Spatio-Temporal Changes in Mangroves in Sri Lanka: Landsat Analysis from 1987 to 2022
Abstract
1. Introduction
2. Materials and Methods
2.1. Typology of Mangrove Mapping
2.2. Landsat Images
2.3. Mangrove Detection in Sri Lanka
2.3.1. Spectral Indices Used in This Study for the Temporal Band Composite
Normalized Difference Vegetation Index (NDVI)
Normalized Difference Mangrove Index (NDMI)
Modified Normalized Difference Water Index (MNDWI)
Simple Ratio (SR)
Green Chlorophyll Vegetation Index (GCVI)
2.3.2. Elevation Masking
2.3.3. Threshold-Based Masking
2.3.4. Classification
Reference Samples
Machine Learning Classification Using the Random Forest Method
2.4. Mangrove Extent and Its Changes
2.5. Mangrove Structure and Stability Pattern Analysis
3. Results
3.1. Mangrove Changes in Sri Lanka
3.2. Provincial-Wise Mangrove Distribution in Sri Lanka
3.3. District-Wise Mangrove Distribution in Sri Lanka
3.4. Mangrove Occurrence in Sri Lanka
3.4.1. Mangrove Occurrence in Climatic Zone-Wise
3.4.2. Mangrove Occurrence in Eight Selected Areas
3.5. Spatio-Temporal Variations in Mangrove Structure and Stability Across the Districts
3.5.1. Ampara District
3.5.2. Batticaloa District
3.5.3. Colombo District
3.5.4. Galle District
3.5.5. Gampaha District
3.5.6. Hambantota District
3.5.7. Jaffna District
3.5.8. Kalutara District
3.5.9. Kilinochchi District
3.5.10. Manner District
3.5.11. Matara District
3.5.12. Mullaitivu District
3.5.13. Puttalam District
3.5.14. Trincomalee District
3.6. Comparisons with Global Mangrove Watch (GMW) Data
4. Discussion
4.1. Ecological Significance of Mangroves in Sri Lanka
4.2. Multi-Dimensional Challenges to Mangrove Sustainability in Sri Lanka
4.3. Integrating Spatial Structure and Conservation Strategies
- –
- Ampara and Batticaloa districts require urgent conservation and policy actions, including reforestation, zoning restrictions, and community-based conservation.
- –
- Colombo, Gampaha, and Kalutara districts should integrate ecological corridors and buffer zones into urban planning, incorporate mangrove protection into climate-resilient city planning, and prioritize the restoration of fragmented patches.
- –
- Galle, Matara, Hambantota, and Mullaitivu districts require restoring connectivity between patches, with a focus on preserving the remaining core areas and monitoring coastal development. Buffer zone enforcement and the protection of emerging small patches are also required.
- –
- Jaffna exhibits remarkable mangrove recovery; however, the rise in NP is an early signal of potential fragmentation, necessitating continuous monitoring and mangrove landscape conservation.
- –
- Puttalam, Trincomalee, Kilinochchi, and Mannar districts require urgent habitat consolidation, the development of restoration corridors, protection from aquaculture expansion, and the implementation of ecosystem-based management and blue carbon conservation strategies, the establishment of habitat corridors, and the protection of emerging clusters.
4.4. Uncertainties and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NDMI | Normalized Difference Mangrove Index | NDVI | Normalized Difference Vegetation Index |
GCVI | Green Chlorophyll Vegetation Index | MNDWI | Modified Normalized Difference Water Index |
SDGs | Sustainable Development Goals | GEE | Google Earth Engine |
IUCN | International Union for Conservation of Nature | CEA | Central Environmental Authority |
TM | Thematic Mapper | ETM+ | Enhanced Thematic Mapper+ |
OLI | Operational Land Imager | NIR | Near-Infrared |
SWIR | Shortwave Infrared | SRTM | Shuttle Radar Topography Mission |
DEM | Digital Elevation Model | SR | Simple Ratio |
RF | Random Forest | LPI | Largest Patch Index |
PARA | Perimeter-Area Ratio | FRAC | Fractal Dimension Index |
LSI | Landscape Shape Index | MESH | Effective Mesh Size |
NP | Number of Patches | ITCZ | Intertropical Convergence Zone |
NARA | National Aquatic Resources Agency | CCD | Coast Conservation Department |
References
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The Global Distribution and Trajectory of Tidal Flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The Future of Blue Carbon Science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef]
- Alongi, D.M. Present State and Future of the World’s Mangrove Forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The Value of Estuarine and Coastal Ecosystem Services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Murillo-Sandoval, P.J.; Perea-Ardila, M.; Simard, M. Examining the Status of Mangrove Forest Dynamics and Community-Led Management on the Colombian Pacific Coast. Ocean Coast. Manag. 2025, 266, 107672. [Google Scholar] [CrossRef]
- United Nations. The 17 GOALS Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 15 June 2025).
- Choudhary, B.; Dhar, V.; Pawase, A.S. Blue Carbon and the Role of Mangroves in Carbon Sequestration: Its Mechanisms, Estimation, Human Impacts and Conservation Strategies for Economic Incentives. J. Sea Res. 2024, 199, 102504. [Google Scholar] [CrossRef]
- Huber, L.C.; Sainge, M.N.; Feka, Z.N.; Kamara, R.A.; Kamara, A.; Sullivan, M.; Cuni-Sanchez, A. Human-Driven Degradation Impacts on Mangroves in Southern Sierra Leone. Trees For. People 2023, 14, 100445. [Google Scholar] [CrossRef]
- Quang, N.H.; Van An, N. Four Decades of Mangrove Shoreline Changes Driven by Human Activities in the Red River Delta. Estuar. Coast. Shelf Sci. 2025, 314, 109145. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon Cycling and Storage in Mangrove Forests. Ann. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Chatting, M.; Al-Maslamani, I.; Walton, M.; Skov, M.W.; Kennedy, H.; Husrevoglu, Y.S.; Le Vay, L. Future Mangrove Carbon Storage Under Climate Change and Deforestation. Front. Mar. Sci. 2022, 9, 781876. [Google Scholar] [CrossRef]
- Hilmi, N.; Arruda, G.; Broussard, D.; Maria Benitez, B.; Sauron, L.; Lamaud, T.; Jahan, N.; Hall Spencer, J.M. Blue Carbon as a Nature-Based Climate Mitigation Strategy for Mangrove Conservation in Bangladesh. J. Nat. Conserv. 2025, 86, 126885. [Google Scholar] [CrossRef]
- Swinea, S.H.; Randall Hughes, A.; Osland, M.J.; Shepard, C.C.; Thorne, K.B.; Alemu, J.B.; Bardou, R.; Scyphers, S.B. Marshes to Mangroves: Residential Surveys Reveal Perceived Wetland Trade-Offs for Ecosystem Services. Landsc. Urban Plan. 2025, 253, 105203. [Google Scholar] [CrossRef]
- Saria, A.E.; Li, X.; Dubi, A.; Mgalula, M.E. Spatial-Temporal Changes in Mangrove Forest in Coastal Cities of Tanzania and the Implications on Provisioning of Ecosystem Services. J. Mar. Res. 2020, 1, 107604. [Google Scholar] [CrossRef]
- Hickey, S.M.; Phinn, S.R.; Callow, N.J.; Van Niel, K.P.; Hansen, J.E.; Duarte, C.M. Is Climate Change Shifting the Poleward Limit of Mangroves? Estuaries Coasts 2017, 40, 1215–1226. [Google Scholar] [CrossRef]
- Malik, A.; Fensholt, R.; Mertz, O. Mangrove Exploitation Effects on Biodiversity and Ecosystem Services. Biodivers. Conserv. 2015, 24, 3543–3557. [Google Scholar] [CrossRef]
- He, T.; Fu, Y.; Ding, H.; Zheng, W.; Huang, X.; Li, R.; Wu, S. Evaluation of Mangrove Wetlands Protection Patterns in the Guangdong–Hong Kong–Macao Greater Bay Area Using Time-Series Landsat Imageries. Remote Sens. 2022, 14, 6026. [Google Scholar] [CrossRef]
- Xie, Z.; Li, H.; Yuan, Y.; Hu, W.; Luo, G.; Huang, L.; Chen, M.; Wu, W.; Yan, G.; Sun, X. The Spatial Patterns and Driving Mechanisms of Blue Carbon ‘Loss’ and ‘Gain’ in a Typical Mangrove Ecosystem: A Case Study of Beihai, Guangxi Province of China. Sci. Total Environ. 2023, 905, 167241. [Google Scholar] [CrossRef]
- Turschwell, M.P.; Tulloch, V.J.D.; Sievers, M.; Pearson, R.M.; Andradi-Brown, D.A.; Ahmadia, G.N.; Connolly, R.M.; Bryan-Brown, D.; Lopez-Marcano, S.; Adame, M.F.; et al. Multi-Scale Estimation of the Effects of Pressures and Drivers on Mangrove Forest Loss Globally. Biol. Conserv. 2020, 247, 108637. [Google Scholar] [CrossRef]
- Sudhir, S.; Arunprasath, A.; Sankara Vel, V. A Critical Review on Adaptations, and Biological Activities of the Mangroves. J. Nat. Pestic. Res. 2022, 1, 100006. [Google Scholar] [CrossRef]
- Sierra-Correa, P.C.; Cantera Kintz, J.R. Ecosystem-Based Adaptation for Improving Coastal Planning for Sea-Level Rise: A Systematic Review for Mangrove Coasts. Mar. Policy 2015, 51, 385–393. [Google Scholar] [CrossRef]
- Qiao, P.; Meng, Y.; Liu, C.; Zhang, T.; Li, M.; Feng, L.; Chen, Q.; Zhang, J.; Lin, C.; Gu, X.; et al. Blue Carbon Potential from Rehabilitating Urban Mangrove Forests in Coastal City. Estuar. Coast. Shelf Sci. 2025, 316, 109200. [Google Scholar] [CrossRef]
- Pimple, U.; Leadprathom, K.; Simonetti, D.; Sitthi, A.; Peters, R.; Pungkul, S.; Pravinvongvuthi, T.; Dessard, H.; Berger, U.; Siri-on, K.; et al. Assessing Mangrove Species Diversity, Zonation and Functional Indicators in Response to Natural, Regenerated, and Rehabilitated Succession. J. Environ. Manag. 2022, 318, 115507. [Google Scholar] [CrossRef]
- Ponmani, M.; Padmavathy, P.; Manimekalai, D.; Shalini, R.; Ravikumar, T.; Hariharan, G.; Manickavasagam, S. Vulnerability of Mangrove Ecosystems to Anthropogenic Marine Litter along the Southeast Coast of India. Sci. Total Environ. 2024, 956, 177224. [Google Scholar] [CrossRef] [PubMed]
- Josephraj Selvaraj, J.; Victoriano Portilla-Cabrera, C. Climate Change Drives Spatiotemporal Mismatches between Bivalves and Mangrove in the Colombian Pacific Coast. J. Nat. Conserv. 2024, 81, 126679. [Google Scholar] [CrossRef]
- Murray, N.J.; Worthington, T.A.; Bunting, P.; Duce, S.; Hagger, V.; Lovelock, C.E.; Lucas, R.; Saunders, M.I.; Sheaves, M.; Spalding, M.; et al. High-Resolution Mapping of Losses and Gains of Earth’s Tidal Wetlands. Science 2022, 376, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.J.; Phinn, S.P.; Fuller, R.A.; DeWitt, M.; Ferrari, R.; Johnston, R.; Clinton, N.; Lyons, M.B. High-Resolution Global Maps of Tidal Flat Ecosystems from 1984 to 2019. Sci. Data 2022, 9, 542. [Google Scholar] [CrossRef] [PubMed]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of Mangrove Forests Degradation on Biodiversity and Ecosystem Functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef]
- Ruslan, N.F.N.; Goh, H.C.; Hattam, C.; Edwards-Jones, A.; Moh, H.H. Mangrove Ecosystem Services: Contribution to the Well-Being of the Coastal Communities in Klang Islands. Mar. Policy 2022, 144, 105222. [Google Scholar] [CrossRef]
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global Carbon Sequestration in Tidal, Saline Wetland Soils. Glob. Biogeochem. Cycles 2003, 17, 1111. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global Declines in Human-Driven Mangrove Loss. Glob. Change Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- Maung, W.S.; Sasaki, J. Assessing the Natural Recovery of Mangroves after Human Disturbance Using Neural Network Classification and Sentinel-2 Imagery in Wunbaik Mangrove Forest, Myanmar. Remote Sens. 2021, 13, 52. [Google Scholar] [CrossRef]
- Kanjin, K.; Alam, B.M. Assessing Changes in Land Cover, NDVI, and LST in the Sundarbans Mangrove Forest in Bangladesh and India: A GIS and Remote Sensing Approach. Remote Sens. Appl. Soc. Environ. 2024, 36, 101289. [Google Scholar] [CrossRef]
- Navarro, A.; Young, M.; Macreadie, P.I.; Nicholson, E.; Ierodiaconou, D. Mangrove and Saltmarsh Distribution Mapping and Land Cover Change Assessment for South-Eastern Australia from 1991 to 2015. Remote Sens. 2021, 13, 1450. [Google Scholar] [CrossRef]
- Dong, D.; Huang, H.; Gao, Q.; Li, K.; Zhang, S.; Yan, R. Temporal and Spatial Patterns of Blue Carbon Storage in Mangrove and Salt Marsh Ecosystems in Guangdong, China. Land 2025, 14, 1130. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Kang, C.S.; Sharma, S.; Aldrie Amir, A. Remote Sensing to Study Mangrove Fragmentation and Its Impacts on Leaf Area Index and Gross Primary Productivity in the South of Peninsular Malaysia. Remote Sens. 2021, 13, 1427. [Google Scholar] [CrossRef]
- Nascimento, W.R.; Souza-Filho, P.W.M.; Proisy, C.; Lucas, R.M.; Rosenqvist, A. Mapping Changes in the Largest Continuous Amazonian Mangrove Belt Using Object-Based Classification of Multisensor Satellite Imagery. Estuar. Coast. Shelf Sci. 2013, 117, 83–93. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J. Global Mangrove Extent Change 1996–2020: Global Mangrove. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Global Mangrove Watch. Available online: https://www.globalmangrovewatch.org/ (accessed on 15 June 2025).
- Google Earth Engine. Available online: https://earthengine.google.com/ (accessed on 15 June 2025).
- Estoque, R.C.; Myint, S.W.; Wang, C.; Ishtiaque, A.; Aung, T.T.; Emerton, L.; Ooba, M.; Hijioka, Y.; Mon, M.S.; Wang, Z.; et al. Assessing environmental impacts and change in Myanmar’s mangrove ecosystem service value due to deforestation (2000–2014). Glob. Change Biol. 2018, 24, 5391–5410. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, M.; Ai, B.; Lai, Z.; Zhao, J.; Jian, Z.; Qi, X. Annual Change in the Distribution and Landscape Health of Mangrove Ecosystems in China from 2016 to 2023 with Sentinel Imagery. Glob. Ecol. Conserv. 2025, 57, e03355. [Google Scholar] [CrossRef]
- Giri, C.; Long, J.; Poudel, P. Mangrove Forest Cover Change in the Conterminous United States from 1980–2020. Remote Sens. 2023, 15, 5018. [Google Scholar] [CrossRef] [PubMed]
- Hidayah, Z.; As-syakur, A.R.; Rachman, H.A. Sustainability Assessment of Mangrove Management in Madura Strait, Indonesia: A Combined Use of the Rapid Appraisal for Mangroves (RAPMangroves) and the Remote Sensing Approach. Mar. Policy 2024, 163, 106128. [Google Scholar] [CrossRef]
- Stovall, A.E.L.; Fatoyinbo, T.; Thomas, N.M.; Armston, J.; Ebanega, M.O.; Simard, M.; Trettin, C.; Obiang Zogo, R.V.; Aken, I.A.; Debina, M.; et al. Comprehensive Comparison of Airborne and Spaceborne SAR and LiDAR Estimates of Forest Structure in the Tallest Mangrove Forest on Earth. Sci. Remote Sens. 2021, 4, 100034. [Google Scholar] [CrossRef]
- Cortés, I.M.; Lorenzo-Trueba, J.; Rovai, A.S.; Twilley, R.R.; Chopping, M.; Fatoyinbo, T. Net Evaporation-Induced Mangrove Area Loss across Low-Lying Caribbean Islands. Environ. Res. Clim. 2024, 3, 045004. [Google Scholar] [CrossRef]
- Tinh, P.H.; MacKenzie, R.A.; Hung, T.D.; Van Vinh, T.; Ha, H.T.; Lam, M.H.; Hanh, N.T.H.; Tung, N.X.; Hai, P.M.; Huyen, B.T. Mangrove Restoration in Vietnamese Mekong Delta during 2015-2020: Achievements and Challenges. Front. Mar. Sci. 2022, 9, 1043943. [Google Scholar] [CrossRef]
- Casal, G.; Trégarot, E.; Cornet, C.C.; McCarthy, T.; van der Geest, M. A Cost-Effective Method to Map Mangrove Forest Extent, Composition, and Condition in Small Islands Based on Sentinel-2 Data: Implications for Management. Ecol. Indic. 2024, 159, 111696. [Google Scholar] [CrossRef]
- Liu, X.; Fatoyinbo, T.E.; Thomas, N.M.; Guan, W.W.; Zhan, Y.; Mondal, P.; Lagomasino, D.; Simard, M.; Trettin, C.C.; Deo, R.; et al. Large-Scale High-Resolution Coastal Mangrove Forests Mapping Across West Africa with Machine Learning Ensemble and Satellite Big Data. Front. Earth Sci. 2021, 8, 560933. [Google Scholar] [CrossRef]
- The Central Environmental Authority (CEA); The World Conservation Union (IUCN); The International Water Management Institute (IWMI). National Wetland Directory of Sri Lanka; The Central Environmental Authority (CEA); The World Conservation Union (IUCN); The International Water Management Institute (IWMI): Colombo, Sri Lanka, 2006; ISBN 9558177547. [Google Scholar]
- Survey Department of Sri Lanka. Available online: https://www.survey.gov.lk/ (accessed on 15 June 2025).
- Department of Meteorology. Available online: https://meteo.gov.lk/ (accessed on 15 June 2025).
- Ramsar. The Convention on Wetlands. Available online: https://www.ramsar.org/ (accessed on 15 June 2025).
- Athukorala, D.; Murayama, Y.; Herath, N.S.K.; Bandara, C.M.M.; Singh, R.K.; Fernando, S.L.J. Exploring the Cooling Effects of Urban Wetlands in Colombo City, Sri Lanka. Remote Sens. 2025, 17, 1919. [Google Scholar] [CrossRef]
- Earth Versions—Google Earth. Available online: https://www.google.com/earth/about/versions/ (accessed on 15 June 2025).
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Impacts of Urbanization on the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka: Implications for Landscape Planning towards a Sustainable Urban Wetland Ecosystem. Remote Sens. 2021, 13, 316. [Google Scholar] [CrossRef]
- Perera, K.A.R.S.; Amarasinghe, M.D. Carbon Sequestration Capacity of Mangrove Soils in Micro Tidal Estuaries and Lagoons: A Case Study from Sri Lanka. Geoderma 2019, 347, 80–89. [Google Scholar] [CrossRef]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Ecosystem Services Monitoring in the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka, for Sustainable Landscape Planning. Sustainability 2021, 13, 11463. [Google Scholar] [CrossRef]
- Satyanarayana, B.; Mulder, S.; Jayatissa, L.P.; Dahdouh-Guebas, F. Are the Mangroves in the Galle-Unawatuna Area (Sri Lanka) at Risk? A Social-Ecological Approach Involving Local Stakeholders for a Better Conservation Policy. Ocean Coast. Manag. 2013, 71, 225–237. [Google Scholar] [CrossRef]
- Roy, S.K.; Mojumder, P.; Chowdhury, M.A.A.; Hasan, M.M. Evaluating Mangrove Forest Dynamics and Fragmentation in Sundarbans, Bangladesh Using High-Resolution Sentinel-2 Satellite Images. Glob. Ecol. Conserv. 2025, 58, e03493. [Google Scholar] [CrossRef]
- Esri. GIS Software for Mapping and Spatial Analytics. Available online: https://www.esri.com/en-us/home (accessed on 18 June 2025).
- IUCN. Available online: https://iucn.org/ (accessed on 18 June 2025).
- Department of Coast Conservation and Coastal Resource Management. Available online: https://env.gov.lk/web/index.php/en/department-of-coast-conservation-and-coastal-resource-management (accessed on 18 June 2025).
- NASA. Available online: https://www.nasa.gov/ (accessed on 18 June 2025).
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Satyanarayana, B.; Chen, D.; Wolswijk, G.; Amir, A.A.; Vandegehuchte, M.B.; Muslim, A.B.; Koedam, N.; Dahdouh-Guebas, F. Using Historical Archives and Landsat Imagery to Explore Changes in the Mangrove Cover of Peninsular Malaysia between 1853 and 2018. Remote Sens. 2021, 13, 3403. [Google Scholar] [CrossRef]
- Earth Observations of Blue Carbon Ecosystems, NASA Applied Sciences (ARSET). Available online: https://appliedsciences.nasa.gov/get-involved/training/english/arset-earth-observations-blue-carbon-ecosystems (accessed on 18 June 2025).
- Ruan, L.; Yan, M.; Zhang, L.; Fan, X.S.; Yang, H. Spatial-Temporal NDVI Pattern of Global Mangroves: A Growing Trend during 2000–2018. Sci. Total Environ. 2022, 844, 157075. [Google Scholar] [CrossRef] [PubMed]
- Davis, Z.; Nesbitt, L.; Guhn, M.; van den Bosch, M. Assessing Changes in Urban Vegetation Using Normalised Difference Vegetation Index (NDVI) for Epidemiological Studies. Urban For. Urban Green. 2023, 88, 128080. [Google Scholar] [CrossRef]
- Vizcaya-Martínez, D.A.; Flores-de-Santiago, F.; Valderrama-Landeros, L.; Serrano, D.; Rodríguez-Sobreyra, R.; Álvarez-Sánchez, L.F.; Flores-Verdugo, F. Monitoring Detailed Mangrove Hurricane Damage and Early Recovery Using Multisource Remote Sensing Data. J. Environ. Manag. 2022, 320, 115830. [Google Scholar] [CrossRef]
- Shi, T.; Jue, L.; Zhongwen, H.; Huizeng, L.; Junjie, W.; Wu, G. New Spectral Metrics for Mangrove Forest Identification. Remote Sens. Lett. 2016, 7, 885–894. [Google Scholar] [CrossRef]
- Fei, J.; Zhang, X.; Li, C.; Hao, F.; Guo, Y.; Fu, Y. A Deep Data Fusion-Based Reconstruction of Water Index Time Series for Intermittent Rivers and Ephemeral Streams Monitoring. ISPRS J. Photogramm. Remote Sens. 2025, 220, 339–353. [Google Scholar] [CrossRef]
- Che, L.; Li, S.; Liu, X. Improved Surface Water Mapping Using Satellite Remote Sensing Imagery Based on Optimization of the Otsu Threshold and Effective Selection of Remote-Sensing Water Index. J. Hydrol. 2025, 654, 132771. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Xie, R.; Li, S. Integrating Satellite-Derived Climatic and Vegetation Indices to Predict Smallholder Maize Yield Using Deep Learning. Agric. For. Meteorol. 2021, 311, 108666. [Google Scholar] [CrossRef]
- Lou, P.; Wu, T.; Yang, S.; Wu, X.; Chen, J.; Zhu, X.; Chen, J.; Lin, X.; Li, R.; Shang, C.; et al. Deep Learning Reveals Rapid Vegetation Greening in Changing Climate from 1988 to 2018 on the Qinghai-Tibet Plateau. Ecol. Indic. 2023, 148, 110020. [Google Scholar] [CrossRef]
- Shuttle Radar Topography Mission, NASA’s Earth Observing System. Available online: https://eospso.gsfc.nasa.gov/missions/shuttle-radar-topography-mission (accessed on 18 June 2025).
- Fauzi, A.I.; Immitzer, M.; Atzberger, C. Exploring New Mangrove Horizons: A Scalable Remote Sensing Approach with Planet-NICFI and Sentinel-2 Images. Ecol. Inform. 2025, 88, 103152. [Google Scholar] [CrossRef]
- Kotikot, S.M.; Spencer, O.; Cissell, J.R.; Connette, G.; Smithwick, E.A.H.; Durdall, A.; Grimes, K.W.; Stewart, H.A.; Tzadik, O.; Canty, S.W.J. Building a Mangrove Ecosystem Monitoring Tool for Managers Using Sentinel-2 Imagery in Google Earth Engine. Ocean Coast. Manag. 2024, 256, 107307. [Google Scholar] [CrossRef]
- Yang, G.; Huang, K.; Sun, W.; Meng, X.; Mao, D.; Ge, Y. Enhanced Mangrove Vegetation Index Based on Hyperspectral Images for Mapping Mangrove. ISPRS J. Photogramm. Remote Sens. 2022, 189, 236–254. [Google Scholar] [CrossRef]
- Simarmata, N.; Wikantika, K.; Tarigan, T.A.; Aldyansyah, M.; Tohir, R.K.; Fauzi, A.I.; Fauzia, A.R. Comparison of Random Forest, Gradient Tree Boosting, and Classification and Regression Trees for Mangrove Cover Change Monitoring Using Landsat Imagery. Egypt. J. Remote Sens. Space Sci. 2025, 28, 138–150. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, M.; Wang, Z.; Mao, D.; Wang, Y. Identifying Mangroves through Knowledge Extracted from Trained Random Forest Models: An Interpretable Mangrove Mapping Approach (IMMA). ISPRS J. Photogramm. Remote Sens. 2023, 201, 209–225. [Google Scholar] [CrossRef]
- Wu, R.; Dai, Z.; Mei, X.; Luo, J.; Fagherazzi, S. Profiling of Mangrove Forest Dynamics in the Fly River Delta, Papua New Guinea. Mar. Pollut. Bull. 2025, 217, 118119. [Google Scholar] [CrossRef] [PubMed]
- Bryan-Brown, D.N.; Connolly, R.M.; Richards, D.R.; Adame, F.; Friess, D.A.; Brown, C.J. Global Trends in Mangrove Forest Fragmentation. Sci. Rep. 2020, 10, 7117. [Google Scholar] [CrossRef] [PubMed]
- Young, C.H.; Jarvis, P.J. Measuring Urban Habitat Fragmentation: An Example from the Black Country, UK. Landsc. Ecol. 2001, 16, 643–658. [Google Scholar] [CrossRef]
- Reyes, G.J.; Smyth, A.R.; Qiu, J.; Reynolds, L.K. Highly Urbanized Mangrove Areas Are Small in Size, Fragmented, and Missed by Large-Scale Mapping Efforts. Wetlands 2024, 44, 103. [Google Scholar] [CrossRef]
- Ranaweera, K.R.K.D.N.; Kamae, Y. Impact of El Niño Southern Oscillation on the First Inter-Monsoon Rainfall over Sri Lanka in the Post-El Niño Years. Front. Clim. 2024, 6, 1361322. [Google Scholar] [CrossRef]
- Ranasinghe, P.N.; Hughen, K.A.; Wijewardhana, T.U.T.; Ortiz, J.D.; Kapuge, A.K.I.U.; Ratnayake, K.M.; Nanayakkara, N.U.; Hewawasam, A.L.T.; Siriwardana, Y.P.S.; Kodithuwakku, S. Interplay of the Indian Summer Monsoon and Intermonsoon Precipitation in Sri Lanka Due to ITCZ Migration during the Last 80000 Years. Sci. Rep. 2024, 14, 22178. [Google Scholar] [CrossRef]
- Dutta, A.; Mohan, M.; Hendy, I.; Almealla, R.; Watt, M.S.; Burt, J.A.; Torres-florez, J.P.; Almansoori, A.; Alzahlawi, N.; Abdullah, M.; et al. Optimizing Mangrove Afforestation Site Selection in Gulf Cooperation Council Nations Using Remote Sensing and Machine Learning. Sci. Total Environ. 2025, 988, 179805. [Google Scholar] [CrossRef]
- Taher, T.B.; Althaus, C.E.; Tranter, P.J.; Evans, M.C. Impacts of Shrimp Aquaculture on the Local Communities and Conservation of the World’s Largest Protected Mangrove Forest. Environ. Sci. Policy 2023, 147, 351–360. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Cahoon, D.R.; Friess, D.A.; Guntenspergen, G.R.; Krauss, K.W.; Reef, R.; Rogers, K.; Saunders, M.L.; Sidik, F.; Swales, A.; et al. The Vulnerability of Indo-Pacific Mangrove Forests to Sea-Level Rise. Nature 2015, 526, 559–563. [Google Scholar] [CrossRef]
- Thao, N.D.; Kiet, N.; Anh, L.T.; Huynh, P.T.D.; Hiep, L.D.; Trang, D.D.T. Wave Attenuation in Coastal Mangroves: The Case of Mekong Delta Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2023, 1226, 012026. [Google Scholar] [CrossRef]
- Saoum, M.R.; Sarkar, S.K. Monitoring Mangrove Forest Change and Its Impacts on the Environment. Ecol. Indic. 2024, 159, 111666. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Jia, M.; Wang, Z.; Zhao, C.; Guo, X.; Li, H.; Xue, Z.; Zhou, C.; Xiao, X. Significant Greening of China’s Mangrove Forests during the Last Three Decades. Ecol. Indic. 2025, 176, 113632. [Google Scholar] [CrossRef]
- Umroh; Adi, W.; Sari, S.P. Detection of Mangrove Distribution in Pongok Island. Procedia Environ. Sci. 2016, 33, 253–257. [Google Scholar] [CrossRef]
- He, Z.; Zhao, L.; Zhuang, X.; Zeng, Y.; Hu, B.; Yu, X.; Liang, J.; Peng, Y.; Chen, Z. Tidally Driven Porewater Exchange and the Key Affecting Factors in Mangroves in the Pearl River Estuary, China. J. Sea Res. 2025, 204, 102572. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, S.; Liang, X.; Chen, Y.; Zhang, H. Scale Effects in Mangrove Mapping from Ultra-High-Resolution Remote Sensing Imagery. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104310. [Google Scholar] [CrossRef]
- Sasmito, S.D.; Basyuni, M.; Kridalaksana, A.; Saragi-Sasmito, M.F.; Lovelock, C.E.; Murdiyarso, D. Challenges and Opportunities for Achieving Sustainable Development Goals through Restoration of Indonesia’s Mangroves. Nat. Ecol. Evol. 2023, 7, 62–70. [Google Scholar] [CrossRef]
- Central Environmental Authority (CEA). Available online: https://www.cea.lk/ (accessed on 18 June 2025).
- Department of Wildlife Conservation. Available online: https://www.dwc.gov.lk/ (accessed on 18 June 2025).
- IUCN, Sri Lanka. Available online: https://iucn.org/our-work/region/asia/countries/sri-lanka (accessed on 18 June 2025).
- National Aquatic Resources Agency (NARA). Available online: http://www.nara.ac.lk/ (accessed on 18 June 2025).
- National Science Foundation (NSF). Available online: https://www.nsf.gov.lk/ (accessed on 18 June 2025).
- The Urban Development Authority. Available online: https://www.uda.gov.lk/ (accessed on 18 June 2025).
- The Road Development Authority. Available online: https://rda.gov.lk/index.php?lang=en (accessed on 18 June 2025).
- Ministry of Environment. National Guidelines for the Restoration of Mangrove Ecosystems of Sri Lanka; Biodiversity Secretariat Ministry of Environment No. 416/C/1, Robert Gunawardana Mawatha Battaramulla; Ministry of Environment: Battaramulla, Sri Lanka, 2021; ISBN 9788578110796.
- Mangrove Regeneration in Sri Lanka Recognized as One of Seven UN World Restoration Flagships, United Nations in Sri Lanka. Available online: https://srilanka.un.org/en/262045-mangrove-regeneration-sri-lanka-recognized-one-seven-un-world-restoration-flagships (accessed on 18 June 2025).
Year | 1989 | 1995 | 1998 | 2004 | 2007 | 2010 | 2013 | 2016 | 2019 | 2022 |
Area (ha) | 14,627 | 10,749 | 8596 | 8279 | 9820 | 10,640 | 11,837 | 13,755 | 15,490 | 16,615 |
Year | Eastern | Northwestern | Northern | Southern | Western | Total |
---|---|---|---|---|---|---|
1989 | 6247.31 | 2268.2 | 2941.21 | 1737.33 | 1433.42 | 14,627.47 |
1995 | 5044.52 | 1685.03 | 1834.03 | 1204.65 | 980.73 | 10,748.96 |
1998 | 3622.01 | 1198.25 | 1338.68 | 1664.35 | 773.12 | 8596.41 |
2004 | 3244.97 | 1175.81 | 2016.32 | 1132.56 | 709.71 | 8279.37 |
2007 | 3861.75 | 1175.7 | 2325.56 | 1637.01 | 820.44 | 9820.46 |
2010 | 4585.96 | 1401.46 | 2120.09 | 1629.94 | 902.47 | 10,639.92 |
2013 | 4437.17 | 1679.46 | 3421.07 | 1561.15 | 738.01 | 11,836.86 |
2016 | 5347.86 | 1925.55 | 3933.97 | 1744.39 | 803.21 | 13,754.98 |
2019 | 5790.4 | 2079.73 | 4376.06 | 2381.79 | 861.95 | 15,489.93 |
2022 | 6293.6 | 2144.57 | 4556.73 | 2745.9 | 874.43 | 16,615.23 |
Average | 4847.56 | 1673.38 | 2886.37 | 1743.91 | 889.75 | |
Change | 46.29 | −123.63 | 1615.52 | 1008.57 | −558.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athukorala, D.; Murayama, Y.; Karunaratne, S.; Wijenayake, R.; Morimoto, T.; Fernando, S.L.J.; Herath, N.S.K. Spatio-Temporal Changes in Mangroves in Sri Lanka: Landsat Analysis from 1987 to 2022. Land 2025, 14, 1820. https://doi.org/10.3390/land14091820
Athukorala D, Murayama Y, Karunaratne S, Wijenayake R, Morimoto T, Fernando SLJ, Herath NSK. Spatio-Temporal Changes in Mangroves in Sri Lanka: Landsat Analysis from 1987 to 2022. Land. 2025; 14(9):1820. https://doi.org/10.3390/land14091820
Chicago/Turabian StyleAthukorala, Darshana, Yuji Murayama, Siri Karunaratne, Rangani Wijenayake, Takehiro Morimoto, S. L. J. Fernando, and N. S. K. Herath. 2025. "Spatio-Temporal Changes in Mangroves in Sri Lanka: Landsat Analysis from 1987 to 2022" Land 14, no. 9: 1820. https://doi.org/10.3390/land14091820
APA StyleAthukorala, D., Murayama, Y., Karunaratne, S., Wijenayake, R., Morimoto, T., Fernando, S. L. J., & Herath, N. S. K. (2025). Spatio-Temporal Changes in Mangroves in Sri Lanka: Landsat Analysis from 1987 to 2022. Land, 14(9), 1820. https://doi.org/10.3390/land14091820