Multitemporal Analysis of Tree Cover, Fragmentation, Connectivity, and Climate in Coastal Watersheds of Oaxaca, Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Vegetation
2.3. Land Use and Vegetation Changes
2.4. Landscape Fragmentation
2.5. Connectivity
2.6. Temperature and Precipitation
3. Results
3.1. Land Use and Vegetation
3.2. Fragmentation
3.3. Connectivity
3.4. Temperature and Precipitation
4. Discussion
4.1. Decoupled Trajectories of Landscape and Climate
4.2. Underlying Processes of Forest Transition and Its Reversal
4.3. Functional Implications of the Structure–Climate Mismatch
4.4. Study Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Tree Cover | Non-Tree Cover | Total | User’s Accuracy (%) | Commission Error (%) | |
---|---|---|---|---|---|
Tree cover | 50 | - | 50 | 100.00% | 0.00% |
Non-tree cover | 4 | 46 | 50 | 92.00% | 8.00% |
Total | 54 | 46 | 100 | - | - |
User’s accuracy (%) | 92.59% | 100.00% | - | - | - |
Omission error (%) | 99.07% | 0.00% | - | - | - |
Overall accuracy | 96.00% | - | - | kappa | 0.92 |
Tree Cover | Non-Tree Cover | Total | User’s Accuracy (%) | Commission Error (%) | |
---|---|---|---|---|---|
Tree cover | 50 | - | 50 | 100.00% | 0.00% |
Non-tree cover | 2 | 48 | 50 | 96.00% | 4.00% |
Total | 52 | 48 | 100 | - | - |
User’s accuracy (%) | 96.15% | 100.00% | - | - | - |
Omission error (%) | 99.04% | 0.00% | |||
Overall accuracy | 98.00% | - | - | kappa | 0.96 |
Tree Cover | Non-Tree Cover | Total | User’s Accuracy (%) | Commission Error (%) | |
---|---|---|---|---|---|
Tree cover | 50 | - | 50 | 100.00% | 0.00% |
Non-tree cover | 1 | 49 | 50 | 98.00% | 2.00% |
Total | 51 | 49 | 100 | - | - |
User’s accuracy (%) | 98.04% | 100.00% | - | - | - |
Omission error (%) | 99.02% | 0.00% | - | - | - |
Overall accuracy | 99.00% | - | - | kappa | 0.98 |
Watershed | Municipality | LPI (%) | SIDI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1979 | 1993 | 2010 | 2018 | 2023 | 1979 | 1993 | 2010 | 2018 | 2023 | ||
RC1 | Candelaria Loxicha | 86.43 | 84.09 | 97.62 | 92.03 | 94.92 | 0.22 | 0.24 | 0.02 | 0.13 | 0.08 |
RC1-RC | Pluma Hidalgo | 81.41 | 92.93 | 97.68 | 92.97 | 83.37 | 0.28 | 0.13 | 0.05 | 0.11 | 0.19 |
RC1 | San Agustin Loxicha | 51.59 | 60.05 | 96.43 | 96.41 | 94.79 | 0.49 | 0.46 | 0.07 | 0.07 | 0.10 |
RZ1-RZ2 | San Carlos Yautepec | 61.23 | 83.18 | 96.13 | 85.48 | 86.61 | 0.44 | 0.27 | 0.07 | 0.24 | 0.22 |
RC1 | San Francisco Ozolotepec | 47.97 | 55.11 | 39.33 | 76.54 | 56.68 | 0.50 | 0.48 | 0.46 | 0.34 | 0.39 |
RC1 | San Juan Mixtepec | 61.15 | 91.17 | 98.39 | 84.01 | 83.64 | 0.47 | 0.15 | 0.03 | 0.23 | 0.20 |
RC1 | San Juan Ozolotepec | 29.49 | 74.28 | 81.02 | 56.51 | 84.88 | 0.49 | 0.36 | 0.28 | 0.27 | 0.24 |
RC1 | San Marcial Ozolotepec | 29.49 | 74.28 | 81.02 | 56.51 | 84.88 | 0.49 | 0.36 | 0.28 | 0.27 | 0.24 |
RC1-RC | San Mateo Piñas | 57.47 | 80.72 | 98.45 | 96.03 | 71.53 | 0.47 | 0.30 | 0.03 | 0.08 | 0.23 |
RC1 | San Mateo Rio Hondo | 50.58 | 71.77 | 97.16 | 96.64 | 95.60 | 0.48 | 0.39 | 0.05 | 0.06 | 0.08 |
RC1-RC2-RZ1-RZ2 | San Miguel del Puerto | 61.14 | 86.20 | 95.13 | 68.18 | 71.06 | 0.40 | 0.23 | 0.09 | 0.15 | 0.14 |
RC1 | San Miguel Suchixtepec | 37.65 | 67.15 | 97.76 | 95.67 | 92.91 | 0.50 | 0.42 | 0.04 | 0.08 | 0.13 |
RC1 | San Pedro el Alto | 34.92 | 40.58 | 95.68 | 90.12 | 87.97 | 0.49 | 0.48 | 0.08 | 0.18 | 0.21 |
RZ2 | San Pedro Huamelula | 87.10 | 83.99 | 95.16 | 79.77 | 78.32 | 0.22 | 0.26 | 0.09 | 0.18 | 0.19 |
RC1 | San Pedro Mixtepec | 70.00 | 86.45 | 91.02 | 91.89 | 89.71 | 0.40 | 0.21 | 0.16 | 0.15 | 0.18 |
RC | San Pedro Pochutla | 41.28 | 38.41 | 89.51 | 45.92 | 43.66 | 0.42 | 0.39 | 0.18 | 0.20 | 0.24 |
RC1 | San Sebastian Rio Hondo | 36.84 | 52.98 | 84.42 | 82.47 | 81.14 | 0.50 | 0.47 | 0.16 | 0.20 | 0.22 |
RC1-RC2-RC | Santa Maria Huatulco | 81.78 | 82.91 | 87.72 | 83.12 | 74.99 | 0.29 | 0.26 | 0.18 | 0.24 | 0.28 |
RC1 | Santa Maria Ozolotepec | 36.81 | 71.26 | 93.89 | 90.67 | 67.24 | 0.50 | 0.39 | 0.11 | 0.17 | 0.31 |
RC1-RZ1 | Santiago Xanica | 33.56 | 77.22 | 95.28 | 92.60 | 65.56 | 0.50 | 0.34 | 0.09 | 0.14 | 0.17 |
RC1 | Santo Domingo Ozolotepec | 42.45 | 73.86 | 95.82 | 83.73 | 83.83 | 0.50 | 0.37 | 0.08 | 0.19 | 0.18 |
Average | 53.35 | 72.79 | 90.70 | 82.73 | 79.68 | 0.43 | 0.33 | 0.12 | 0.17 | 0.20 |
Watershed | Municipality | PC | ||||
---|---|---|---|---|---|---|
1979 | 1993 | 2010 | 2018 | 2023 | ||
RC1 | Candelaria Loxicha | 0.77 | 0.74 | 0.97 | 0.87 | 0.92 |
RC1-RC | Pluma Hidalgo | 0.69 | 0.87 | 0.95 | 0.89 | 0.79 |
RC1 | San Agustin Loxicha | 0.33 | 0.41 | 0.93 | 0.93 | 0.90 |
RZ1-RZ2 | San Carlos Yautepec | 0.46 | 0.71 | 0.93 | 0.74 | 0.77 |
RC1 | San Francisco Ozolotepec | 0.21 | 0.36 | 0.40 | 0.62 | 0.53 |
RC1 | San Juan Mixtepec | 0.39 | 0.84 | 0.97 | 0.75 | 0.78 |
RC1 | San Juan Ozolotepec | 0.47 | 0.58 | 0.69 | 0.69 | 0.74 |
RC1 | San Marcial Ozolotepec | 0.31 | 0.62 | 0.96 | 0.95 | 0.86 |
RC1-RC | San Mateo Piñas | 0.39 | 0.67 | 0.97 | 0.92 | 0.74 |
RC1 | San Mateo Rio Hondo | 0.35 | 0.54 | 0.94 | 0.93 | 0.91 |
RC1-RC2-RZ1-RZ2 | San Miguel del Puerto | 0.74 | 0.75 | 0.91 | 0.82 | 0.84 |
RC1 | San Miguel Suchixtepec | 0.22 | 0.49 | 0.96 | 0.92 | 0.86 |
RC1 | San Pedro el Alto | 0.19 | 0.37 | 0.92 | 0.81 | 0.78 |
RZ2 | San Pedro Huamelula | 0.76 | 0.71 | 0.91 | 0.81 | 0.79 |
RC1 | San Pedro Mixtepec | 0.53 | 0.78 | 0.83 | 0.84 | 0.81 |
RC | San Pedro Pochutla | 0.48 | 0.54 | 0.81 | 0.78 | 0.72 |
RC1 | San Sebastian Rio Hondo | 0.25 | 0.39 | 0.82 | 0.78 | 0.75 |
RC1-RC2-RC | Santa Maria Huatulco | 0.68 | 0.71 | 0.81 | 0.73 | 0.69 |
RC1 | Santa Maria Ozolotepec | 0.25 | 0.53 | 0.89 | 0.83 | 0.65 |
RC1-RZ1 | Santiago Xanica | 0.23 | 0.61 | 0.91 | 0.86 | 0.82 |
RC1 | Santo Domingo Ozolotepec | 0.29 | 0.57 | 0.92 | 0.80 | 0.81 |
Average | 0.43 | 0.61 | 0.88 | 0.82 | 0.78 |
Watershed | Municipality | Annual Average Temperature (°C) | Total Annual Precipitation (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1979 | 1993 | 2010 | 2018 | 2023 | 1979 | 1993 | 2010 | 2018 | 2023 | ||
RC1 | Candelaria Loxicha | 18.76 | 20.40 | 19.66 | 21.18 | 20.56 | 1247.41 | 1620.81 | 1391.18 | 1391.30 | 1684.12 |
RC1-RC | Pluma Hidalgo | 18.46 | 22.02 | 21.71 | 22.39 | 22.64 | 1310.23 | 1699.23 | 1405.71 | 1405.73 | 1499.88 |
RC1 | San Agustin Loxicha | 19.04 | 19.92 | 19.28 | 19.99 | 20.22 | 1235.15 | 1595.21 | 1401.23 | 1400.28 | 2209.15 |
RZ1-RZ2 | San Carlos Yautepec | 23.97 | 24.28 | 23.77 | 23.61 | 22.64 | 1166.17 | 1342.99 | 1341.94 | 1338.04 | 749.35 |
RC1 | San Francisco Ozolotepec | 16.39 | 21.86 | 21.37 | 20.82 | 20.77 | 1339.98 | 1540.68 | 1302.66 | 1299.93 | 801.31 |
RC1 | San Juan Mixtepec | 15.74 | 19.25 | 18.54 | 17.20 | 18.88 | 1092.73 | 1457.55 | 1182.77 | 1182.90 | 754.96 |
RC1 | San Juan Ozolotepec | 16.82 | 21.58 | 21.05 | 20.45 | 20.56 | 1295.97 | 1527.76 | 1286.04 | 1284.37 | 794.95 |
RC1 | San Marcial Ozolotepec | 15.21 | 19.44 | 18.73 | 18.52 | 19.63 | 1256.69 | 1625.64 | 1324.36 | 1324.98 | 1153.05 |
RC1-RC | San Mateo Piñas | 17.38 | 21.68 | 21.36 | 21.72 | 21.87 | 1354.49 | 1662.15 | 1384.74 | 1385.06 | 1046.05 |
RC1 | San Mateo Rio Hondo | 15.83 | 17.69 | 16.75 | 16.35 | 17.30 | 1219.63 | 1642.82 | 1273.30 | 1272.99 | 1302.77 |
RC1-RC2-RZ1-RZ2 | San Miguel del Puerto | 25.28 | 24.60 | 25.07 | 26.48 | 23.95 | 1375.82 | 1508.61 | 1389.07 | 1385.98 | 704.47 |
RC1 | San Miguel Suchixtepec | 14.75 | 17.86 | 16.83 | 16.55 | 17.63 | 1233.14 | 1565.77 | 1281.99 | 1283.03 | 1236.47 |
RC1 | San Pedro el Alto | 16.67 | 19.63 | 18.73 | 19.24 | 19.63 | 1243.47 | 1628.01 | 1362.48 | 1362.92 | 1433.62 |
RZ2 | San Pedro Huamelula | 28.56 | 25.58 | 26.52 | 28.37 | 25.58 | 1244.16 | 1303.46 | 1396.71 | 1393.27 | 537.43 |
RC1 | San Pedro Mixtepec | 17.42 | 21.56 | 20.56 | 19.66 | 20.04 | 1185.99 | 1449.13 | 1264.55 | 1261.79 | 755.69 |
RC | San Pedro Pochutla | 22.28 | 24.00 | 23.91 | 26.27 | 25.10 | 1469.03 | 1522.73 | 1443.82 | 1442.99 | 1109.86 |
RC1 | San Sebastian Rio Hondo | 15.10 | 17.65 | 16.75 | 16.07 | 17.30 | 1159.27 | 1593.52 | 1195.04 | 1195.08 | 879.69 |
RC1-RC2-RC | Santa Maria Huatulco | 25.50 | 25.34 | 25.57 | 28.43 | 26.18 | 1483.59 | 1467.96 | 1462.77 | 1458.54 | 892.35 |
RC1 | Santa Maria Ozolotepec | 14.72 | 19.25 | 18.68 | 17.99 | 19.28 | 1249.24 | 1578.21 | 1264.63 | 1265.06 | 948.18 |
RC1-RZ1 | Santiago Xanica | 19.19 | 22.72 | 22.59 | 23.15 | 22.01 | 1417.75 | 1615.77 | 1362.53 | 1361.32 | 827.36 |
RC1 | Santo Domingo Ozolotepec | 15.19 | 19.27 | 18.63 | 17.44 | 18.90 | 1147.81 | 1499.70 | 1204.74 | 1204.63 | 804.85 |
Average | 18.68 | 21.22 | 20.76 | 21.04 | 20.98 | 1272.75 | 1545.13 | 1329.63 | 1328.58 | 1053.60 |
References
- Sun, M.; Li, W.; Zhu, L.; Guo, Z.; Zhao, Z.; Meng, N.; Han, M.; Wang, N.; Zhang, X. Degradation in edge forests caused by forest fragmentation. Carbon Res. 2025, 4, 38. [Google Scholar] [CrossRef]
- Ewers, R.M.; Banks-Leite, C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS ONE 2013, 8, e58093. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Jenny, R. Impacts of habitat fragmentation on terrestrial biodiversity in tropical forests in Democratic Republic of Congo. Int. J. Environ. Sci. 2024, 7, 43–53. [Google Scholar] [CrossRef]
- Corlett, R.T. Forest fragmentation and climate change. In Global Forest Fragmentation; CABI: Wallingford, UK, 2014; pp. 69–78. [Google Scholar] [CrossRef]
- Bennett, A.F.; Saunders, D.A. Conservation Biology for All; Oxford University Press: Oxford, UK, 2010; pp. 88–106. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.T. Ecosystem services: Classification for valuation. Biol. Conserv. 2008, 141, 1167–1169. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Carter-Berry, Z.; Jones, K.W.; Gomez-Aguilar, L.R.; Congalton, R.G.; Holwerda, F.; Kolka, R.; Looker, N.; Lopez-Ramirez, S.M.; Manson, R.; Mayer, A.; et al. Evaluating ecosystem service trade-offs along a land-use intensification gradient in central Veracruz, Mexico. Ecosyst. Serv. 2020, 45, 101181. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Información de la Situación del Medio Ambiente en México 2015. Compendio de Estadísticas Ambientales, Indicadores Clave, de Desempeño Ambiental y de Crecimiento Verde; SEMARNAT: Ciudad de México, Mexico, 2016; Available online: https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.pdf (accessed on 2 December 2024).
- Singh, M.P.; Bhojvaid, P.P.; de Jong, W.; Ashraf, J.; Reddy, S.R. Forest transition and socio-economic development in India and their implications for forest transition theory. For. Policy Econ. 2017, 76, 65–71. [Google Scholar] [CrossRef]
- Rosero-Añazco, P.; Zhu, A.L.; Cuesta, F.; Speelman, E.N.; Hofstede, G.J. What is behind land use change in tropical forests? From local relations to global mining concessions. Ecol. Soc. 2025, 30, 29. [Google Scholar] [CrossRef]
- Von Thaden-Ugalde, J.J.; Fuente, M.E.; Lithgow, D.; Martínez-Villanueva, M.; Alfonso-Corrado, C.; Aguirre-Hidalgo, V.; Clark-Tapia, R. Recovering landscape connectivity after long-term historical land cover changes in the mountain region of Oaxaca, Mexico. Reg. Environ. Chang. 2023, 23, 56. [Google Scholar] [CrossRef]
- Mansourian, S.; González-Mora, I.D.; Palmas-Tenorio, M.À.; Spota-Diericx, G.; Vallauri, D. Lessons Learnt from 15 Years of Integrated Watershed Management and Forest Restoration: The Copalita-Zimatán-Huatulco Landscape in Mexico Acknowledgements; WWF: France, Paris, 2020; Available online: https://www.wwf.fr/sites/default/files/doc-2020-05/202004_Report%20_Lessons-learnt-from-15-years-of-integrated-watershed-management-forest-restoration_WWF-min.pdf (accessed on 2 December 2024).
- Laurance, W.F.; Bruce Williamson, G. Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conserv. Biol. 2001, 15, 1529–1535. [Google Scholar] [CrossRef]
- Deng, G.; Gao, J.; Jiang, H.; Li, D.; Wang, X.; Wen, Y.; Sheng, L.; He, C. Response of vegetation variation to climate change and human activities in semi-arid swamps. Front. Plant Sci. 2022, 13, 990592. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Zong, Q.; Qin, P.; Liu, C.; Wang, S. Spatiotemporal differences in climate change impacts on vegetation cover in China from 1982 to 2015. Environ. Sci. Pollut. Res. 2022, 29, 10263–10276. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; Berenguer, E.; Oliveras Menor, I.; Bauman, D.; Corral-Rivas, J.J.; Nava-Miranda, M.G.; Both, S.; Ndong, J.E.; Ondo, F.E.; Bengone, N.N.; et al. Functional susceptibility of tropical forests to climate change. Nat. Ecol. Evol. 2022, 6, 878–889. [Google Scholar] [CrossRef]
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO); Gobierno del Estado de Oaxaca. La Biodiversidad en Oaxaca: Estudio de Estado. Ciudad de México, Mexico. 2022. Available online: https://www.biodiversidad.gob.mx/region/EEB/estudios/ee_oaxaca (accessed on 2 December 2024).
- Cámara de Diputados del H. Congreso de la Unión. Ley Agraria; Diario Oficial de la Federación: Ciudad de México, Mexico, 2024; Available online: https://www.diputados.gob.mx/LeyesBiblio/pdf/LAgra.pdf (accessed on 20 May 2024).
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Sistema Nacional de Información Sobre Biodiversidad (CONABIO). Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/hidro/chidro/rh250kgw (accessed on 20 May 2024).
- Instituto Nacional de Estadística y Geografía (INEGI). Marco Geoestadístico 2024. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=794551132173 (accessed on 18 February 2025).
- Comisión Nacional del Agua (CONAGUA). Acuerdo por el que se Actualiza la Disponibilidad Media Anual de las Aguas Nacionales Superficiales de las 757 Cuencas Hidrológicas que Comprenden las 37 Regiones Hidrológicas en que se Encuentra Dividido los Estados Unidos Mexicanos 2023. Diario Oficial de la Federación 2023. Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/hidro/chidro/rh250kgw (accessed on 20 May 2024).
- Sandoval-García, C.; Cantú-Silva, I. Análisis geomático del cambio de uso del suelo en la subcuenca río Copalita, Oaxaca. Ecosist. Recur. Agropecu. 2021, 8, e2915. [Google Scholar] [CrossRef]
- Espinoza-García, N.; Regino-Maldonado, J.; Ramírez-Cabrera, C. Valoración económica de servicios ecosistémicos hidrológicos y culturales asociados a la vegetación riparia. Contrib. Conoc. Cient. Tecnol. Oaxaca 2022, 6, 17–32. Available online: https://www.ciidiroaxaca.ipn.mx/cccto/publicaciones/numeros-publicados/vol-6-num-6.html (accessed on 15 April 2024).
- Ramírez-Cabrera, C.; Regino-Maldonado, J.; Núñez-Hernández, J.M.; Toledo-López, A.; Belmonte-Jiménez, S.I.; Méndez-García, E.M.d.C.; López-Cruz, J.Y. Changes in the economic value of ecosystem services and dynamics of land use and land cover in the Copalita watershed, Oaxaca, Mexico. Rev. Chapingo Ser. Cienc. For. Ambiente 2024, 30, 1–21. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS Help. 2015. Available online: https://www.researchgate.net/profile/Samuel-Cushman-2/publication/259011515_FRAGSTATS_Spatial_pattern_analysis_program_for_categorical_maps/links/564217ea08aebaaea1f8b8dd/FRAGSTATS-Spatial-pattern-analysis-program-for-categorical-maps.pdf (accessed on 19 August 2024).
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Declass 3 (2013). Available online: https://earthexplorer.usgs.gov/ (accessed on 23 July 2024).
- Instituto Nacional de Estadística y Geografía (INEGI). Ortoimágenes. 1993. Available online: https://www.inegi.org.mx/temas/imagenes/ortoimagenes/#descargas (accessed on 23 July 2024).
- Instituto Nacional de Estadística y Geografía (INEGI). RapidEye. 2010. Available online: https://www.inegi.org.mx/temas/imagenes/imgrapideye/#descargas (accessed on 23 July 2024).
- Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of land cover, forest, and tree species classes with Ziyuan-3 multispectral and stereo data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef]
- Zhang, X.; Du, L.; Tan, S.; Wu, F.; Zhu, L.; Zeng, Y.; Wu, B. Land use and land cover mapping using rapideye imagery based on a novel band attention deep learning method in the three Gorges reservoir area. Remote Sens. 2021, 13, 1225. [Google Scholar] [CrossRef]
- Planet Labs. Planet Labs: Satellite Imagery and Earth Data Analytics. 2018. Available online: https://www.planet.com/ (accessed on 30 July 2024).
- Campbell, M.; Congalton, R.G.; Hartter, J.; Ducey, M. Optimal land cover mapping and change analysis in northeastern oregon using landsat imagery. Photogramm. Eng. Remote Sens. 2015, 81, 37–47. [Google Scholar] [CrossRef]
- Chuvieco, E. Fundamentos de Teledetección, 2nd ed.; Ediciones Rialp, S.A.: Madrid, Spain, 1995. [Google Scholar]
- Puyravaud, J.-P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manag. 2003, 177, 593–596. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995. [Google Scholar]
- Obsa, F.; Kefale, B.; Kidane, M.; Tolessa, T. Data on the dynamics of landscape structure and fragmentation in Ambo district, central highlands of Ethiopia. Data Brief 2021, 35, 106782. [Google Scholar] [CrossRef]
- Lynda, B.O.; Azziz, H.; Sylvain, O.; Tahar, A.H.; Samia, Y.S.; Farida, D.M. Contribution of remote sensing and GIS in the analysis of landscape ecology: Case of the high steppe plains of Algeria. In Proceedings of the 2023 International Conference on Earth Observation and Geo-Spatial Information (ICEOGI), Algiers, Algeria, 22–24 May 2023. [Google Scholar] [CrossRef]
- Cao, C.; Luo, Y.; Xu, L.; Xi, Y.; Zhou, Y. Construction of ecological security pattern based on InVEST-Conefor-MCRM: A case study of Xinjiang, China. Ecol. Indic. 2024, 159, 111647. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, L.; Fu, H. Construction of wetland ecological network based on MSPA-Conefor-MCR: A case study of Haikou City. Ecol. Indic. 2024, 166, 112329. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Organización Meteorológica Mundial (OMM). Guía de Prácticas Climatológicas; Organización Meteorológica Mundial: Geneve, Switzerland, 2018; Available online: https://library.wmo.int/es/records/item/28514-guia-de-practicas-climatologicas?offset=6 (accessed on 20 July 2024).
- Zamora-López, S.E. Forest transition approach to support global forest policy and sustainable development. In Life on Land; Springer International Publishing: Cham, Switzerland, 2020; pp. 396–409. [Google Scholar] [CrossRef]
- Von Thaden-Ugalde, J.J.; Binnqüist-Cervantes, G.; Perevochtchikova, M.; Clark-Tapia, R. Deforestation dynamics post-payment for ecosystem services in Sierra Juárez, Oaxaca, Mexico. Reg. Environ. Chang. 2025, 25, 22. [Google Scholar] [CrossRef]
- Comisión Nacional del Agua. Información Estadística Climatológica. 2024. Available online: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica (accessed on 12 February 2024).
- Krivoruchko, K.; Gribov, A. Evaluation of empirical Bayesian kriging. Spat. Stat. 2019, 32, 100368. [Google Scholar] [CrossRef]
- Antal, A.; Guerreiro, P.M.P.; Cheval, S. Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal. Theor. Appl. Climatol. 2021, 145, 1193–1206. [Google Scholar] [CrossRef]
- Yang, R.; Xing, B. A comparison of the performance of different interpolation methods in replicating rainfall magnitudes under different climatic conditions in chongqing province (China). Atmosphere 2021, 12, 1318. [Google Scholar] [CrossRef]
- Port, U.; Brovkin, V.; Claussen, M. The influence of vegetation dynamics on anthropogenic climate change. Earth Syst. Dyn. 2012, 3, 233–243. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Jackson, R.B. vegetation climate feedbacks in the conversion of tropical savanna to grassland. J. Clim. 2000, 13, 1593–1602. [Google Scholar] [CrossRef]
- Miralles, D.G.; Vilà-Guerau de Arellano, J.; McVicar, T.R.; Mahecha, M.D. Vegetation–climate feedbacks across scales. Ann. N. Y. Acad. Sci. 2025, 1544, 27–41. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Wu, W.; Liu, J. Global forest fragmentation change from 2000 to 2020. Nat Commun. 2023, 14, 3752. [Google Scholar] [CrossRef] [PubMed]
- Colín-García, G.; Palacios-Vélez, E.; López-Pérez, A.; Bolaños-González, M.A.; Flores-Magdaleno, H.; Ascencio-Hernández, R.; Canales-Islas, E.I. Evaluation of the impact of climate change on the water balance of the Mixteco River Basin with the SWAT model. Hydrology 2024, 11, 45. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Ries, L.; Fletcher, R.J., Jr.; Battin, J.; Sisk, T.D. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 491–522. [Google Scholar] [CrossRef]
- Hernández Velazco, M.J.; Estrada, X.d.A.L. La reestructuración de un pueblo costero por la inserción de la actividad turística. El caso de Huatulco, Oaxaca, México. Ayana Rev. Investig. Tur. 2021, 2, 018. [Google Scholar] [CrossRef]
- Brumberg, H.; Furey, S.; Bouffard, M.G.; Mata-Quirós, M.J.; Murayama, H.; Neyestani, S.; Pauline, E.; Whitworth, A.; Madden, M. Increasing forest cover and connectivity both inside and outside of protected areas in southwestern Costa Rica. Remote Sens. 2024, 16, 1088. [Google Scholar] [CrossRef]
- Secretaria de Medio Ambiente, Recursos Naturales y Pesca (SEMARNAP). Decreto por el que se Declara Área Natural Protegida, con el Carácter de Parque Nacional, la Región Conocida como Huatulco, en el Estado de Oaxaca, con una Superficie Total de 11,890-98-00 Hectáreas; SEMARNAP: Ciudad de México, Mexico, 1998; Available online: https://www.dof.gob.mx/nota_to_imagen_fs.php?codnota=4888031&fecha=24/07/1998&cod_diario=209503 (accessed on 10 April 2024).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Decreto por el que se Declara Área Natural Protegida, con la Categoría de Parque Nacional, el sitioTangolunda, Ubicado en el Municipio de Santa María Huatulco, Estado de Oaxaca, y que Abarca la Superficie de 110-32-95.37 Hectáreas; SEMARNAT: Ciudad de México, Mexico, 2024; Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5718085&fecha=26/02/2024 (accessed on 10 April 2024).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Decreto por el que se Declara Área Natural Protegida Huatulco II.; con el Carácter de Parque Nacional, la Superficie de 2,237-95-12.10 Hectáreas, Ubicada en el Municipio de Santa María Huatulco, Estado de Oaxaca; SEMARNAT: Ciudad de México, Mexico, 2023; Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5698657&fecha=15/08/2023 (accessed on 10 April 2024).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Decreto por el que se Declara Área Natural Protegida Bajos de Coyula, con el Carácter de Área de Protección de Flora y Fauna, la Superficie de 1,923-14-74.83 Hectáreas, Ubicadas en los Municipios de Santa María Huatulco y San Pedro Pochutla, Estado de Oaxaca; SEMARNAT: Ciudad de México, Mexico, 2023; Available online: https://dof.gob.mx/nota_detalle.php?codigo=5698653&fecha=15/08/2023#gsc.tab=0 (accessed on 10 April 2024).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Decreto por el que se Declara Área Natural Protegida Ricardo Flores Magón, con el Carácter de Parque Nacional, la Superficie de 1,812-59-60.34 Hectáreas, Ubicada en los Municipios de Santa María Huatulco y San Miguel del Puerto, Estado de Oaxaca; SEMARNAT: Ciudad de México, Mexico, 2023; Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5698650&fecha=15/08/2023 (accessed on 10 April 2024).
- SEDATU. Atlas de la Propiedad Social; SEDATU: Ciudad de México, Mexico, 2024; Available online: https://www.gob.mx/ran/documentos/atlas-de-la-propiedad-social (accessed on 20 May 2024).
- Osieyo, M.A. Nature in all goals. In Building a New Relationship Between People and Nature for the Sustainable Development Goals; WWF: Surrey, UK, 2020; Available online: https://wwfeu.awsassets.panda.org/downloads/nature_in_all_goals_2020.pdf (accessed on 10 June 2024).
- Duran, E.; Gopar, F.; Velázquez, A.; López, F.; Larrazabal, A.; Medina, C. Análisis del Cambio en la Cobertura de Vegetación y usos del Suelo en Oaxaca; Simposium de biodiversidad de Oaxaca: Oaxaca, Mexico, 2007; Available online: https://www.researchgate.net/profile/Alejandro-Velazquez-9/publication/263254401_Analisis_del_cambio_en_la_cobertura_de_vegetacion_y_usos_del_suelo_en_Oaxaca/links/548b24cb0cf214269f1dd122/Analisis-del-cambio-en-la-cobertura-de-vegetacion-y-usos-del-suelo-en-Oaxaca.pdf (accessed on 5 January 2024).
- Instituto Nacional de Estadística y Geografía (INEGI). Uso del Suelo y Vegetación, Escala 1:250000, Serie II (Continuo Nacional); INEGI: Aguascalientes, Mexico, 2001; Available online: http://geoportal.conabio.gob.mx/metadatos/doc/html/usv250ks2gw.html (accessed on 8 July 2024).
- Instituto Nacional de Estadística y Geografía (INEGI). Uso del Suelo y Vegetación, Escala 1:250000, Serie VII (Continuo Nacional); INEGI: Aguascalientes, Mexico, 2021; Available online: http://geoportal.conabio.gob.mx/metadatos/doc/html/usv250s7gw.html (accessed on 8 July 2024).
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Instituto Nacional de Ecologia (INE); Instituto Nacional de Estadística y Geografía (INEGI). Uso del Suelo y Vegetación, Escala 1:250000, Serie I (Continuo Nacional). México, D.F. 1997. Available online: http://geoportal.conabio.gob.mx/metadatos/doc/html/usv250kcs1agw.html (accessed on 8 July 2024).
- Hanski, I.; Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 2000, 404, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Oliver, T.H.; Marshall, H.H.; Morecroft, M.D.; Brereton, T.; Prudhomme, C.; Huntingford, C. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Chang. 2015, 5, 941–945. [Google Scholar] [CrossRef]
- Alkama, R.; Forzieri, G.; Duveiller, G.; Grassi, G.; Liang, S.; Cescatti, A. Vegetation-based climate mitigation in a warmer and greener World. Nat. Commun. 2022, 13, 606. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Brando, P.M.; Morton, D.C.; Lawrence, D.M.; Yang, H.; Randerson, J.T. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 2022, 13, 1964. [Google Scholar] [CrossRef]
- Valentine, K.; Herbert, E.R.; Walters, D.C.; Chen, Y.; Smith, A.J.; Kirwan, M. L Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink. Nat. Commun. 2023, 14, 1137. [Google Scholar] [CrossRef]
Component | Variable | Indicator | Description |
---|---|---|---|
Land use and vegetation | Tree cover | Area with tree cover (ha) | Dynamics of changes in tree and non-tree cover over time |
Fragmentation | Structural fragmentation | Largest patch index (LPI) | Quantification of the percentage of the total landscape area represented by the largest patch |
Landscape heterogeneity | Simpson’s Diversity Index (SIDI) [30] | Dominance of one species over another | |
Connectivity | Functional connectivity of the landscape | Probability of Connectivity Index (PC) [31] | Landscape structure that determines the ease or difficulty of species movement, as well as ecological processes between patches |
Climate | Annual average temperature | Temperature (°C) | Average value of the daily mean temperatures recorded throughout the entire year |
Total annual precipitation | Accumulated precipitation (mm/annual) | Total amount of rain, snow, or hail falls throughout the year |
Period | Initial Tree Cover (A1) | Final Tree Cover (A2) | Change in Tree Cover (ha) | Years | % Gain/Loss | Annual Change in Tree Cover Rate (%) |
---|---|---|---|---|---|---|
1979–1993 | 189,528.08 | 227,147.75 | 37,619.67 | 14 | 19.85 | 1.29 |
1993–2010 | 227,147.75 | 275,274.66 | 48,126.91 | 17 | 21.19 | 1.13 |
2010–2018 | 275,274.66 | 257,112.05 | −18,162.62 | 8 | −6.60 | −0.85 |
2018–2023 | 257,112.05 | 249,253.92 | −7858.13 | 5 | −3.06 | −0.62 |
1979–2023 | 189,528.08 | 249,253.92 | 59,725.84 | 44 | 31.51 | 0.62 |
Reference | Years of Evaluation | ||||||||
---|---|---|---|---|---|---|---|---|---|
1979 | 1993 | 1995 | 2000 | 2010 | 2015 | 2018 | 2020 | 2023 | |
[29] | - | - | - | 149,727 | - | - | - | 136,575 | - |
[27] | - | - | 130,386 | - | - | 125,929 | - | - | - |
[72,74] | - | 129,117 | - | - | - | - | 131,471 | - | - |
In this study | 90,796 | 117,804 | - | - | 142,257 | - | 140,426 | - | 136,193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juárez-Morales, M.; Regino-Maldonado, J.; Von Thaden Ugalde, J.J.; Gumeta-Gómez, F.; Vásquez-López, A.; Ruíz-Vega, J. Multitemporal Analysis of Tree Cover, Fragmentation, Connectivity, and Climate in Coastal Watersheds of Oaxaca, Mexico. Land 2025, 14, 1808. https://doi.org/10.3390/land14091808
Juárez-Morales M, Regino-Maldonado J, Von Thaden Ugalde JJ, Gumeta-Gómez F, Vásquez-López A, Ruíz-Vega J. Multitemporal Analysis of Tree Cover, Fragmentation, Connectivity, and Climate in Coastal Watersheds of Oaxaca, Mexico. Land. 2025; 14(9):1808. https://doi.org/10.3390/land14091808
Chicago/Turabian StyleJuárez-Morales, Manuel, Juan Regino-Maldonado, Juan José Von Thaden Ugalde, Fernando Gumeta-Gómez, Alfonso Vásquez-López, and Jaime Ruíz-Vega. 2025. "Multitemporal Analysis of Tree Cover, Fragmentation, Connectivity, and Climate in Coastal Watersheds of Oaxaca, Mexico" Land 14, no. 9: 1808. https://doi.org/10.3390/land14091808
APA StyleJuárez-Morales, M., Regino-Maldonado, J., Von Thaden Ugalde, J. J., Gumeta-Gómez, F., Vásquez-López, A., & Ruíz-Vega, J. (2025). Multitemporal Analysis of Tree Cover, Fragmentation, Connectivity, and Climate in Coastal Watersheds of Oaxaca, Mexico. Land, 14(9), 1808. https://doi.org/10.3390/land14091808