Dynamic Simulation of Land Use Change and Assessment of Ecosystem Services Under Climate Change Scenarios: A Case Study of Shanghai, China
Abstract
1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Sources and Data Pre-Processing
2.3. Analysis Methods
2.3.1. PLUS Model
2.3.2. ESs Assessment
- 1.
- Water yield
- 2.
- Soil retention
- 3.
- Carbon sequestration
- 4.
- Habitat quality
2.4. Multi-Scenario Configuration
3. Results
3.1. LUCC in Shanghai from 2000 to 2020
3.2. ES Value in Shanghai from 2000 to 2020
3.3. Multi-Scenario Simulations
3.3.1. Prediction of LUCC
3.3.2. ESs Values in Shanghai in Different Scenarios in 2040
4. Discussion
4.1. LUCC in Shanghai During 2000–2020
4.2. LUCC Under Different Scenarios
4.3. ESs During 2000–2020
4.4. Evaluation of ESs Under Different Scenarios
4.5. Limitation of the Current Study
5. Conclusions
- (1)
- During 2000–2020, Shanghai’s land use was dominated by built-up areas and farmland, exhibiting marked transitions: farmland proportion declined continuously while built-up land expanded substantially. Water area decreased significantly, with woodland and grassland maintaining minimal, stable shares. Spatially, a “core-suburban-peripheral” gradient emerged: intensive development in urban cores, farmland-built-up mosaics in suburbs, and relatively preserved yet encroached farmland in the peripheries. The expansion of construction land brought by urbanization has led to the increasing fragmentation of ecological land.
- (2)
- PLUS model simulations of Shanghai’s 2040 land use under six scenarios indicate that natural development scenarios sustain built-up/farmland dominance—especially under ND585, where built-up expansion accelerates and water area decline, while woodland increases slightly due to enhanced climate adaptability. Ecological protection scenarios effectively constrain built-up growth, elevate farmland proportion, and stabilize woodland/water areas by counterbalancing climate impacts through policy interventions. Spatially, farmland concentrates in central–southern zones, built-up land sprawls eastward, and woodland/water is distributed fragmentedly. Ecological policies demonstrably curb urban sprawl and maintain ecological land stability.
- (3)
- From 2000 to 2020, regional water yield increased, soil retention declined then gradually recovered, carbon sequestration fluctuated mildly, and habitat quality deteriorated persistently. Spatially, high-value areas for water yield and soil retention clustered in peri-urban ecological zones, contrasting with low values in urban cores and developed areas—revealing an “urban-rural divergence” pattern that reflects urbanization’s profound ecosystem impacts.
- (4)
- The projected 2040 ESs vary substantially across scenarios: water yield and soil retention will peak under SSP119, while carbon sequestration and habitat quality will be optimal under SSP245, underscoring climate adaptation’s critical role in enhancing ESs. Spatially, water yield will peak in the northeast of the urban center where carbon storage, soil retention, and habitat quality decline—inversely mirroring southwestern patterns. This northeast disparity stems from excessive built-up expansion, indicating economic overreliance on land development. Future strategies should diversify eco-economic models, rigorously safeguard farmland and ecological redlines, and rationally utilize undeveloped land to advance high-quality regional coordination.
- (5)
- District-level ESs in 2040 scenarios show pronounced heterogeneity: water yield will be optimal under SSP119, with Qingpu District becoming the lowest-value area due to rapid urbanization. Soil retention will be minimized in Jing’an District, while Minhang and Baoshan will achieve higher values via ecological restoration under ND245/EP245. Carbon sequestration will exhibit a “core-periphery” gradient, and ecological advantage zones like Pudong and Chongming will maximize their potential under EP245, whereas central urban districts (e.g., Xuhui) will show modest gains under ecological protection. Habitat quality will prove most scenario-sensitive in Qingpu (peaking under ND245), while suburban differences will gradually converge, indicating the delayed effects of conservation measures. Overall, peripheral regions with favorable ecological conditions exhibit superior ESs functionality. Moreover, in these areas, ESs demonstrate heightened sensitivity to climate change and policy interventions. Conversely, highly urbanized central districts manifest generally diminished ESs, where responses to climate change and policies remain markedly subdued. This contrast thereby underscores the critical importance of spatial heterogeneity management in urban development.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ESs | Ecosystem Services |
EP | Ecological Protection |
ND | Natural Development |
LUCC | Land Use and Land Cover Change |
PLUS | Patch-General Land Use Simulation |
RCPs | Representative Concentration Pathways |
SSPs | Shared Socioeconomic Pathways |
ND119 | ND—SSP1-1.9 |
ND245 | ND—SSP2-4.5 |
ND585 | ND—SSP5-8.5 |
EP119 | EP—SSP1-1.9 |
EP245 | EP—SSP2-4.5 |
EP585 | EP—SSP5-8.5 |
References
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- MEA. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Wang, H. The role of informal ruralization within China’s rapid urbanization. Nat. Cities 2024, 1, 205–215. [Google Scholar] [CrossRef]
- Ke, X.; van Vliet, J.; Zhou, T.; Verburg, P.H.; Zheng, W.; Liu, X. Direct and indirect loss of natural habitat due to built-up area expansion: A model-based analysis for the city of Wuhan, China. Land Use Policy 2018, 74, 231–239. [Google Scholar] [CrossRef]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of agricultural transitions and urbanization for ecosystem services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- Xiao, R.; Lin, M.; Fei, X.; Li, Y.; Zhang, Z.; Meng, Q. Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai–Hangzhou Bay Metropolitan Region. J. Clean. Prod. 2020, 253, 119803. [Google Scholar] [CrossRef]
- Umwali, E.D.; Chen, X.; Ma, X.; Guo, Z.; Mbigi, D.; Zhang, Z.; Umugwaneza, A.; Gasirabo, A.; Umuhoza, J. Integrated SSP-RCP Scenarios for Modeling the Impacts of Climate Change and Land Use on Ecosystem Services in East Africa. Ecol. Model. 2025, 504, 111092. [Google Scholar] [CrossRef]
- Qu, C.; Xu, J.; Li, W.; Shi, S.; Liu, B. Quantifying the nonlinear effects of urban-rural blue-green landscape combination patterns on the trade-off between carbon sinks and surface temperature: An approach based on self-organizing mapping and interpretable machine learning. Sustain. Cities Soc. 2025, 130, 106608. [Google Scholar] [CrossRef]
- Ren, X.; Xiong, R.; Ni, T. Spatial network characteristics of carbon balance in urban agglomerations—A case study in Beijing-Tianjin-Hebei city agglomeration. Appl. Geogr. 2024, 169, 103343. [Google Scholar] [CrossRef]
- Underwood, E.C.; Hollander, A.D.; Safford, H.D.; Kim, J.B.; Srivastava, L.; Drapek, R.J. The impacts of climate change on ecosystem services in southern California. Ecosyst. Serv. 2019, 39, 101008. [Google Scholar] [CrossRef]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.; Ruckelshaus, M.; Shi, F.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef] [PubMed]
- Day, J.W.; Rybczyk, J.M. Chapter 36—Global Change Impacts on the Future of Coastal Systems: Perverse Interactions Among Climate Change, Ecosystem Degradation, Energy Scarcity, and Population. In Coasts and Estuaries; Wolanski, E., Day, J.W., Elliott, M., Ramachandran, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 621–639. [Google Scholar]
- Zhou, S.; Qu, Y.; Wang, Y.; Wu, Z.; Shi, Y. Ecosystem service bundles under SSP-RCP and local scenarios: A pathway to comprehensive spatial planning for sustainability. Resour. Environ. Sustain. 2025, 20, 100211. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 2017, 42, 169–180. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Su, H.; Du, M.; Liu, Q.; Kang, X.; Zhao, L.; Zheng, W.; Liao, Z. Assessment of regional Ecosystem Service Bundles coupling climate and land use changes. Ecol. Indic. 2024, 169, 112844. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; De Maeyer, P.; Van de Voorde, T.; Li, Y. Ecological security warning in Central Asia: Integrating ecosystem services protection under SSPs-RCPs scenarios. Sci. Total Environ. 2024, 912, 168698. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Wang, W.; Yu, H.; Tong, X.; Jia, Q. Estimating terrestrial ecosystem carbon storage change in the YREB caused by land-use change under SSP-RCPs scenarios. J. Clean. Prod. 2024, 469, 143205. [Google Scholar] [CrossRef]
- Chen, Q.; Ning, Y. Projecting LUCC dynamics and ecosystem services in an emerging urban agglomeration under SSP-RCP scenarios and their management implications. Sci. Total Environ. 2024, 949, 175100. [Google Scholar] [CrossRef]
- Thomas, C.D.; Williams, S.E.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; et al. Uncertainty in predictions of extinction risk/Effects of changes in climate and land use/Climate change and extinction risk (reply). Nature 2004, 430, 34. [Google Scholar] [CrossRef]
- Yang, X.J. China’s Rapid Urbanization. Science 2013, 342, 310. [Google Scholar] [CrossRef]
- Chao, R. Effects of Increased Urbanization. Science 2009, 324, 37. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Shi, P. China’s urbanization at a turning point—Challenges and opportunities. Science 2025, 388, eadw3443. [Google Scholar] [CrossRef]
- Li, L.; Wen, J.; Shi, Y.; Chen, Y.; Shi, Z.; Wu, Y.; Liu, J.; Tian, T.; Yan, J.; Zhao, L.; et al. Disaster losses in Shanghai decreased under rapid urbanization: Evidence from 1980 to 2019. Urban Clim. 2025, 59, 102278. [Google Scholar] [CrossRef]
- Li, C.; Fang, S.; Geng, X.; Yuan, Y.; Zheng, X.; Zhang, D.; Li, R.; Sun, W.; Wang, X. Coastal ecosystem service in response to past and future land use and land cover change dynamics in the Yangtze river estuary. J. Clean. Prod. 2023, 385, 135601. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, T.; He, F.; Zhang, W.; Chen, K. Assessing and simulating changes in ecosystem service value based on land use/cover change in coastal cities: A case study of Shanghai, China. Ocean Coast. Manag. 2023, 239, 106591. [Google Scholar] [CrossRef]
- Wang, X.; Guan, C. Assessing green space exposure in high density urban areas: A deficiency-sufficiency framework for Shanghai. Ecol. Indic. 2025, 175, 113494. [Google Scholar] [CrossRef]
- Sengupta, D.; Chen, R.; Meadows, M.E. Building beyond land: An overview of coastal land reclamation in 16 global megacities. Appl. Geogr. 2018, 90, 229–238. [Google Scholar] [CrossRef]
- Yang, J.; Huang, H. The 30 m Annual Land Cover Datasets and Its Dynamics in China from 1985 to 2023; Zenodo: Geneva, Switzerland, 2024; Volume 13, pp. 3907–3925. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Zhai, H.; Lv, C.; Liu, W.; Yang, C.; Fan, D.; Wang, Z.; Guan, Q. Understanding Spatio-Temporal Patterns of Land Use/Land Cover Change under Urbanization in Wuhan, China, 2000–2019. Remote Sens. 2021, 13, 3331. [Google Scholar] [CrossRef]
- Lin, Z.; Peng, S. Comparison of multimodel simulations of land use and land cover change considering integrated constraints—A case study of the Fuxian Lake basin. Ecol. Indic. 2022, 142, 109254. [Google Scholar] [CrossRef]
- Liao, S.; Wang, W.; Wang, C.; Ji, R.; Cui, A.; Chen, D.; Zhang, X.; Chen, N. Land Use and Land Cover Change Assessment and Predictions in Flood Detention Areas of Yangtze River Basin Based on AIF-HOM-PLUS Model. Remote Sens. 2025, 17, 1857. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Chen, J.; Arash, M.; Zhang, B.; Chang, Q.; Liu, J.; You, W. Assessing the impact of land use change on habitat quality in Zhongwei through multiscenario simulation using the PLUS and InVEST models. Sci. Rep. 2025, 15, 12355. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef]
- Li, J.; Yuan, L.; Hu, Y.; Xu, A.; Cheng, Z.; Song, Z.; Zhang, X.; Zhu, W.; Shang, W.; Liu, J.; et al. Flood simulation using LISFLOOD and inundation effects: A case study of Typhoon In-Fa in Shanghai. Sci. Total Environ. 2024, 954, 176372. [Google Scholar] [CrossRef]
- Lin, M.; Lin, T.; Sun, C.; Jones, L.; Sui, J.; Zhao, Y.; Liu, J.; Xing, L.; Ye, H.; Zhang, G.; et al. Using the Eco-Erosion Index to assess regional ecological stress due to urbanization—A case study in the Yangtze River Delta urban agglomeration. Ecol. Indic. 2020, 111, 106028. [Google Scholar] [CrossRef]
- Wu, H.; Yang, C.; Liang, A.; Qin, Y.; Dunchev, D.; Ivanova, B.; Che, S. Urbanization and Carbon Storage Dynamics: Spatiotemporal Patterns and Socioeconomic Drivers in Shanghai. Land 2024, 13, 2098. [Google Scholar] [CrossRef]
- Geng, H.; Lin, T.; Han, J.; Zheng, Y.; Zhang, J.; Jia, Z.; Chen, Y.; Lin, M.; Yu, L.; Zhang, Y. Urban green vitalization and its impact on green exposure equity: A case study of Shanghai city, China. J. Environ. Manag. 2024, 370, 122889. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, G.; Zhang, P.; Jing, S.; Dong, J. Simulation and Zoning Research on the Ecosystem Service in the Beijing–Tianjin–Hebei Region Based on SSP–RCP Scenarios. Land 2023, 12, 1536. [Google Scholar] [CrossRef]
- Bin, W.; Chunguang, H.; Yushuo, Z. Multi-scenario Simulation of the Impact of Land Use Change on the Ecosystem Service Value in the Suzhou-Wuxi-Changzhou Metropolitan Area, China. Chin. Geogr. Sci. 2024, 34, 79–92. [Google Scholar]
- Zhang, K.; Zou, C.; Lin, N.; Qiu, J.; Pei, W.; Yang, Y.; Bao, X.; Zhang, Z. The Ecological Conservation Redline program: A new model for improving China’s protected area network. Environ. Sci. Policy 2022, 131, 10–13. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- He, Y.; Liang, Y.; Liu, L.; Yin, Z.; Huang, J. Loss of green landscapes due to urban expansion in China. Resour. Conserv. Recycl. 2023, 199, 107228. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Li, L.; Wang, Z.; Song, K. Spatiotemporal dynamics of coastal wetlands and reclamation in the Yangtze Estuary during past 50 years (1960s–2015). Chin. Geogr. Sci. 2018, 28, 386–399. [Google Scholar] [CrossRef]
- Zhuo, W.; Wu, N.; Shi, R.; Cui, Y.; Zhang, C.; Liu, S.; Zhu, F.; Zhang, B.; Liu, P. Assessing the impacts of reclamation and invasion on ecological dynamics of coastal wetland vegetation in the Yangtze Estuary from 1985 to 2019:A case study of Chongming Island, China. J. Environ. Manag. 2025, 376, 124505. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, W.; Qian, Y.; Han, L.; Pickett, S.T.A.; Wang, J.; Li, W.; Ouyang, Z. Beyond city expansion: Multi-scale environmental impacts of urban megaregion formation in China. Natl. Sci. Rev. 2021, 9, nwab107. [Google Scholar] [CrossRef]
- Zepp, H.; Falke, M.; Günther, F.; Gruenhagen, L.; Inostroza, L.; Zhou, W.; Nannan, Q.H.; Dong. China’s ecosystem services planning: Will Shanghai lead the way? A case study from the Baoshan district (Shanghai). Erdkunde 2021, 75, 271–293. [Google Scholar] [CrossRef]
- Wei, Y.D.; Li, H.; Yue, W. Urban land expansion and regional inequality in transitional China. Landsc. Urban Plan. 2017, 163, 17–31. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Zhu, J.; Wang, D.; Zhao, T. Accelerated shifts from heatwaves to heavy rainfall in a changing climate. npj Clim. Atmos. Sci. 2025, 8, 214. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B.; Liang, L.; Wang, S.; Zhang, H.; Sun, H.; Han, X. Unfolding the effectiveness of ecological restoration programs in enhancing vegetation carbon sinks across different climate zones in China. Resour. Conserv. Recycl. 2025, 212, 107974. [Google Scholar] [CrossRef]
- Xie, Z.-X.; Zhang, B.; Shi, Y.-T.; Zhang, X.-Y.; Sun, Z.-X. Changes and protections of urban habitat quality in Shanghai of China. Sci. Rep. 2023, 13, 10976. [Google Scholar] [CrossRef]
- Hodgkins, R.; To, L.S.; Matthews, T. The IPCC reports and HE Geography: Opportunities lost and found. J. Geogr. High. Educ. 2025, 49, 141–153. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Sun, J.; Ao, J. Changes in precipitation and extreme precipitation in a warming environment in China. Chin. Sci. Bull. 2013, 58, 1395–1401. [Google Scholar] [CrossRef]
- Wu, C.; Li, C.; Ouyang, L.; Xiao, H.; Wu, J.; Zhuang, M.; Bi, X.; Li, J.; Wang, C.; Song, C.; et al. Spatiotemporal evolution of urbanization and its implications to urban planning of the megacity, Shanghai, China. Landsc. Ecol. 2023, 38, 1105–1124. [Google Scholar] [CrossRef]
- Chen, K.; Yang, M.; Zhou, X.; Liu, Z.; Li, P.; Tang, J.; Peng, C. Recent advances in carbon footprint studies of urban ecosystems: Overview, application, and future challenges. Environ. Rev. 2022, 30, 342–356. [Google Scholar] [CrossRef]
- IPCC. Working Group I: The Physical Science Basis. The Sixth Assessment Report; IPCC: Geneva, Switzerland, 2021.
- Zhou, X.; Shen, D.; Gu, X. Influences of Land Policy on Urban Ecological Corridors Governance: A Case Study from Shanghai. Int. J. Environ. Res. Public Health 2022, 19, 9747. [Google Scholar] [CrossRef]
- Liang, X.; Huang, J.-L.; Guan, Q. Unveiling land competition through interaction networks: A consistency-based mining and simulation model that integrates inhibiting effects of land uses. Landsc. Urban Plan. 2025, 263, 105458. [Google Scholar] [CrossRef]
Data Type | Data Name | Resolution/m | Data Sources | Year |
---|---|---|---|---|
Land use data | LUCC | 30 | The 30 m annual land cover datasets and its dynamics in China from 1985 to 2023 (https://doi.org/10.5281/zenodo.12779975 (accessed on 2 September 2025)) | 2000, 2010, 2020 |
Driving factors | DEM | 30 | Geospatial Data Cloud (https://www.gscloud.cn/ (accessed on 2 September 2025)) | 2024 |
Average annual precipitation | 1000 | National Tibetan Plateau data center (https://data.tpdc.ac.cn/ (accessed on 2 September 2025)) | 2020, 2040 | |
Annual average temperature | 1000 | National Tibetan Plateau data center (https://data.tpdc.ac.cn/ (accessed on 2 September 2025)) | 2020, 2040 | |
Soil type | 1000 | Resource and Environmental Science Data Platform (https://www.resdc.cn/ (accessed on 2 September 2025)) | 1995 | |
Slope | 30 | Derived from DEM data calculations | 2024 | |
Aspect of slope | 30 | Derived from DEM data calculations | 2024 | |
Spatial distribution of GDP | 1000 | Resource and Environmental Science Data Platform (https://www.resdc.cn/ (accessed on 2 September 2025)) | 2020 | |
Spatial distribution of population density | 1000 | Resource and Environmental Science Data Platform (https://www.resdc.cn/ (accessed on 2 September 2025)) | 2020 | |
Distance to water system, traffic road (highway, railway) and residential area | — | National Catalogue Service For Geographic Information (https://www.webmap.cn/ (accessed on 2 September 2025)) | 2021 | |
Auxiliary data | Evapotranspiration data | 1000 | National Tibetan Plateau data center (https://data.tpdc.ac.cn/ (accessed on 2 September 2025)) | 2040 |
Available moisture content of vegetation | 1000 | Harmonized World soils Database version 2.0 (https://gaez.fao.org/pages/hwsd (accessed on 2 September 2025)) | 2020 | |
Administrative boundary | — | National Platform for Common GeoSpatial Information Services (https://www.tianditu.gov.cn/ (accessed on 2 September 2025)) | 2024 | |
Nature reserve data | — | China Nature Reserves Specimen Resources Sharing Platform (http://www.papc.cn/html/ (accessed on 2 September 2025)) | 2024 |
Land Use Type | Land Use Area (km2/Proportion) | ||
---|---|---|---|
2000 | 2010 | 2020 | |
Farmland | 5064.11 | 4361.00 | 4168.51 |
72.86% | 62.75% | 59.98% | |
Built-up land | 1302.73 | 2137.41 | 2477.77 |
18.74% | 30.75% | 35.65% | |
Water | 575.81 | 435.38 | 294.70 |
8.28% | 6.26% | 4.24% | |
Woodland | 7.46 | 12.81 | 8.90 |
0.11% | 0.18% | 0.13% | |
Bare ground | 0.07 | 0.31 | 0.25 |
0.00% | 0.00% | 0.00% | |
Grassland | 0.04 | 3.32 | 0.08 |
0.00% | 0.05% | 0.00% |
Year | Water Yield | Soil Retention | Carbon Storage | Habitat Quality | |||
---|---|---|---|---|---|---|---|
Total (m3) | Average (mm) | Total (t) | Average (t/hm2) | Total (t) | Average (t/hm2) | Average | |
2000 | 37.37 × 108 | 564.09 | 22.95 × 106 | 31.85 | 35.16 × 106 | 50.59 | 0.29 |
2010 | 37.68 × 108 | 568.76 | 19.54 × 106 | 27.13 | 34.75 × 106 | 49.99 | 0.25 |
2020 | 44.75 × 108 | 645.47 | 21.40 × 106 | 29.69 | 34.88 × 106 | 50.18 | 0.22 |
Land Use Type | Area(km2)/Proportion | |||||
---|---|---|---|---|---|---|
ND119 | EP119 | ND245 | EP245 | ND585 | EP585 | |
Farmland | 3358.52 | 3628.51 | 3358.52 | 3628.52 | 3358.52 | 3628.52 |
48.32% | 52.21% | 48.32% | 52.21% | 48.32% | 52.21% | |
Woodland | 8.17 | 8.90 | 8.17 | 8.90 | 8.28 | 8.90 |
0.12% | 0.13% | 0.12% | 0.13% | 0.12% | 0.13% | |
Grassland | 0.06 | 0.08 | 0.06 | 0.08 | 0.06 | 0.08 |
0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | |
Water | 312.89 | 294.70 | 311.33 | 294.70 | 311.17 | 294.70 |
4.50% | 4.24% | 4.48% | 4.24% | 4.48% | 4.24% | |
Bare ground | 0.21 | 0.23 | 0.21 | 0.23 | 0.21 | 0.23 |
0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | |
Built-up land | 3270.36 | 3017.80 | 3271.93 | 3017.80 | 3271.98 | 3017.80 |
47.05% | 43.42% | 47.08% | 43.42% | 47.08% | 43.42% |
Scenario | Water Yield (mm) | Soil Retention (t/hm2) | Carbon Sequestration (t/hm2) | Habitat Quality | |||
---|---|---|---|---|---|---|---|
Total (m3) | Average (mm) | Total (t) | Average (t/hm2) | Total (t) | Average (t/hm2) | Average | |
ND119 | 4.28 × 109 | 645.32 | 1.88 × 107 | 26.09 | 3.43 × 107 | 49.39 | 0.20 |
EP119 | 4.22 × 109 | 637.40 | 1.96 × 107 | 27.16 | 3.46 × 107 | 49.79 | 0.21 |
ND245 | 2.66 × 109 | 400.93 | 1.58 × 107 | 21.87 | 3.49 × 107 | 50.17 | 0.32 |
EP245 | 2.61 × 109 | 393.17 | 1.56 × 107 | 21.67 | 3.64 × 107 | 52.38 | 0.28 |
ND585 | 3.61 × 109 | 544.99 | 1.50 × 107 | 20.82 | 3.43 × 107 | 49.40 | 0.20 |
EP585 | 3.56 × 109 | 537.07 | 1.56 × 107 | 21.68 | 3.46 × 107 | 49.79 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, C.; Sun, M.; Zhang, H. Dynamic Simulation of Land Use Change and Assessment of Ecosystem Services Under Climate Change Scenarios: A Case Study of Shanghai, China. Land 2025, 14, 1791. https://doi.org/10.3390/land14091791
Li Y, Wang C, Sun M, Zhang H. Dynamic Simulation of Land Use Change and Assessment of Ecosystem Services Under Climate Change Scenarios: A Case Study of Shanghai, China. Land. 2025; 14(9):1791. https://doi.org/10.3390/land14091791
Chicago/Turabian StyleLi, Yan, Chengdong Wang, Mingxing Sun, and Hui Zhang. 2025. "Dynamic Simulation of Land Use Change and Assessment of Ecosystem Services Under Climate Change Scenarios: A Case Study of Shanghai, China" Land 14, no. 9: 1791. https://doi.org/10.3390/land14091791
APA StyleLi, Y., Wang, C., Sun, M., & Zhang, H. (2025). Dynamic Simulation of Land Use Change and Assessment of Ecosystem Services Under Climate Change Scenarios: A Case Study of Shanghai, China. Land, 14(9), 1791. https://doi.org/10.3390/land14091791