033 | 0.019 | 0.763 | 0.059 | −0.003 | 0.001 | 0.002 | 0.587 |
| Q12_3 | 0.047 | −0.003 | 0.652 | 0.015 | −0.091 | 0.009 | −0.11 | 0.448 |
| Q12_4 | 0.009 | −0.004 | 0.768 | −0.006 | 0.024 | −0.019 | 0.015 | 0.592 |
| Q12_5 | −0.005 | 0.009 | 0.753 | −0.007 | −0.032 | −0.019 | 0.065 | 0.573 |
| Q12_6 | 0.045 | −0.014 | 0.758 | −0.019 | −0.016 | −0.078 | −0.031 | 0.585 |
| Q13_1 | 0.067 | 0.04 | −0.009 | −0.034 | 0.721 | −0.037 | −0.025 | 0.528 |
| Q13_2 | 0.033 | −0.04 | −0.011 | −0.037 | 0.771 | 0.018 | −0.106 | 0.61 |
| Q13_3 | 0.042 | −0.037 | 0.032 | 0.045 | 0.766 | −0.027 | −0.115 | 0.607 |
| Q13_4 | −0.005 | 0.035 | 0.013 | 0.103 | 0.587 | 0.015 | 0.159 | 0.382 |
| Q13_5 | −0.015 | 0.037 | −0.086 | 0.019 | 0.686 | −0.003 | 0.117 | 0.494 |
| Q13_6 | 0.008 | 0.062 | −0.015 | −0.028 | 0.643 | 0.013 | −0.015 | 0.419 |
| Component | Variance Explained Before Rotation | Variance Explained After Rotation | ||||
|---|---|---|---|---|---|---|
| Eigenvalue | Variance Explained (%) | Cumulative Variance Explained (%) | Eigenvalue | Variance Explained (%) | Cumulative Variance Explained (%) | |
| 1 | 1.98 | 28.281 | 28.281 | 188.358 | 26.908 | 26.908 |
| 2 | 1.762 | 25.167 | 53.448 | 185.456 | 26.494 | 53.402 |
| 3 | 1.004 | 14.339 | 67.787 | 100.694 | 14.385 | 67.787 |
| 4 | 0.661 | 9.448 | 77.235 | |||
| 5 | 0.601 | 8.587 | 85.822 | |||
| 6 | 0.511 | 7.299 | 93.121 | |||
| 7 | 0.482 | 6.879 | 100 | |||
| Factor 1 | Factor 2 | Factor 3 | Communality | |
|---|---|---|---|---|
| Q14_1 | −0.007 | 0.81 | −0.016 | 0.656 |
| Q14_2 | −0.032 | 0.818 | −0.06 | 0.673 |
| Q14_3 | −0.03 | 0.727 | 0.067 | 0.534 |
| Q15_1 | 0.802 | −0.026 | −0.024 | 0.645 |
| Q15_2 | 0.808 | −0.007 | −0.068 | 0.657 |
| Q15_3 | 0.765 | −0.037 | 0.059 | 0.59 |
| Q16_1 | −0.02 | −0.001 | 0.995 | 0.99 |
References
- Mauerhofer, V.; Santana, S.E. Human Rights and Environmental Sustainability: An Overall Parallel but Globally Multifaceted Development? Editorial Note to a Special Issue. J. Clean. Prod. 2025, 501, 145175. [Google Scholar] [CrossRef]
- Eskander, S.M.S.U.; Fankhauser, S. Reduction in Greenhouse Gas Emissions from National Climate Legislation. Nat. Clim. Change 2020, 10, 750–756. [Google Scholar] [CrossRef]
- Rogelj, J.; Forster, P.M.; Kriegler, E.; Smith, C.J.; Séférian, R. Estimating and Tracking the Remaining Carbon Budget for Stringent Climate Targets. Nature 2019, 571, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad Threat to Humanity from Cumulative Climate Hazards Intensified by Greenhouse Gas Emissions. Nat. Clim. Chang. 2018, 8, 1062–1071. [Google Scholar] [CrossRef]
- Zhang, S.; He, T.; Li, H.; Ding, J.; Zhang, H. Tracing Carbon Emission Drivers and Intersectoral Flows Using Structural and Pathway Analyses. J. Environ. Chem. Eng. 2025, 13, 120442. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Corcoran, J.; Lieske, S.N. Modelling Carbon Generated from Individual Urban Travel Activities: An Empirical Approach Using the Lévy Distribution. Appl. Geogr. 2026, 186, 103837. [Google Scholar] [CrossRef]
- Yang, W.; Wang, W.; Ouyang, S. The Influencing Factors and Spatial Spillover Effects of CO2 Emissions from Transportation in China. Sci. Total Environ. 2019, 696, 133900. [Google Scholar] [CrossRef]
- Li, Q.-Q.; Guo, Y.-T.; Yang, J.-Y.; Liang, C.-S. Review on Main Sources and Impacts of Urban Ultrafine Particles: Traffic Emissions, Nucleation, and Climate Modulation. Atmos. Environ. X 2023, 19, 100221. [Google Scholar] [CrossRef]
- Slimi, K.; Chrouda, A.; Öztop, H.F. Traffic Effects on Global Warming: A Review. Renew. Sustain. Energy Rev. 2026, 226, 116248. [Google Scholar] [CrossRef]
- Duan, Z.; Fu, X.; Tang, D.; Zhong, T.; Zhong, L. Equitable Carbon Budget Allocation: Integrating Travel Mode Preference and Multi-Activity Accessibility. Transp. Res. Part D Transp. Environ. 2025, 146, 104894. [Google Scholar] [CrossRef]
- Wang, W.; Luo, Y.; Jiang, Z.; Zhou, J.; Jia, P. A Deep Learning Framework for Global Transportation Energy Carbon Emission Forecasting: Integrating Generative Pre-Trained Transformer with Multi-Scale Feature Analysis. Energy 2025, 338, 138586. [Google Scholar] [CrossRef]
- De Vos, J.; Cheng, L.; Kamruzzaman, M.; Witlox, F. The Indirect Effect of the Built Environment on Travel Mode Choice: A Focus on Recent Movers. J. Transp. Geogr. 2021, 91, 102983. [Google Scholar] [CrossRef]
- Hoornweg, D.; Sugar, L.; Trejos Gómez, C.L. Cities and Greenhouse Gas Emissions: Moving Forward. Environ. Urban. 2011, 23, 207–227. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, K.; Ho, S.-N.; Tan, X. How Is Commute Mode Choice Related to Built Environment in a High-Density Urban Context? Cities 2023, 134, 104180. [Google Scholar] [CrossRef]
- Sun, S.; Liu, X. Is Bus Riding Always Lower-Carbon than Driving? Quantifying Passenger-Level Carbon Reduction Potential for Bus Travel Incentives in China. Int. J. Sustain. Transp. 2025, 1–18. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W. The Impacts of Individual Behavior on Household Daily Travel Carbon Emissions in Beijing, China. Energy Procedia 2014, 61, 1318–1322. [Google Scholar] [CrossRef]
- Xia, C.; Zhou, J.; Wang, Y.; Zhang, J.; Li, S.; Li, B.; Xue, F.; Tian, D.; Zheng, X.; Zhao, J. How Is the Urban Built Environment Associated with Commuting Carbon Emissions during the COVID-19 Pandemic: A Case Study in Hangzhou, China. Cities 2025, 165, 106100. [Google Scholar] [CrossRef]
- Pucher, J.; Lefèvre, C. The Urban Transport Crisis in Europe and North America; Palgrave Macmillan: London, UK, 1996. [Google Scholar]
- Goodwin, P.B. A Review of New Demand Elasticities with Special Reference to Short and Long Run Effects of Price Changes. J. Transp. Econ. Policy 1992, 26, 155–169. [Google Scholar]
- Newman, P.; Kenworthy, J. Sustainability and Cities: Overcoming Automobile Dependence. Landsc. Urban Plan. 1999, 44, 219–226. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel Demand and the 3Ds: Density, Diversity, and Design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the Built Environment: A Meta-Analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Handy, S.; Boarnet, M.; Ewing, R.; Killingsworth, R. How the Built Environment Affects Physical Activity: Views from Urban Planning. Am. J. Prev. Med. 2002, 23 (Suppl. S1), 64–73. [Google Scholar] [CrossRef] [PubMed]
- Krizek, K.J. Residential Relocation and Changes in Urban Travel: Does Neighborhood-Scale Urban Form Matter? J. Am. Plan. Assoc. 2003, 69, 265–281. [Google Scholar] [CrossRef]
- Fan, A.; Chen, X. Exploring the Relationship between Transport Interventions, Mode Choice, and Travel Perception: An Empirical Study in Beijing, China. Int. J. Environ. Res. Public Health 2020, 17, 4258. [Google Scholar] [CrossRef]
- Park, Y.; Garcia, M. Pedestrian Safety Perception and Urban Street Settings. Int. J. Sustain. Transp. 2020, 14, 860–871. [Google Scholar] [CrossRef]
- Canova, A.; Lazzeroni, P.; Lorenti, G.; Moraglio, F.; Porcelli, A.; Repetto, M. Decarbonizing Residential Energy Consumption under the Italian Collective Self-Consumption Regulation. Sustain. Cities Soc. 2022, 87, 104196. [Google Scholar] [CrossRef]
- Vosough, S.; Poorzahedy, H.; Lindsey, R. Predictive Cordon Pricing to Reduce Air Pollution. Transp. Res. Part D Transp. Environ. 2020, 88, 102564. [Google Scholar] [CrossRef]
- Yang, Y.; Sasaki, K.; Cheng, L.; Liu, X. Gender Differences in Active Travel among Older Adults: Non-Linear Built Environment Insights. Transp. Res. Part D Transp. Environ. 2022, 110, 103405. [Google Scholar] [CrossRef]
- Pereira, R.H.M.; Schwanen, T.; Banister, D. Distributive Justice and Equity in Transportation. Transp. Rev. 2017, 37, 170–191. [Google Scholar] [CrossRef]
- Sallis, J.F. Neighborhood Environment Walkability Scale. Available online: https://drjimsallis.org/ (accessed on 29 October 2025).
- Li, D.; Du, B.; Zhu, J. Evaluating Old Community Renewal Based on Emergy Analysis: A Case Study of Nanjing. Ecol. Model. 2021, 449, 109550. [Google Scholar] [CrossRef]
- Xing, Z.; Guo, W.; Liu, J.; Xu, S. Toward the Sustainable Development of the Old Community: Proposing a Conceptual Framework Based on Meaning Change for Space Redesign of Old Communities and Conducting Design Practices. Sustainability 2022, 14, 4755. [Google Scholar] [CrossRef]
- Qian, C.; Zhou, Y.; Ji, Z.; Feng, Q. The Influence of the Built Environment of Neighborhoods on Residents’ Low-Carbon Travel Mode. Sustainability 2018, 10, 823. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the Built Environment: A Synthesis. Transp. Res. Rec. J. Transp. Res. Board 2001, 1780, 87–114. [Google Scholar] [CrossRef]
- Guan, C.; Srinivasan, S.; Nielsen, C.P. Does Neighborhood Form Influence Low-Carbon Transportation in China? Transp. Res. Part D Transp. Environ. 2019, 67, 406–420. [Google Scholar] [CrossRef]
- Xie, H.; Wang, X.; Wang, Z.; Shi, Z.; Hu, X.; Lin, H.; Xie, X.; Liu, X. Mismatch between Infrastructure Supply and Demand within a 15-Minute Living Circle Evaluation in Fuzhou, China. Heliyon 2023, 9, e20130. [Google Scholar] [CrossRef]
- Jiang, Z.; Wu, C.; Chung, H. The 15-Minute Community Life Circle for Older People: Walkability Measurement Based on Service Accessibility and Street-Level Built Environment–a Case Study of Suzhou, China. Cities 2025, 157, 105587. [Google Scholar] [CrossRef]
- Lu, J. The Influencing Mechanism of Urban Travel Carbon Emissions from the Perspective of Built Environment: The Case of Guangzhou, China. Atmosphere 2023, 14, 547. [Google Scholar] [CrossRef]


| Name | Year | District | Households | Site Area | Number of Floors | Building Type |
|---|---|---|---|---|---|---|
| The staff dormitory of Gonghe Village | 1972 | Wuhou | Approximately 500 | Approximately 0.133 km2 | 6 stories | Staff Dormitory |
| Railway New Village | 1952 | Jinniu | Approximately 900 | Approximately 0.282 km2 | 3 stories | Staff Dormitory |
| Shuangting Home | 1967 | Qingyang | Approximately 750 | Approximately 0.167 km2 | 6 stories | Resettlement Housing |
| No. 6, Lane 1, North Dongfeng Road | 1982 | Chenghua | Approximately 850 | Approximately 0.200 km2 | 6 stories | Resettlement Housing |
| No. 28 Daci Temple Road | 1998 | Jinjiang | Approximately 200 | Approximately 0.067 km2 | 6 stories | Work-unit Allocated Housing |
| Category | Option | Frequency | Percentage (%) |
|---|---|---|---|
| Gender | Male | 225 | 42.694 |
| Female | 282 | 53.510 | |
| Age | 18–30 years old | 44 | 8.349 |
| 31–40 years old | 124 | 23.529 | |
| 41–50 years old | 122 | 23.150 | |
| 51–60 years old | 145 | 27.514 | |
| Over 60 years old | 72 | 13.662 | |
| Education Level | Junior high school or below | 149 | 28.273 |
| High school/technical secondary school | 132 | 25.047 | |
| Junior college | 115 | 21.822 | |
| Undergraduate | 80 | 15.180 | |
| Postgraduate | 31 | 5.882 | |
| Personal Annual Income | Below 50,000 yuan | 106 | 20.114 |
| 50,000–100,000 yuan | 152 | 28.843 | |
| 110,000–150,000 yuan | 132 | 25.047 | |
| 160,000–200,000 yuan | 56 | 10.626 | |
| 210,000–250,000 yuan | 41 | 7.780 | |
| Above 250,000 yuan | 20 | 3.795 | |
| Family Annual Income | Below 50,000 yuan | 101 | 19.165 |
| 50,000–100,000 yuan | 142 | 26.945 | |
| 110,000–150,000 yuan | 122 | 23.150 | |
| 160,000–200,000 yuan | 81 | 15.370 | |
| 210,000–250,000 yuan | 41 | 7.780 | |
| Above 250,000 yuan | 20 | 3.795 | |
| Driver’s License Possession | Yes | 289 | 54.839 |
| No | 218 | 41.366 |
| Category | Weight Removal | Maximum Value | Minimum Value | Median | Mean | Coefficient of Variation | Standard Deviation | Variance | S-W Normality Test |
|---|---|---|---|---|---|---|---|---|---|
| Residential density | 36 | 4.7 | 1.2 | 3 | 3.028 | 0.195 | 0.592 | 0.35 | Satisfied (p = 0.109) |
| Land-use mix—diversity (Diversity) | 36 | 5 | 1 | 3.1 | 3.04 | 0.201 | 0.612 | 0.374 | Satisfied (p = 0.018) |
| Land-use mix—access (Accessibility) | 35 | 4.9 | 1.1 | 3 | 3.018 | 0.209 | 0.63 | 0.396 | Satisfied (p = 0.239) |
| Street connectivity | 33 | 4.6 | 1.1 | 3 | 2.988 | 0.202 | 0.602 | 0.363 | Satisfied (p = 0.040) |
| Aesthetics | 33 | 5 | 1.3 | 3 | 3.019 | 0.194 | 0.586 | 0.343 | Satisfied (p = 0.062) |
| Infrastructure and safety for walking | 36 | 4.9 | 1.2 | 3.1 | 3.07 | 0.205 | 0.628 | 0.394 | Satisfied (p = 0.069) |
| Low-Carbon Attitude | 37 | 4.8 | 1 | 3 | 2.994 | 0.209 | 0.626 | 0.392 | Satisfied (p = 0.084) |
| Low-Carbon intention | 33 | 4.6 | 1.1 | 3.1 | 3.079 | 0.2 | 0.616 | 0.38 | Satisfied (p = 0.088) |
| Policy Advocacy | 5 | 5 | 1 | 3 | 2.99 | 0.376 | 1.125 | 1.265 | Satisfied (p = 0.000) |
| Travel Carbon Emissions | 507 | 0.961 | 0.005 | 0.522 | 0.574 | 0.219 | 0.003 | 0 | Satisfied (p = 0.096) |
| Category | Unstandardized Coefficient | Standardized Coefficient | t | p | Collinearity Diagnosis | ||
|---|---|---|---|---|---|---|---|
| B | S.E. | Beta | VIF | Tolerance | |||
| Constant | 1.366 | 0.024 | - | 56.141 | 0.000 *** | - | - |
| Residential density | 0.003 | 0.004 | 0.011 | 0.677 | 0.499 | 1.035 | 0.966 |
| Diversity | −0.081 | 0.003 | −0.374 | −23.294 | 0.000 *** | 1.060 | 0.943 |
| Accessibility | −0.090 | 0.004 | −0.377 | −23.733 | 0.000 *** | 1.038 | 0.964 |
| Street connectivity | −0.098 | 0.004 | −0.398 | −24.579 | 0.000 *** | 1.077 | 0.928 |
| Aesthetics | −0.084 | 0.003 | −0.394 | −24.602 | 0.000 *** | 1.057 | 0.946 |
| Infrastructure and safety for walking | −0.006 | 0.004 | −0.026 | −1.615 | 0.107 | 1.065 | 0.939 |
| Gender (Male) | 0.113 | 0.005 | 0.327 | 20.535 | 0.000 *** | 1.047 | 0.955 |
| 31–40 years old | −0.070 | 0.011 | −0.175 | −6.449 | 0.000 *** | 3.030 | 0.330 |
| 41–50 years old | −0.130 | 0.011 | −0.324 | −11.765 | 0.000 *** | 3.123 | 0.320 |
| 51–60 years old | −0.180 | 0.011 | −0.476 | −16.849 | 0.000 *** | 3.284 | 0.304 |
| Over 60 years old | −0.245 | 0.012 | −0.500 | −20.643 | 0.000 *** | 2.413 | 0.414 |
| High school/technical secondary school | 0.008 | 0.007 | 0.021 | 1.118 | 0.264 | 1.491 | 0.671 |
| Junior college | −0.001 | 0.008 | −0.003 | −0.177 | 0.860 | 1.401 | 0.714 |
| Undergraduate | 0.005 | 0.009 | 0.011 | 0.631 | 0.529 | 1.357 | 0.737 |
| Postgraduate | 0.022 | 0.012 | 0.030 | 1.791 | 0.074 * | 1.191 | 0.840 |
| Personal Annual Income Below 50,000 yuan | −0.005 | 0.008 | −0.012 | −0.610 | 0.542 | 1.516 | 0.660 |
| Personal Annual Income 50,000–100,000 yuan | 0.007 | 0.007 | 0.017 | 0.894 | 0.372 | 1.568 | 0.638 |
| Personal Annual Income 160,000–200,000 yuan | −0.004 | 0.009 | −0.007 | −0.376 | 0.707 | 1.381 | 0.724 |
| Personal Annual Income Above 250,000 yuan | −0.002 | 0.013 | −0.003 | −0.189 | 0.850 | 1.222 | 0.818 |
| Family Annual Income Below 50,000 yuan | −0.010 | 0.008 | −0.023 | −1.272 | 0.204 | 1.362 | 0.734 |
| Family Annual Income 50,000–100,000 yuan | −0.003 | 0.007 | −0.007 | −0.385 | 0.701 | 1.435 | 0.697 |
| Family Annual Income 160,000–200,000 yuan | 0.001 | 0.008 | 0.003 | 0.186 | 0.853 | 1.352 | 0.740 |
| Family Annual Income (210,000–250,000) yuan | −0.010 | 0.013 | −0.013 | −0.782 | 0.435 | 1.177 | 0.850 |
| Driver’s License Possession (Yes) | 0.000 | 0.006 | 0.001 | 0.044 | 0.965 | 1.058 | 0.945 |
| Vehicle Ownership of Car/Electric Bike | 0.007 | 0.008 | 0.018 | 0.880 | 0.379 | 1.694 | 0.590 |
| Vehicle Ownership of 2 Types | −0.003 | 0.008 | −0.006 | −0.317 | 0.751 | 1.645 | 0.608 |
| Vehicle Ownership of 3 Types | 0.010 | 0.008 | 0.025 | 1.217 | 0.224 | 1.761 | 0.568 |
| R2 | 0.884 | ||||||
| Adjusted R2 | 0.877 | ||||||
| F | F(27, 479) = 134.775, p = 0.000 | ||||||
| D-W Value | 2.180 | ||||||
| Overall | (1) 18–30 Years Old | (2) 31–60 Years Old | (3) Over 60 Years Old | |||||
|---|---|---|---|---|---|---|---|---|
| B | p | B | p | B | p | B | p | |
| Constant | 1.290 | 0.000 *** | 1.475 | 0.000 *** | 1.317 | 0.000 *** | 1.153 | 0.000 *** |
| Residential density | 0.007 | 0.261 | −0.015 | 0.330 | 0.002 | 0.746 | 0.010 | 0.463 |
| Diversity | −0.077 | 0.000 *** | −0.057 | 0.007 *** | −0.078 | 0.000 *** | −0.077 | 0.000 *** |
| P Stastic | / | 0.139 | 0.907 | 0.243 | ||||
| Accessibility | −0.085 | 0.000 *** | −0.100 | 0.000 *** | −0.092 | 0.000 *** | −0.088 | 0.000 *** |
| P Stastic | / | 0.384 | 0.754 | 0.342 | ||||
| Street connectivity | −0.104 | 0.000 *** | −0.134 | 0.000 *** | −0.097 | 0.000 *** | −0.107 | 0.000 *** |
| P Stastic | / | 0.000 *** | 0.356 | 0.027 ** | ||||
| Aesthetics | −0.078 | 0.000 *** | −0.079 | 0.000 *** | −0.079 | 0.000 *** | −0.080 | 0.000 *** |
| P Stastic | / | 0.967 | 0.921 | 0.909 | ||||
| Infrastructure and safety for walking | −0.008 | 0.159 | 0.035 | 0.059 * | −0.009 | 0.094 * | 0.009 | 0.475 |
| Female | −0.111 | 0.000 *** | −0.126 | 0.000 *** | −0.106 | 0.000 *** | −0.134 | 0.000 *** |
| High school/technical secondary school | 0.016 | 0.149 | 0.046 | 0.155 | 0.007 | 0.499 | 0.036 | 0.169 |
| Junior college | −0.005 | 0.675 | −0.009 | 0.826 | −0.010 | 0.348 | 0.033 | 0.176 |
| Undergraduate | 0.007 | 0.592 | −0.013 | 0.702 | −0.003 | 0.796 | 0.040 | 0.120 |
| Postgraduate | 0.017 | 0.363 | 0.100 | 0.264 | 0.028 | 0.110 | 0.032 | 0.374 |
| Personal Annual Income 50,000–100,000 yuan | 0.010 | 0.375 | −0.007 | 0.821 | 0.011 | 0.301 | 0.008 | 0.733 |
| Personal Annual Income 110,000–150,000 yuan | 0.005 | 0.663 | −0.030 | 0.296 | 0.009 | 0.394 | −0.013 | 0.585 |
| Personal Annual Income 160,000–200,000 yuan | 0.014 | 0.327 | 0.022 | 0.527 | −0.004 | 0.748 | −0.009 | 0.761 |
| Personal Annual Income Above 250,000 yuan | 0.023 | 0.237 | −0.028 | 0.423 | −0.011 | 0.548 | 0.026 | 0.610 |
| Family Annual Income 50,000–100,000 yuan | 0.013 | 0.304 | −0.097 | 0.011 ** | 0.012 | 0.312 | 0.022 | 0.434 |
| Family Annual Income 110,000–150,000 yuan | 0.010 | 0.418 | −0.039 | 0.199 | 0.022 | 0.063 * | 0.013 | 0.563 |
| Family Annual Income 160,000–200,000 yuan | 0.015 | 0.268 | −0.100 | 0.011 ** | 0.013 | 0.286 | 0.024 | 0.440 |
| Family Annual Income 210,000–250,000 yuan | 0.024 | 0.236 | −0.087 | 0.053 * | 0.018 | 0.367 | 0.004 | 0.935 |
| Driver’s License Possession (Yes) | −0.011 | 0.185 | 0.025 | 0.231 | −0.004 | 0.603 | −0.016 | 0.379 |
| Vehicle Ownership of Car/Electric Bike | 0.012 | 0.320 | 0.025 | 0.432 | 0.013 | 0.244 | 0.008 | 0.732 |
| Vehicle Ownership of 2 Types | 0.012 | 0.336 | 0.024 | 0.517 | −0.005 | 0.639 | 0.045 | 0.094 * |
| Vehicle Ownership of 3 Types | 0.035 | 0.004 *** | 0.036 | 0.251 | 0.020 * | 0.079 | 0.022 | 0.380 |
| R2 | 0.725 | 0.959 | 0.791 | 0.902 | ||||
| Adjusted R2 | 0.711 | 0.913 | 0.778 | 0.855 | ||||
| F | F(23, 483) = 55.250, p = 0.000 | F(23, 20) = 20.570, p = 0.000 | F(23, 367) = 60.399, p = 0.000 | F(23, 48) = 19.272, p = 0.000 | ||||
| Overall | Male | Female | ||||
|---|---|---|---|---|---|---|
| B | p | B | p | B | p | |
| Constant | 1.394 | 0.000 *** | 1.445 | 0.000 *** | 1.361 | 0.000 *** |
| Residential density | 0.009 | 0.076 * | 0.003 | 0.639 | 0.003 | 0.545 |
| Diversity | −0.083 | 0.000 *** | −0.079 | 0.000 *** | −0.082 | 0.000 *** |
| P Stastic | / | 0.636 | ||||
| Accessibility | −0.089 | 0.000 *** | −0.086 | 0.000 *** | −0.094 | 0.000 *** |
| P Stastic | / | 0.257 | ||||
| Street connectivity | −0.101 | 0.000 *** | −0.098 | 0.000 *** | −0.099 | 0.000 *** |
| P Stastic | / | 0.851 | ||||
| Aesthetics | −0.091 | 0.000 *** | −0.088 | 0.000 *** | −0.080 | 0.000 *** |
| P Stastic | / | 0.253 | ||||
| Infrastructure and safety for walking | −0.004 | 0.407 | −0.005 | 0.375 | −0.007 | 0.149 |
| 31–40 years old | −0.073 | 0.000 *** | −0.083 | 0.000 *** | −0.061 | 0.000 *** |
| 41–50 years old | −0.130 | 0.000 *** | −0.132 | 0.000 *** | −0.126 | 0.000 *** |
| 51–60 years old | −0.178 | 0.000 *** | −0.191 | 0.000 *** | −0.174 | 0.000 *** |
| Over 60 years old | −0.247 | 0.000 *** | −0.245 | 0.000 *** | −0.245 | 0.000 *** |
| High school/technical secondary school | 0.021 | 0.043 ** | 0.017 | 0.124 | 0.004 | 0.709 |
| Junior college | 0.003 | 0.752 | −0.003 | 0.809 | 0.000 | 0.994 |
| Undergraduate | 0.017 | 0.155 | 0.013 | 0.297 | 0.001 | 0.942 |
| Postgraduate | 0.039 | 0.018 ** | 0.008 | 0.646 | 0.040 | 0.028 ** |
| Personal Annual Income 50,000–100,000 yuan | 0.015 | 0.146 | 0.025 | 0.019 ** | 0.002 | 0.881 |
| Personal Annual Income 110,000–150,000 yuan | −0.004 | 0.704 | −0.009 | 0.420 | 0.014 | 0.198 |
| Personal Annual Income 160,000–200,000 yuan | −0.005 | 0.713 | 0.016 | 0.262 | −0.005 | 0.678 |
| Personal Annual Income Above 250,000 yuan | 0.018 | 0.292 | 0.007 | 0.672 | 0.002 | 0.903 |
| Family Annual Income 50,000–100,000 yuan | 0.014 | 0.225 | 0.012 | 0.318 | 0.005 | 0.643 |
| Family Annual Income 110,000–150,000 yuan | 0.015 | 0.163 | 0.012 | 0.313 | 0.011 | 0.314 |
| Family Annual Income 160,000–200,000 yuan | 0.016 | 0.187 | 0.014 | 0.288 | 0.010 | 0.409 |
| Family Annual Income 210,000–250,000 yuan | 0.001 | 0.960 | −0.006 | 0.762 | 0.001 | 0.950 |
| Driver’s License Possession (Yes) | −0.003 | 0.717 | 0.009 | 0.249 | −0.008 | 0.322 |
| Vehicle Ownership of Car/Electric Bike | 0.011 | 0.280 | 0.012 | 0.294 | 0.004 | 0.718 |
| Vehicle Ownership of 2 Types | −0.001 | 0.928 | −0.000 | 0.984 | −0.001 | 0.925 |
| Vehicle Ownership of 3 Types | 0.018 | 0.096 * | 0.016 | 0.174 | 0.008 | 0.455 |
| R2 | 0.783 | 0.874 | 0.871 | |||
| Adjusted R2 | 0.770 | 0.855 | 0.856 | |||
| F | F(29, 477) = 59.415, p = 0.000 | F(29, 195) = 46.572, p = 0.000 | F(29, 252) = 58.447, p = 0.000 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cao, W.; Zhou, B.; Qin, Y.; Feng, T. The Influence of Built Environment on Travel Carbon Emissions in Old Communities: A Case Study of Chengdu. Land 2026, 15, 26. https://doi.org/10.3390/land15010026
Cao W, Zhou B, Qin Y, Feng T. The Influence of Built Environment on Travel Carbon Emissions in Old Communities: A Case Study of Chengdu. Land. 2026; 15(1):26. https://doi.org/10.3390/land15010026
Chicago/Turabian StyleCao, Wenchang, Bo Zhou, Yuxuan Qin, and Tian Feng. 2026. "The Influence of Built Environment on Travel Carbon Emissions in Old Communities: A Case Study of Chengdu" Land 15, no. 1: 26. https://doi.org/10.3390/land15010026
APA StyleCao, W., Zhou, B., Qin, Y., & Feng, T. (2026). The Influence of Built Environment on Travel Carbon Emissions in Old Communities: A Case Study of Chengdu. Land, 15(1), 26. https://doi.org/10.3390/land15010026

