Micro- and Macro-Level Investigations of the Impacts of Transportation Infrastructure on Agricultural Gross Income in South Korea
Abstract
1. Introduction
2. Literature Review
2.1. Economic Impacts of Transportation Infrastructure
2.2. Korean Context: Spatial Disparities and Rural Economy
3. Materials and Methods
3.1. Data and Variables
3.2. Analytical Methods
3.2.1. Multilevel Linear Model for Microdata
3.2.2. Spatial Econometrics Model for Aggregated Data
4. Results
4.1. Multilevel Linear Model
4.2. Spatial Econometric Model
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LM Lag Test for SAR Model | ||||
2005 | 2010 | 2015 | 2020 | |
LM value | 17.5141 | 20.0777 | 11.1455 | 14.6678 |
Marginal Probability | 0.0000 | 0.0000 | 0.0008 | 0.0001 |
LM Error Test for SEM Model | ||||
2005 | 2010 | 2015 | 2020 | |
LM value | 11.8673 | 16.1896 | 8.1437 | 14.1890 |
Marginal Probability | 0.0006 | 0.0000 | 0.0043 | 0.0002 |
References
- Aschauer, D.A. Is public infrastructure productive? J. Monet. Econ. 1989, 23, 177–200. [Google Scholar] [CrossRef]
- Calderón, C.; Servén, L. Infrastructure, Growth, and Inequality: An Overview; Policy Research Working Paper No. 7034; World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Chen, C.; Vickerman, R. Can transport infrastructure change regions’ economic fortunes? Some evidence from Europe and China. Reg. Stud. 2017, 51, 144–160. [Google Scholar] [CrossRef]
- Lopez, H. Macroeconomics and inequality. In The World Bank Research Workshop on Macroeconomic Challenges in Low Income Countries; The World Bank: Washington, DC, USA, 2003. [Google Scholar]
- Kohls, R.L.; Uhl, J.N. Transportation. In Marketing of Agricultural Products, 9th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Dixit, M.; Sivakumar, A. Capturing the impact of individual characteristics on transport accessibility and equity analysis. Transp. Res. Part D 2020, 87, 102473. [Google Scholar] [CrossRef]
- Lucas, K.; van Wee, B.; Maat, K.A. A method to evaluate equitable accessibility: Combining ethical theories and accessibility-based approaches. Transportation 2016, 43, 473–490. [Google Scholar] [CrossRef]
- Rokicki, B.; Stępniak, M. Major transport infrastructure investment and regional economic development—An accessibility-based approach. J. Transp. Geogr. 2018, 72, 36–49. [Google Scholar] [CrossRef]
- Garcia-Milà, T.; McGuire, T. The contribution of publicly provided inputs to states’ economies. Reg. Sci. Urban Econ. 1992, 22, 229–241. [Google Scholar] [CrossRef]
- Morrison, C.; Schwartz, A.E. State infrastructure and productive performance. Am. Econ. Rev. 1996, 86, 1095–1112. [Google Scholar]
- Munnell, A.H. How does public infrastructure affect regional economic performance? Fed. Reserve Bank Boston Conf. Ser. 1990, 34, 69–112. [Google Scholar]
- Qi, G.; Shi, W.; Lin, K.; Yuen, K.F.; Xiao, Y. Spatial spillover effects of logistics infrastructure on regional development: Evidence from China. Transp. Res. Part A 2020, 135, 96–114. [Google Scholar] [CrossRef]
- Litman, T. Evaluating Public Transit Benefits and Costs; Victoria Transport Policy Institute: Victoria, BC, Canada, 2015. [Google Scholar]
- Speranza, M.G. Trends in transportation logistics. Eur. J. Oper. Res. 2018, 264, 830–836. [Google Scholar] [CrossRef]
- Sharifiasl, S.; Kharel, S.; Pan, Q.; Li, J. Assessing the impact of transit accessibility on employment density: A spatial analysis of gravity-based accessibility incorporating job matching, transit service types, and first/last mile modes. J. Transp. Geogr. 2024, 121, 104053. [Google Scholar] [CrossRef]
- Hulten, C.R.; Schwab, R.M. Public capital formation and the growth of regional manufacturing industries. Natl. Tax J. 1991, 64, 121–134. [Google Scholar] [CrossRef]
- Baird, B.A. Public infrastructure and economic productivity: A transportation-focused review. J. Transp. Res. Board 2005, 1932, 54–60. [Google Scholar] [CrossRef]
- Boarnet, M.G. Spillover and the locational effects of public infrastructure. J. Reg. Sci. 1998, 38, 381–400. [Google Scholar] [CrossRef]
- Evans, P.; Karras, G. Are government activities productive? Evidence from a panel of U.S. states. Rev. Econ. Stat. 1994, 76, 1–11. [Google Scholar] [CrossRef]
- Holtz-Eakin, D.; Schwartz, A. Spatial productivity spillovers from public infrastructure: Evidence from state highways. Int. Tax Public Financ. 1995, 2, 459–468. [Google Scholar] [CrossRef]
- Lee, K.; Choi, D.; Lee, S. The impact of transportation accessibility on regional land price disparities in South Korea, 2010–2019. Land 2025, 14, 1515. [Google Scholar] [CrossRef]
- Lee, K. Can highway development mitigate regional decline in South Korea?—Focus on economic development and population inflow. J. Infrastruct. Policy Dev. 2024, 8, 8447. [Google Scholar] [CrossRef]
- Magoutas, A.; Manolopoulos, D.; Tsoulfas, G.T.; Koudeli, M. Economic impact of road transportation infrastructure projects: The case of Egnatia Odos Motorway. Eur. Plan. Stud. 2023, 31, 780–801. [Google Scholar] [CrossRef]
- Ha, Y.; Woo, S. Transportation infrastructure or economic power? Development of the automobile industry in the United States. Sustainability 2022, 14, 1649. [Google Scholar] [CrossRef]
- Holl, A. Manufacturing location and impacts of road transport infrastructure: Empirical evidence from Spain. Reg. Sci. Urban Econ. 2004, 34, 341–363. [Google Scholar] [CrossRef]
- Hulten, C.R.; Schwab, R.M. Regional productivity growth in U.S. manufacturing: 1951–1978. Am. Econ. Rev. 1984, 74, 152–162. [Google Scholar]
- Kim, H.; Ahn, S.; Ulfarsson, G.F. Transportation infrastructure investment and the location of new manufacturing around South Korea’s West Coast Expressway. Transp. Policy 2018, 66, 146–154. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2017; FAO: Rome, Italy, 2017. [Google Scholar]
- Wang, Z.; Martha, G.B., Jr.; Liu, J.; Lima, C.Z.; Hertel, T.W. Planned expansion of transportation infrastructure in Brazil has implications for the pattern of agricultural production and carbon emissions. Sci. Total Environ. 2024, 928, 172434. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, N.; Barstow, C.K. Rural transportation infrastructure in low- and middle-income countries: A review of impacts, implications, and interventions. Sustainability 2022, 14, 2149. [Google Scholar] [CrossRef]
- Shrestha, S.A. Roads, participation in markets, and benefits to agricultural households: Evidence from the topography-based highway network in Nepal. Econ. Dev. Cult. Change 2020, 68, 839–864. [Google Scholar] [CrossRef]
- Antle, J.M. Infrastructure and aggregate agricultural productivity: International evidence. Econ. Dev. Cult. Change 1983, 31, 609–619. [Google Scholar] [CrossRef]
- Chaurey, R.; Le, D.T. Infrastructure maintenance and rural economic activity: Evidence from India. J. Public Econ. 2022, 214, 104725. [Google Scholar] [CrossRef]
- Fakayado, B.S.; Omotesho, O.A.; Tshoho, B.A.; Ajavi, P.D. An economic survey of rural infrastructure and agricultural productivity profiles in Nigeria. Eur. J. Soc. Sci. 2008, 7, 144–157. [Google Scholar]
- Fan, S.; Hazell, P.; Thorat, S. Government spending, growth and poverty in rural India. Am. J. Agric. Econ. 2000, 82, 1038–1051. [Google Scholar] [CrossRef]
- Felloni, F.; Wahl, T.; Wandschneider, P. Evidence of the Effect of Infrastructure on Agricultural Production and Productivity: Implications for China; Washington State University: Pullman, WA, USA, 2001. [Google Scholar]
- Llanto, G. The Impact of Infrastructure on Agricultural Productivity; PIDS Discussion Paper Series No. 2012-12; Philippine Institute for Development Studies: Makati, Philippines, 2012. Available online: https://pidswebs.pids.gov.ph/CDN/PUBLICATIONS/pidsdps1212.pdf (accessed on 27 August 2025).
- Cheng, W.; Shao, J.; Cui, L.; Song, W. The impact of highway construction on the profits of agricultural enterprises: Evidence from China. Agric. Econ. 2025. [Google Scholar] [CrossRef]
- Tian, Z.; Xin, Y.; Lin, Y. Do roads help rural populations escape poverty? New evidence from Chinese survey data. Appl. Econ. 2025, 1–14. [Google Scholar] [CrossRef]
- Li, L.; Cai, J.; Chen, W. How does transport development contribute to rural income in China? Evidence from county-level analysis using structural equation model. Travel Behav. Soc. 2024, 34, 100708. [Google Scholar] [CrossRef]
- Alotaibi, S.; Quddus, M.; Morton, C.; Imprialou, M. Transport investment, railway accessibility and their dynamic impacts on regional economic growth. Res. Transp. Bus. Manag. 2022, 43, 100702. [Google Scholar] [CrossRef]
- Dumas, C.; Játiva, X. Better roads, better off? Evidence on upgrading roads in Tanzania. World Bank Econ. Rev. 2025, 39, 104–123. [Google Scholar] [CrossRef]
- Cantos, P.; Gumbau-Albert, M.; Maudos, J. Transport infrastructures, spillover effects and regional growth: Evidence of the Spanish case. Transp. Rev. 2005, 25, 25–50. [Google Scholar] [CrossRef]
- Tong, T.; Yu, T.E.; Cho, S.; Jensen, K.; Ugarte, D. Evaluating the spatial spillover effects of transportation infrastructure on agricultural output across the United States. J. Transp. Geogr. 2013, 30, 47–55. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, X. Increase or reduce: How does rural infrastructure investment affect villagers’ income? Agriculture 2024, 14, 2296. [Google Scholar] [CrossRef]
- Lee, S.H. Local Extinctions in Korea, 2018. In Brief on Employment Trend of July, 2018; Korea Employment Information Service: Sejong, Republic of Korea, 2018. [Google Scholar]
- Statistics Korea. Population by Administrative District (City/County/District) and Gender; Statistics Korea: Daejeon, Republic of Korea, 2021. [Google Scholar]
- Lee, D.; Park, S.; Kim, T.; Seong, J.; Shin, E.; Kim, C.; Kim, J. A Study on the Releasing Income Gap Between Urban and Rural Areas Through the Balanced Regional Development Strategies; Korea Rural Economic Institute: Sejong, Republic of Korea, 2004. [Google Scholar]
- Lim, S.; Kim, T.; Min, S. 2021. Changes in the Farm Household Economy in 2020 and Their Determinants; KREI Issue Analysis No. 85; Korea Rural Economic Institute (KREI): Naju, Republic of Korea, 2021. [Google Scholar]
- Jung, H.; Ryu, J. Sustaining a Korean traditional rural landscape in the context of cultural landscape. Sustainability 2015, 7, 11213–11239. [Google Scholar] [CrossRef]
- Min, S. Demographic change and inequality in the Korean farm income. Agriculture 2023, 13, 1832. [Google Scholar] [CrossRef]
- Park, J.; Kim, C.; Lee, S. The effects of transportation accessibility on influx of population and gross regional domestic product. Korea Spat. Plan. Rev. 2020, 107, 25–40. [Google Scholar]
- Hansen, W.G. How accessibility shapes land use. J. Am. Inst. Plann. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Geurs, K.; Zondag, B.; de Jong, G.; de Bok, M. Accessibility appraisal of land-use/transport policy strategies: More than just adding up travel-time savings. Transp. Res. Part D 2010, 15, 382–393. [Google Scholar] [CrossRef]
- Ben-Akiva, M.E.; Lerman, S.R. Disaggregate travel and mobility-choice models and measures of accessibility. In Behavioural Travel Modelling; Hensher, D.A., Storper, P.R., Eds.; Croom Helm: London, UK, 1979. [Google Scholar]
- Bryk, A.S.; Raudenbush, S.W. Hierarchical Linear Models: Applications and Data Analysis Methods; Sage Publications: Newbury Park, CA, USA, 1992. [Google Scholar]
- Kreft, I.G.; DeLeeuw, J.; Aiken, L.S. The effect of different forms of centering in hierarchical linear models. Multivar. Behav. Res. 1995, 30, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Hox, J.J.; Kreft, I.G. Multilevel analysis methods. Sociol. Methods Res. 1994, 22, 283–299. [Google Scholar] [CrossRef]
- Robinson, W.S. Ecological correlations and the behavior of individuals. Am. Sociol. Rev. 1950, 15, 351–357. [Google Scholar] [CrossRef]
- Cohen, J.P. The broader effects of transportation infrastructure: Spatial econometrics and productivity approaches. Transp. Res. Part E 2010, 46, 317–326. [Google Scholar] [CrossRef]
- Duncan, C.; Jones, K.; Moon, G. Do places matter? A multi-level analysis of regional variations in health-related behavior in Britain. Soc. Sci. Med. 1993, 37, 725–733. [Google Scholar] [CrossRef]
- Lee, S.W.; Myers, D. Local housing market effects on tenure choice. J. Hous. Built Environ. 2003, 18, 129–157. [Google Scholar] [CrossRef]
- Jennrich, R.I.; Schluchter, M.D. Unbalanced repeated-measures models with structured covariance matrices. Biometrics 1986, 42, 805–820. [Google Scholar] [CrossRef]
- Moellering, H.; Tobler, W. Geographical variances. Geogr. Anal. 1972, 4, 34–50. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- LeSage, J.P. Spatial econometrics. In The Encyclopedia of Social Measurement; Kempf-Leonard, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 3. [Google Scholar]
- Anselin, L. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Albouy, D.; Ehrlich, G.; Shin, M. Metropolitan land values. Rev. Econ. Stat. 2018, 100, 454–456. [Google Scholar] [CrossRef]
- Seo, J. Balanced national development strategies: The construction of Innovation Cities in Korea. Land Use Policy 2009, 26, 649–661. [Google Scholar] [CrossRef]
Variables | Description | |||
---|---|---|---|---|
Model (1) | Model (2) | |||
Dependent Variable | ||||
Agricultural gross income | INCOME | INCOME | Log(total amount of sales (KRW)/10,000) | |
Independent Variables | ||||
Demographic | Age | MIDAGE | Proportion of farmers (%) aged 35–54 yrs | |
AGE | Householder’s age (linear) | |||
AGE_SQ | AGE AGE (linear) | |||
Gender | FEMALE | Proportion of female householders | ||
GENDER | Male = 0, Female = 1 | |||
Number of family members | HHNUM | HHNUM | Number of family members (linear) | |
HHNUM_SQ | HHNUM HHNUM (linear) | |||
Socioeconomic | Level of education | LOWEDU | High school diploma or below | |
SCH1 | Below high school | |||
SCH2 | High school diploma (ref.) | |||
SCH3 | Associate degree or higher | |||
Experience in farming | CAREER | Years of farming experience (linear) | ||
CAREER_SQ | CAREER CAREER (linear) | |||
Agricultural | Principal income source | FARM | Earn income only from farming | |
AGBIZ | Participate in agribusiness | |||
Computer | COMP | No computers for work | ||
Crop type | RICE | RICE | Cultivate rice (ref.) | |
FRUIT | Cultivate fruits | |||
OTHER | Cultivate other types of crops | |||
VEGE | Cultivate vegetables | |||
LIVESTOCK | Raise livestock | |||
Marketing channel | WHOLESALE | Wholesale market, joint market | ||
COOP | Agricultural cooperatives (ref.) | |||
DISTRIBUTOR | Collector, distribution company | |||
DIRECT | DIRECT | Direct sales to consumers | ||
PROCESSING | Agricultural processing company | |||
Regional | P_LAND | P_LAND | Land price index | |
P_NET | P_NET | Number of net migrants | ||
UTILITY | UTILITY | Log(utility-based accessibility) |
Variable | 2005 | 2010 | 2015 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Fixed effect | ||||||||
Intercept | 16.3613 | *** | 17.3858 | *** | 17.9687 | *** | 9.6543 | *** |
AGE | −0.0285 | *** | −0.0238 | *** | −0.0277 | *** | −0.0231 | *** |
AGE_SQ | −0.0006 | *** | −0.0004 | *** | −0.0004 | *** | −0.0003 | *** |
GENDER | −0.6642 | *** | −0.5029 | *** | −0.4630 | *** | −0.3784 | *** |
HHNUM | 0.0616 | *** | 0.0569 | *** | 0.0776 | *** | 0.0847 | *** |
HHNUM_SQ | −0.0078 | *** | −0.0113 | *** | −0.0161 | *** | −0.0171 | *** |
SCH1 | −0.0490 | *** | 0.0162 | −0.0033 | −0.0768 | *** | ||
SCH3 | −0.0569 | *** | −0.1207 | *** | −0.1123 | *** | −0.1263 | *** |
CAREER | 0.0081 | *** | 0.0094 | *** | 0.0114 | *** | 0.0125 | *** |
CAREER_SQ | −0.0005 | *** | −0.0005 | *** | −0.0005 | *** | −0.0005 | *** |
AGBIZ | −0.2427 | *** | −0.9364 | *** | −0.6101 | *** | −0.7130 | *** |
COMP | −0.5717 | *** | −0.4188 | *** | −0.3687 | *** | −0.3578 | *** |
FRUIT | 0.6163 | *** | 0.6815 | *** | 0.564 | *** | 0.4864 | *** |
OTHER | 0.4121 | *** | 0.5600 | *** | 0.3282 | *** | 0.3083 | *** |
VEGE | −0.3671 | *** | −0.0571 | *** | −0.2206 | *** | −0.1918 | *** |
LIVESTOCK | 1.1252 | *** | 1.3905 | *** | 1.5811 | *** | 1.5159 | *** |
WHOLESALE | 0.2395 | *** | 0.2314 | *** | 0.1916 | *** | 0.2071 | *** |
DISTRIBUTOR | −0.1135 | *** | −0.0610 | *** | −0.0329 | *** | −0.0250 | ** |
DIRECT | −1.1930 | *** | −1.2193 | *** | −1.1794 | *** | −1.2876 | *** |
PROCESSING | −0.1525 | *** | −0.6376 | *** | −0.7766 | *** | −0.2249 | *** |
P_LAND | 0.0080 | −0.0410 | −0.0363 | 0.0211 | ||||
P_NET | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||
UTILITY | 0.0206 | −0.0241 | −0.0753 | *** | −0.1431 | *** | ||
Random effect | ||||||||
Level 1 | ||||||||
INTERCEPT () | 1.3351 | *** | 1.1941 | *** | 1.3717 | *** | 1.4095 | *** |
Level 2 | ||||||||
INTERCEPT () | 0.1049 | *** | 0.0858 | *** | 0.0774 | *** | 0.0834 | *** |
−2RLL | 671,412.1 | 586,324.9 | 562,885.7 | 503,083.7 | ||||
BIC | 671,422.2 | 586,335 | 562,895.8 | 503,093.8 | ||||
N | 214,431 | 194,161 | 178,209 | 157,891 |
Year | Moran’s I | Z-Score |
---|---|---|
2005 | 0.2738 *** | 5.1244 |
2010 | 0.2065 *** | 3.9067 |
2015 | 0.2021 *** | 3.8199 |
2020 | 0.2633 *** | 6.2771 |
Variable | 2005 | 2010 | 2015 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
CONSTANT | 1.5817 | 4.7123 | *** | 3.9524 | *** | 7.9873 | *** | |
MIDAGE | 0.0640 | *** | 0.0500 | *** | 2.3477 | *** | 1.4553 | |
FEMALE | −0.0022 | 0.0043 | −0.0017 | −0.0467 | *** | |||
HHNUM | 0.0767 | −0.0028 | 0.6787 | *** | −0.0280 | |||
LOWEDU | 0.0017 | −0.0002 | 0.0116 | ** | 0.0072 | |||
RICE | −0.0002 | −0.0016 | −0.0004 | −0.0015 | ||||
DIRECT | −0.0156 | *** | −0.0156 | *** | −0.0150 | *** | −0.0130 | *** |
AGINCONLY | 0.0158 | *** | 0.0140 | *** | 0.0167 | *** | 0.0089 | *** |
P_LAND | 0.0027 | 0.0467 | −0.0653 | *** | 0.0275 | |||
P_NET | 0.0000 | * | 0.0000 | * | 0.0000 | 0.0000 | ** | |
UTILITY | 0.0019 | −0.1009 | *** | −0.0599 | *** | −0.0832 | *** | |
0.0540 | *** | 0.0400 | ** | 0.0540 | *** | 0.0704 | *** | |
Adj. R2 | 0.6447 | 0.6755 | 0.7120 | 0.7063 |
Year | Direct Effects | Indirect Effects | Total Effects |
---|---|---|---|
2005 | 0.0192 | 0.0011 | 0.0203 |
2010 | −0.1001 *** | −0.0042 * | −0.1051 *** |
2015 | −0.0600 *** | −0.0034 ** | −0.0634 *** |
2020 | −0.0833 *** | −0.0061 ** | −0.0894 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, E.; Lee, K.; Lee, S. Micro- and Macro-Level Investigations of the Impacts of Transportation Infrastructure on Agricultural Gross Income in South Korea. Land 2025, 14, 1779. https://doi.org/10.3390/land14091779
Choi E, Lee K, Lee S. Micro- and Macro-Level Investigations of the Impacts of Transportation Infrastructure on Agricultural Gross Income in South Korea. Land. 2025; 14(9):1779. https://doi.org/10.3390/land14091779
Chicago/Turabian StyleChoi, Eunji, Kyungjae Lee, and Seongwoo Lee. 2025. "Micro- and Macro-Level Investigations of the Impacts of Transportation Infrastructure on Agricultural Gross Income in South Korea" Land 14, no. 9: 1779. https://doi.org/10.3390/land14091779
APA StyleChoi, E., Lee, K., & Lee, S. (2025). Micro- and Macro-Level Investigations of the Impacts of Transportation Infrastructure on Agricultural Gross Income in South Korea. Land, 14(9), 1779. https://doi.org/10.3390/land14091779