Accounting for the Environmental Costs of Nature-Based Solutions Through Indirect Monetization of Ecosystem Services: Evidence from European Practices and Implementations
Abstract
1. Introduction
Background
2. Materials and Methods
2.1. Literature Review
2.1.1. Ecosystem Services Monetization
2.1.2. Cost Accounting for Nature-Based Solutions
2.2. Environmental Cost Accounting of Nature-Based Solutions Through the ES Monetization
Ecosystem Services Cost Accounting (ES-CA) Algorithm
- = total environmental cost of the i-th NBS;
- = area of the intervention expressed as the square meters of surface being transformed via the project;
- = unit cost per unit of the project;
- = coefficients for indirect impacts or externalities, often monetized via Willingness To Pay (WTP);
- = initial investment cost;
- = share of the investment attributable to environmental objectives, i.e., the portion of costs directed toward nature-positive targets such as biodiversity conservation or air quality improvement. This depends on the NBS typology, as well as on the degree of integration between artificial and natural components within the intervention. When the project is entirely nature-based (e.g., a forestry investment), . Otherwise, it can assume values lower than one (), approaching zero in the case of gray projects.
3. ES-CA Tool Implementation Across European NBS Categories
- Equation (5) is linear in its algebraic structure, and alternative configurations were not tested.
- The ρ coefficient is assumed to be equal to the value observed by Drupp et al. (2025), namely 0.6 [64]. No distinction is made across different ecosystem service (ES) categories.
- The γ coefficient is assumed to be 1, implying that the investment cost is considered to be entirely directed toward achieving environmental and nature-positive objectives, such as adaptation and mitigation of climate change through greening actions via NBSs.
- The analysis is performed using the NBS category as the unit of assessment, rather than concentrating on specific typologies or their spatial distribution across European countries. This approach adopts a pan-European perspective, considering the NBSs in a general context.
Implementation Results
4. Discussion
4.1. Policy Instrument
Alignment with the EU Biodiversity Strategy and Climate Adaptation Strategy
4.2. Economic Valuation
Novelty of Indirect Monetization of Ecosystem Services
4.3. Social Equity
Supporting Social and Biodiversity Objectives
4.4. Technology for Assessment
Evidence-Based Policy and Adaptive Governance
4.5. Ecological Dynamic
Long-Term Ecosystem Functioning and Climate Resilience
4.6. Legal Frameworks and Compensation Schemes
Internalizing Environmental Value in Planning and Investment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balzan, M.V. Assessing ecosystem services for evidence-based nature-based solutions. arXiv 2021, arXiv:2105.05672. [Google Scholar]
- Chelli, A.; Brander, L.; Geneletti, D. Cost–benefit analysis of urban nature-based solutions: A systematic review of approaches and scales with a focus on benefit valuation. Ecosyst. Serv. 2025, 71, 101684. [Google Scholar] [CrossRef]
- Almenar, J.B.; Elliot, T.; Rugani, B.; Philippe, B.; Gutierrez, T.N.; Sonnemann, G.; Geneletti, D. Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use Policy 2021, 100, 104898. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- IUCN-2020-020; IUCN Global Standard for Nature-Based Solutions. International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2020.
- OECD. Nature-Based Solutions for Adapting to Water-Related Climate Risks; OECD Environment Policy Papers, No. 21; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- IPBES-IPCC Co-Sponsored Workshop Report on Biodiversity and Climate Change. 2021. Available online: https://www.ipbes.net/events/ipbes-ipcc-co-sponsored-workshop-biodiversity-and-climate-change (accessed on 4 January 2026).
- Donatti, C.I.; Martinez-Rodriguez, M.R.; Fedele, G.; Harvey, C.A.; Andrade, A.; Scorgie, S.; Rose, C. Guidlines for Designing, Implementing and Monitoring Nature-Based Solutions for Adaptation, 2nd ed.; Conservation Internationale: Arlington, VA, USA, 2021. [Google Scholar] [CrossRef]
- Nelson, F.; Combe, M. What are the task force on nature-related financial disclosures. Equity 2022, 36, 20–21. [Google Scholar]
- Certini, G.; Grilli, G.; Scalenghe, R. The monetization of soil: An emerging imperative? Land Use Policy 2025, 158, 107750. [Google Scholar] [CrossRef]
- Kogler, M.; Scharf, B.; Göschl, C.; Jech, M.; Pitha, U.; Stangl, R. Evaluation and monetisation of ecosystem services with real-time weather data and machine learning. Urban For. Urban Green. 2025, 111, 128860. [Google Scholar] [CrossRef]
- Ayuso, S.; Hereu, A.; Ventalló, E. Societal Impact of the Catalan Cork Industry: Measuring Its Socioeconomic and Environmental Value. Sustainability 2025, 17, 5899. [Google Scholar] [CrossRef]
- Wang, J.; Fu, M.; Han, X.; Wu, Y.; Wen, H. Research on Human Needs and the Valorization of Supply–Need Relationships in Ecosystem Services—A Case Study of the Southwest Karst Region. Land 2025, 14, 588. [Google Scholar] [CrossRef]
- Addamo, A.M.; La Notte, A.; Ferrini, S.; Grilli, G. Marine ecosystem services of seagrass in physical and monetary terms: The Mediterranean Sea case study. Ecol. Econ. 2025, 227, 108420. [Google Scholar] [CrossRef]
- Sadgui, O.; Khattabi, A. Economic Assessment of Hydrologic Ecosystem Services in Morocco’s Protected Areas: A Case Study of Ifrane National Park. Sustainability 2024, 16, 8800. [Google Scholar] [CrossRef]
- Ljubojević, M.; Buča, B.; Šarac, V.; Narandžić, T.; Panagopoulos, T. Assessment of Supercell Storm-Induced Uprooting of Amenity Trees—Monetization of Environmental and Socio-Economic Losses. Land 2024, 13, 1540. [Google Scholar] [CrossRef]
- Yuan, M.; Han, F.; Ma, X.; Wang, T.; Liang, Q. Recreational Ecosystem Services in the Qinghai–Tibet Plateau National Park Group: Mapping, Monetization, and Evaluation. Land 2024, 13, 682. [Google Scholar] [CrossRef]
- Zanini, S.F.; de Carli, A.; Rizzo, A.; Conte, G.; Masi, F. Monetization of Ecosystem Services from Nature-Based Solutions for Agricultural Diffuse Pollution Control: Simplified Value Transfer Method at European Scale. Water 2024, 16, 898. [Google Scholar] [CrossRef]
- Taelman, S.E.; De Luca Peña, L.V.; Préat, N.; Bachmann, T.M.; Van der Biest, K.; Maes, J.; Dewulf, J. Integrating ecosystem services and life cycle assessment: A framework accounting for local and global (socio-) environmental impacts. Int. J. Life Cycle Assess. 2024, 29, 99–115. [Google Scholar] [CrossRef]
- Drenning, P.; Volchko, Y.; Ahrens, L.; Rosén, L.; Söderqvist, T.; Norrman, J. Comparison of PFAS soil remediation alternatives at a civilian airport using cost-benefit analysis. Sci. Total Environ. 2023, 882, 163664. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cheng, Z.; Liang, W.; Ding, L. For the Better Protection of Wetland Resources: Net Value of Ecosystem Services after Protective Development of Xixi Wetland in Hangzhou, China. Sustainability 2023, 15, 5913. [Google Scholar] [CrossRef]
- Bidolakh, D. Assessment of ecosystem functions of green spaces as an important component of their inventory in the context of sustainable development of urban landscapes. Ukr. J. For. Wood Sci. 2023, 14, 8–26. [Google Scholar] [CrossRef]
- Krzemień, A.; Álvarez Fernández, J.J.; Riesgo Fernández, P.; Fidalgo Valverde, G.; Garcia-Cortes, S. Valuation of Ecosystem Services Based on EU Carbon Allowances—Optimal Recovery for a Coal Mining Area. Int. J. Environ. Res. Public Health 2023, 20, 381. [Google Scholar] [CrossRef]
- Bidolakh, D.; Kolesnichenko, O. Assessment of ecosystem functions of public green spaces in the city of Berezhany, Ternopil region. Sci. Horiz. 2023, 26, 96–108. [Google Scholar] [CrossRef]
- Katz, O. The ecosystem services framework in archaeology (and vice versa). People Nat. 2022, 4, 1450–1460. [Google Scholar] [CrossRef]
- Wagner, M.; Winkler, B.; Lask, J.; Weik, J.; Kiesel, A.; Koch, M.; Clifton-Brown, J.; von Cossel, M. The True Costs and Benefits of Miscanthus Cultivation. Agronomy 2022, 12, 3071. [Google Scholar] [CrossRef]
- Krzemień, A.; Álvarez Fernández, J.J.; Riesgo Fernández, P.; Fidalgo Valverde, G.; Garcia-Cortes, S. Restoring Coal Mining-Affected Areas: The Missing Ecosystem Services. Int. J. Environ. Res. Public Health 2022, 19, 14200. [Google Scholar] [CrossRef]
- Everard, M.; Bradley, P.; Ogden, W.; Piscopiello, E.; Salter, L.; Herbert, S.; McInnes, R. Reassessing the multiple values of lowland British floodplains. Sci. Total Environ. 2022, 823, 153637. [Google Scholar] [CrossRef]
- Gapinski, C.M.; Vollheyde, A.-L.; von Haaren, C. Application of the ecosystem services concept in stakeholder communication—Results of a workshop including a planning game at the Lower Mulde River (Dessau-Roßlau, Germany). Int. Rev. Hydrobiol. 2022, 107, 128–139. [Google Scholar] [CrossRef]
- Takahashi, T.; Tsuge, T.; Shibata, S. Innovativeness of Japanese Forest Owners Regarding the Monetization of Forest Ecosystem Services. Sustainability 2022, 14, 2119. [Google Scholar] [CrossRef]
- Semenyuk, O.V.; Stoma, G.V.; Bodrova, K.S. Evaluation of the Cost of Ecosystem Services of Urban Landscapes (by the Example of Moscow). Eurasian Soil Sci. 2021, 54, 1975–1986. [Google Scholar] [CrossRef]
- Dobre, A.C.; Pascu, I.-S.; Leca, S.; Garcia-Duro, J.; Dobrota, C.-E.; Tudoran, G.M.; Badea, O. Applications of TLS and ALS in Evaluating Forest Ecosystem Services: A Southern Carpathians Case Study. Forests 2021, 12, 1269. [Google Scholar] [CrossRef]
- Bubicha, M.J.; Mwaura, F. Characterization and monetization of Mount Marsabit ecosystem watershed services, Marsabit County, Kenya. East Afr. J. Sci. Technol. Innov. 2021, 2, 20220092676. [Google Scholar] [CrossRef]
- Ullmann, J.; Grimm, D. Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Org. Agric. 2021, 11, 261–267. [Google Scholar] [CrossRef]
- Rizzo, A.; Conte, G.; Masi, F. Adjusted Unit Value Transfer as a Tool for Raising Awareness on Ecosystem Services Provided by Constructed Wetlands for Water Pollution Control: An Italian Case Study. Int. J. Environ. Res. Public Health 2021, 18, 1531. [Google Scholar] [CrossRef]
- Krozer, Y.; Coenen, F.; Hanganu, J.; Lordkipanidze, M.; Sbarcea, M. Towards Innovative Governance of Nature Areas. Sustainability 2020, 12, 10624. [Google Scholar] [CrossRef]
- Carrasco, A.R. Simple Assessment of Spatio-Temporal Evolution of Salt Marshes Ecological Services. Front. Ecol. Evol. 2019, 7, 77. [Google Scholar] [CrossRef]
- Temel, J.; Jones, A.; Jones, N.; Balint, L. Limits of monetization in protecting ecosystem services. Conserv. Biol. 2018, 32, 1048–1062. [Google Scholar] [CrossRef]
- Pechanec, V.; Machar, I.; Sterbova, L.; Prokopova, M.; Kilianova, H.; Chobot, K.; Cudlin, P. Monetary Valuation of Natural Forest Habitats in Protected Areas. Forests 2017, 8, 427. [Google Scholar] [CrossRef]
- Greenhalgh, S.; Samarasinghe, O.; Curran-Cournane, F.; Wright, W.; Brown, P. Using ecosystem services to underpin cost–benefit analysis: Is it a way to protect finite soil resources? Ecosyst. Serv. 2017, 27, 1–14. [Google Scholar] [CrossRef]
- Lupp, G.; Förster, B.; Kantelberg, V.; Markmann, T.; Naumann, J.; Honert, C.; Koch, M.; Pauleit, S. Assessing the Recreation Value of Urban Woodland Using the Ecosystem Service Approach in Two Forests in the Munich Metropolitan Region. Sustainability 2016, 8, 1156. [Google Scholar] [CrossRef]
- Cordier, M.; Pérez Agúndez, J.A.; Hecq, W.; Hamaide, B. A guiding framework for ecosystem services monetization in ecological–economic modeling. Ecosyst. Serv. 2014, 8, 86–96. [Google Scholar] [CrossRef]
- Faucher, M.; Grellier, S.; Chaudron, C.; Janeau, J.-L.; Rudi, G.; Vinatier, F. Secondary Seed Dispersal by Hydrochory During Surface Runoff Inside a Mediterranean Vineyard. Eur. J. Soil Sci. 2025, 76, e70257. [Google Scholar] [CrossRef]
- Ahmed, I.; Rehan, M.; Alqahtani, M.; Khalid, M. Microgrid modernisation using exponential decentralised consensus-based energy assessment by considering renewable generation uncertainties and operational price analysis. Results Eng. 2025, 27, 105731. [Google Scholar] [CrossRef]
- Nallainathan, S.; Arefi, A.; Lund, C.; Mehrizi-Sani, A. Allocation of Cost of Reliability to Various Customer Sectors in a Standalone Microgrid System. Energies 2025, 18, 3237. [Google Scholar] [CrossRef]
- Safavi, V.; Vaniar, A.M.; Bazmohammadi, N.; Vasquez, J.C.; Keysan, O.; Guerrero, J.M. A battery degradation-aware energy management system for agricultural microgrids. J. Energy Storage 2025, 108, 115059. [Google Scholar] [CrossRef]
- Houston, A.; Kennedy, H.; Austin, W.E.N. Additionality in Blue Carbon Ecosystems: Recommendations for a Universally Applicable Accounting Methodology. Glob. Change Biol. 2024, 30, e17559. [Google Scholar] [CrossRef]
- Abeywickrama, H.G.K.; Bajón-Fernández, Y.; Srinamasivayam, B.; Turner, D.; Rivas Casado, M. Monitoring CH4 Fluxes in Sewage Sludge Treatment Centres: Challenging Emission Underreporting. Remote Sens. 2024, 16, 2280. [Google Scholar] [CrossRef]
- Alshehri, K.; Chen, I.-C.; Rugani, B.; Sapsford, D.; Harbottle, M.; Cleall, P. A novel uncertainty assessment protocol for integrated ecosystem services-life cycle assessments: A comparative case of nature-based solutions. Sustain. Prod. Consum. 2024, 47, 499–515. [Google Scholar] [CrossRef]
- Kalaidjian, E.; Kurth, M.; Kucharski, J.; Galaitsi, S.; Yeates, E. Human well-being and natural infrastructure: Assessing opportunities for equitable project planning and implementation. Front. Ecol. Evol. 2024, 12, 1271182. [Google Scholar] [CrossRef]
- Pan, C.; Li, C.; An, A.; Deng, G.; Lin, J.K.; He, J.; Li, J.F.; Zhu, X.; Zhou, G.; Shrestha, A.K.; et al. Canada’s Green Gold: Unveiling Challenges, Opportunities, and Pathways for Sustainable Forestry Offsets. Forests 2023, 14, 2206. [Google Scholar] [CrossRef]
- Araya-Lopez, R.; Costa, M.D.P.; Wartman, M.; Macreadie, P.I. Trends in the application of remote sensing in blue carbon science. Ecol. Evol. 2023, 13, e10559. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, K.; Harbottle, M.; Sapsford, D.; Beames, A.; Cleall, P. Integration of ecosystem services and life cycle assessment allows improved accounting of sustainability benefits of nature-based solutions for brownfield redevelopment. J. Clean. Prod. 2023, 413, 137352. [Google Scholar] [CrossRef]
- Kang, S.; Kroeger, T.; Shemie, D.; Echavarria, M.; Montalvo, T.; Bremer, L.L.; Bennett, G.; Barreto, S.R.; Bracale, H.; Calero, C.; et al. Investing in nature-based solutions: Cost profiles of collective-action watershed investment programs. Ecosyst. Serv. 2023, 59, 101507. [Google Scholar] [CrossRef]
- Zheng, H.; Guo, M.; Wang, Q.; Zhang, Q.; Akita, N. A Bibliometric Analysis of Current Knowledge Structure and Research Progress Related to Urban Community Garden Systems. Land 2023, 12, 143. [Google Scholar] [CrossRef]
- Kurth, M.H.; Piercy, C.D.; Jackson, C.R.; Lemasson, B.H.; Harris, B.D. Life cycle management of natural infrastructure: Assessment of state of practice and current tools. Front. Built Environ. 2024, 9, 1181835. [Google Scholar] [CrossRef]
- Basel, B.; Hoogesteger, J.; Hellegers, P. Promise and paradox: A critical sociohydrological perspective on small-scale managed aquifer recharge. Front. Water 2022, 4, 1002721. [Google Scholar] [CrossRef]
- Pan, Z.; Brouwer, R.; Emelko, M.B. Correlating forested green infrastructure to water rates and adverse water quality incidents: A spatial instrumental variable regression model. For. Policy Econ. 2022, 140, 102756. [Google Scholar] [CrossRef]
- Morán-Ordóñez, A.; Hermoso, V.; Martínez-Salinas, A. Multi-objective forest restoration planning in Costa Rica: Balancing landscape connectivity and ecosystem service provisioning with sustainable development. J. Environ. Manag. 2022, 310, 114717. [Google Scholar] [CrossRef]
- Tan, Z.D.; Carrasco, L.R.; Sutikno, S.; Taylor, D. Peatland restoration as an affordable nature-based climate solution with fire reduction and conservation co-benefits in Indonesia. Environ. Res. Lett. 2022, 17, 064028. [Google Scholar] [CrossRef]
- Siciliano, G.; Barontini, F.; Islam, D.M.Z.; Zunder, T.H.; Mahler, S.; Grossoni, I. Adapted cost-benefit analysis methodology for innovative railway services. Eur. Transp. Res. Rev. 2016, 8, 23. [Google Scholar] [CrossRef]
- Morte, R.; Pereira, T.; Fontes, D.B.M.M. MCDA applied to performance appraisal of short-haul truck drivers: A case study in a Portuguese trucking company. Int. J. Qual. Res. 2015, 9, 65–76. [Google Scholar]
- Challet, D. The demise of constant price impact functions and single-time step models of speculation. Phys. A Stat. Mech. Its Appl. 2006, 382, 29–35. [Google Scholar] [CrossRef]
- Drupp, M.A.; Turk, Z.M.; Groom, B.; Heckenhahn, J. Global evidence on the income elasticity of willingness to pay, relative price changes and public natural capital values. Environ. Resour. Econ. 2025, 88, 3765–3804. [Google Scholar] [CrossRef]



| Topic | SCOPUS Search String |
|---|---|
| ES monetization | (TITLE-ABS-KEY (ecosystem services) AND TITLE-ABS-KEY (monetization)) AND (LIMIT-TO (OA, “all”)) AND (LIMIT-TO (PUBSTAGE, “final”)) AND (LIMIT-TO (EXACTKEYWORD, “Ecosystem Service”) OR LIMIT-TO (EXACTKEYWORD, “Ecosystem Services”) OR LIMIT-TO (EXACTKEYWORD, “Environmental Economics”) OR LIMIT-TO (EXACTKEYWORD, “Monetization”) OR LIMIT-TO (EXACTKEYWORD, “Monetary Valuation”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) |
| NBS costs accounting | (TITLE-ABS-KEY (nature based solution) AND TITLE-ABS-KEY (cost) AND TITLE-ABS-KEY (accounting)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (PUBSTAGE, “final”)) AND (LIMIT-TO (OA, “all”)) AND (LIMIT-TO (EXACTKEYWORD, “Nature-based Solutions”) OR LIMIT-TO (EXACTKEYWORD, “Nature-based Solution”) OR LIMIT-TO (EXACTKEYWORD, “Cost Accounting”) OR LIMIT-TO (EXACTKEYWORD, “Cost Effectiveness”) OR LIMIT-TO (EXACTKEYWORD, “Costs”) OR LIMIT-TO (EXACTKEYWORD, “Cost Estimating”)) |
| Challenge Addressed | European NBS Categories | ||||||
|---|---|---|---|---|---|---|---|
| Blue Infrastructure | Community Gardens and Allotments | Green Areas for Water Management | Gray Infrastructure Featuring Greens | Nature in Buildings (Indoor) | Nature on Buildings (External) | Parks and Urban Forests | |
| NBS category count [n.] | |||||||
| SDG13—Climate action for adaptation, resilience, and mitigation | 57 | 43 | 60 | 97 | 3 | 77 | 122 |
| Regeneration, land-use, and urban development | |||||||
| (a) CI (Total costs) | NBS category count by CI range [n.] | ||||||
| EUR 10,000–50,000 | 2 | 3 | 1 | 2 | 0 | 4 | 3 |
| EUR 50,000–100,000 | 2 | 0 | 1 | 3 | 0 | 2 | 3 |
| EUR 100,000–500,000 | 2 | 4 | 6 | 4 | 0 | 6 | 7 |
| EUR 500,000–2,000,000 | 3 | 5 | 7 | 9 | 1 | 6 | 11 |
| EUR 2,000,000–4,000,000 | 0 | 2 | 2 | 3 | 0 | 1 | 8 |
| (b) [sqm] | 12.00 ÷ 930,000.00 | 412.00 ÷ 225,000.00 | 62.30 ÷ 333,333.00 | 500.00 ÷ 900,000.00 | 0.00 ÷ 566.00 | 25.00 ÷ 333,333.00 | 62.30 ÷ 930,000.00 |
| [€/sqm] | 55.00 | 60.00 | 65.00 | 150.00 | 300.00 | 450.00 | 130.00 |
| European NBS Categories | ||||||||
|---|---|---|---|---|---|---|---|---|
| Blue Infrastructure | Community Gardens and Allotments | Green Areas for Water Management | Gray Infrastructure Featuring Greens | Nature in Buildings (Indoor) | Nature on Buildings (External) | Parks and Urban Forests | ||
| [sqm] | [EUR/sqm] | |||||||
| Low | 12.00 ÷ 200.00 | 30,868.72 | 32,874.00 | 17,856.01 | 4,259.64 | 4,102.26 | 11,376.10 | 4,534,.44 |
| Medium-low | 201.00 ÷ 1000.00 | 3,181.00 | 3,184.00 | 3,235.00 | 2,310.00 | 3,012.74 | 3,223.00 | 1,785.00 |
| Medium-High | 1001.00 ÷ 225,000.00 | 389.00 | 46.25 | 395.00 | 95.00 | 536.00 | 626.00 | 434.00 |
| High | 225,001.00 ÷ 900,000.00 | 35.00 | 38.00 | 42.33 | 91.78 | 182.00 | 272.00 | 80.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sica, F.; Guarini, M.R.; Morano, P.; Tajani, F. Accounting for the Environmental Costs of Nature-Based Solutions Through Indirect Monetization of Ecosystem Services: Evidence from European Practices and Implementations. Land 2026, 15, 151. https://doi.org/10.3390/land15010151
Sica F, Guarini MR, Morano P, Tajani F. Accounting for the Environmental Costs of Nature-Based Solutions Through Indirect Monetization of Ecosystem Services: Evidence from European Practices and Implementations. Land. 2026; 15(1):151. https://doi.org/10.3390/land15010151
Chicago/Turabian StyleSica, Francesco, Maria Rosaria Guarini, Pierluigi Morano, and Francesco Tajani. 2026. "Accounting for the Environmental Costs of Nature-Based Solutions Through Indirect Monetization of Ecosystem Services: Evidence from European Practices and Implementations" Land 15, no. 1: 151. https://doi.org/10.3390/land15010151
APA StyleSica, F., Guarini, M. R., Morano, P., & Tajani, F. (2026). Accounting for the Environmental Costs of Nature-Based Solutions Through Indirect Monetization of Ecosystem Services: Evidence from European Practices and Implementations. Land, 15(1), 151. https://doi.org/10.3390/land15010151
