Spatial–Temporal Variation and Influencing Mechanism of Production–Living–Ecological Functions in the Yangtze River Economic Belt
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Land Use Transfer Matrix
2.3.2. Evaluation Index System
- (1)
- Production function
- (2)
- Living function
- (3)
- Ecological function
2.3.3. Obstacle Degree Model
2.3.4. Regression Analysis
3. Results and Discussion
3.1. Transformation of the PLEF
3.2. Spatial Pattern of the PLEF
3.3. The Obstacle Degree of the PLEF
3.4. Influencing Factors of the PLEF
3.4.1. Topographical Factors
3.4.2. Socio-Economic Factors
3.5. Optimization Strategies for the PLEF
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bole, Y.; Rina, S.; Guga, S.; Na, M.; Fan, S.; Zhang, J. Evaluation of resources, environment, and ecological carrying capacity from the perspective of “production-living-ecology” spaces: A case study of western Jilin Province, China. J. Clean. Prod. 2025, 491, 144770. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Z.; Yang, J.; Zhang, L. Analysis for spatial-temporal changes of grain production and farmland resource: Evidence from Hubei Province, central China. J. Clean. Prod. 2019, 207, 474–482. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, H.; Huang, A.; Xu, Y.; Lu, L.; Ji, Z. Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior—A case study of Ertai Town, Zhangjiakou City. Land Use Policy 2021, 106, 105457. [Google Scholar] [CrossRef]
- Fu, J.; Bu, Z.; Jiang, D.; Lin, G.; Li, X. Sustainable land use diagnosis based on the perspective of production–living–ecological spaces in China. Land Use Policy 2022, 122, 106386. [Google Scholar] [CrossRef]
- Gao, M.; Li, C.; Li, Y.; Wen, S.; Zhang, Y.; Liu, L.; Zhang, J.; Chen, M.; Yang, J. Integration of ecological restoration and landscape aesthetics: Mechanisms of microplastic retention by optimization of aquatic plants landscape design in urban constructed wetlands—A case study of the living water park in Chengdu. Sci. Total Environ. 2024, 957, 177331. [Google Scholar] [CrossRef] [PubMed]
- Ge, K.; Wang, Y.; Liu, X.; Lu, X.; Ke, S. Spatio-temporal differences and convergence mechanisms of green transition of urban land use against the background of industrial integration: A case study of the Yangtze River Economic Belt in China. Ecol. Indic. 2024, 159, 111727. [Google Scholar] [CrossRef]
- He, Y.; Wu, L.; Liang, Y.; Zheng, Y.; Zhang, L. Spatial suitability between water supply pressure and waterworks water supply capacity in the Guangdong-Hong Kong-Macau Greater Bay Area: Spatial-temporal evolution pattern, driving mechanism and Implications. J. Clean. Prod. 2024, 434, 140317. [Google Scholar] [CrossRef]
- Lan, G.; Xiao, Y.; Ci, X.; Zhang, Y.; Xia, J. Spatial and temporal differentiation characteristics of green development levels in urban agglomerations within the Yangtze River economic Belt and analysis of influencing factors. Ecol. Indic. 2024, 166, 112552. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Zhao, J.; Zhang, G.; Qu, G.; Ma, S.; Liu, X. Spatiotemporal evolution and Sustainably comprehensive zoning optimization of production–living–ecological functions in the Mountain–Flatland areas. Heliyon 2024, 10, e23425. [Google Scholar] [CrossRef]
- Liang, Y.; Chai, D.; Zhou, X.; Ning, Y. Potential conflict diagnosis, simulation optimization and coordination of production-living-ecological space in gully areas of the Loess Plateau, China. Environ. Dev. 2024, 52, 101099. [Google Scholar] [CrossRef]
- Luo, X.; Le, F.; Zhang, Y.; Zhang, H.; Zhai, J.; Luo, Y. Multi-scenario analysis and optimization strategy of ecological security pattern in the Weihe river basin. J. Environ. Manag. 2024, 366, 121813. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, W.; Li, M.; Meng, L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- GB/T21010-2017; Current Land Use Classification. China National Institute of Standardization: Beijing, China, 2017.
- Ma, Z.; Yang, Z.; Li, Q.; Tu, X.; Xu, Y. Exploring the temporal-spatial characteristics and determinants of high-quality development of city clusters in China. Heliyon 2024, 10, e37742. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Chan, N.W.; Kung, H.-T. Coupling coordination analysis and spatio-temporal heterogeneity between urbanization and eco-environment along the silk road economic belt in China. Ecol. Indic. 2021, 121, 107191. [Google Scholar] [CrossRef]
- Huang, Y.; Gan, X.; Niu, S.; Hao, D.; Zhou, B. Incorporating Ecosystem Service Multifunctionality and Its Response to Urbanization to Identify Coordinated Economic, Societal, and Environmental Relationships in China. Forests 2022, 13, 707. [Google Scholar] [CrossRef]
- Wu, W.; Huang, Y.; Zhang, Y.; Zhou, B. Research on the coupling relationship and interaction between urbanization and eco-environment in urban agglomerations: A case study of the Chengdu-Chongqing urban agglomeration. PLoS ONE 2024, 19, e0301287. [Google Scholar] [CrossRef]
- Costanza, R.; Mageau, M. What is a healthy ecosystem? Aquat. Ecol. 1999, 33, 105–115. [Google Scholar] [CrossRef]
- Ou, D.; Zhang, Q.; Tang, H.; Qin, J.; Yu, D.; Deng, O.; Gao, X.; Liu, T. Ecological spatial intensive use optimization modeling with framework of cellular automata for coordinating ecological protection and economic development. Sci. Total Environ. 2023, 857, 159319. [Google Scholar] [CrossRef]
- Hu, P.; Li, F.; Sun, X.; Liu, Y.; Chen, X.; Hu, D. Assessment of Land-Use/Cover Changes and Its Ecological Effect in Rapidly Urbanized Areas—Taking Pearl River Delta Urban Agglomeration as a Case. Sustainability 2021, 13, 5075. [Google Scholar] [CrossRef]
- He, X.; Li, J.; Guan, J.; Liu, Y.; Tian, P.; Ai, S.; Gong, H. Land Use Dynamics and Ecosystem Service Value Changes in the Yangtze River Delta Urban Agglomeration Under Different Scenarios. Chin. Geogr. Sci. 2024, 34, 1105–1118. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Li, Y.; Wang, Y.; Chen, Z. Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective. Land 2020, 9, 285. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y. Spatio-temporal characteristics and analysis of influencing factors of inclusive green growth in China’s oil and gas resource industry. Ecol. Indic. 2025, 170, 112982. [Google Scholar] [CrossRef]
- Tan, S.; Liu, Q.; Han, S. Spatial-temporal evolution of coupling relationship between land development intensity and resources environment carrying capacity in China. J. Environ. Manag. 2022, 301, 113778. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liang, G.; Gu, G.; Xu, J.; Duan, L.; Zhang, X.; Yang, X.; Lu, R. Study on the spatial-temporal evolution characteristics, patterns, and driving mechanisms of ecological environment of the Ecological Security Barriers on China’s Land Borders. Environ. Impact Assess. Rev. 2023, 103, 107267. [Google Scholar] [CrossRef]
- Tian, F.; Li, M.; Han, X.; Liu, H.; Mo, B. A Production–Living–Ecological Space Model for Land-Use Optimisation: A case study of the core Tumen River region in China. Ecol. Model. 2020, 437, 109310. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Q.; Zou, L. Spatial-temporal evolution and driving mechanism of rural production-living-ecological space in Pingtan islands, China. Habitat Int. 2023, 137, 102833. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Zhang, S.; Wang, Y.; Sun, Z.; Wu, B. Spatial and temporal changes and development predictions of urban green spaces in Jinan City, Shandong, China. Ecol. Indic. 2023, 152, 110373. [Google Scholar] [CrossRef]
- Wang, M.; Huang, X. Inhibit or promote: Spatial impacts of multifunctional farmland use transition on grain production from the perspective of major function-oriented zoning. Habitat Int. 2024, 152, 103172. [Google Scholar] [CrossRef]
- Wu, J.; Bai, Z. Spatial and temporal changes of the ecological footprint of China’s resource-based cities in the process of urbanization. Resour. Policy 2022, 75, 102491. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Wang, H.; Li, X. What is the future for production-living-ecological spaces in the Greater Bay Area? A multi-scenario perspective based on DEE. Ecol. Indic. 2021, 131, 108171. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, C.; Yang, L.; Huang, D.; Wu, Y.; Xiao, P. Spatial and temporal evolution analysis of ecological security pattern in Hubei Province based on ecosystem service supply and demand analysis. Ecol. Indic. 2024, 162, 112051. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Q.; Tong, Z.; Du, W.; Zhang, J. Coupling coordination analysis of production, living, and ecological spaces in wetlands: A case study of Xianghai Wetland nature reserve, China. Ecol. Indic. 2024, 158, 111578. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Qiao, F.; Che, L.; Pu, L. Layout optimization and multi-scenarios for land use: An empirical study of production-living-ecological space in the Lanzhou-Xining City Cluster, China. Ecol. Indic. 2022, 145, 109577. [Google Scholar] [CrossRef]
- Yin, Y.; Xi, F. Simulation of the evolution track of future Production–Living–Ecological Space under the framework of comprehensive assessment of climate change: A case study of Heilongjiang Province, China. Environ. Technol. Innov. 2023, 30, 103129. [Google Scholar] [CrossRef]
- Yin, Y.; Yang, R.; Song, Z.; Zhang, Y.; Lu, Y.; Zhang, L.; Sun, M.; Li, X. Simulation of the future evolution track of “production–living–ecological” space in a coastal city based on multimodel coupling and wetland protection scenarios. Geogr. Sustain. 2025, 6, 100237. [Google Scholar] [CrossRef]
- Yu, T.; Jia, S.; Zhang, Y.; Cui, X. How can urban expansion and ecological preservation be balanced? A simulation of the spatial dynamics of production-living-ecological spaces in the Huaihe River Eco-Economic Belt. Ecol. Indic. 2025, 171, 113192. [Google Scholar] [CrossRef]
- Zhai, T.; Zhang, D.; Zhao, C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow. Sustain. Cities Soc. 2021, 75, 103341. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, B.; Zhang, Z.; Liang, G. Research on the spatiotemporal evolution and mechanism of ecosystem service value in the mountain-river-sea transition zone based on “production-living-ecological space”—Taking the Karst-Beibu Gulf in Southwest Guangxi, China as an example. Ecol. Indic. 2023, 148, 109889. [Google Scholar] [CrossRef]
- Li, R.; Yu, B.; Wang, Q.; Wu, G.; Ma, Z. Changes in Economic Network Patterns and Influencing Factors in the Urban Agglomeration of Guangdong–Hong Kong–Macao Greater Bay Area: A Comprehensive Study. Buildings 2024, 14, 1093. [Google Scholar] [CrossRef]
- Leonard, A.; Amezaga, J.; Blackwell, R.; Lewis, E.; Kilsby, C. The Changing Landscape of Water Resources Planning in England. Water Resour. Manag. 2025, 39, 2401–2418. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhang, Y.; Wang, L.; Sun, X.; Li, T.; Yan, X.; Yao, S. Spatio-temporal differentiation and influencing factors of urban ecological construction: A case study of the Yangtze River Delta urban agglomeration. Ecol. Front. 2025, 45, 599–609. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J. Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective. Land Use Policy 2022, 119, 106219. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y. Synergy/trade-offs and differential optimization of production, living, and ecological functions in the Yangtze River economic Belt, China. Ecol. Indic. 2023, 147, 109925. [Google Scholar] [CrossRef]
- Bjørnbet, M.M.; Skaar, C.; Fet, A.M.; Schulte, K.Ø. Circular economy in manufacturing companies: A review of case study literature. J. Clean. Prod. 2021, 294, 126268. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Zhi, C.; Hu, X. Quantitative identification and spatial analysis of land use ecological-production-living functions in rural areas on China’s southeast coast. Habitat Int. 2020, 100, 102182. [Google Scholar] [CrossRef]
Layer | Indicator | Method | Weight | Attribute |
---|---|---|---|---|
Production function (P) | Grain yield per unit area (t/hm2) | Grain production/cultivated land area | 0.035 | + |
Land reclamation rate (%) | Cultivated land area/total regional land area | 0.063 | + | |
Industrial configuration (%) | Tertiary industry output/gross domestic product | 0.021 | + | |
Economic density (billions/km2) | GDP/regional land area | 0.305 | + | |
Living function (L) | Urbanization level (%) | Proportion of urban population | 0.072 | + |
Average disposable income of urban and rural residents (yuan) | Living standard of urban and rural residents | 0.063 | + | |
Number of hospital beds per ten thousand people (beds/ten thousand people) | Hospital beds/ten thousand people | 0.025 | + | |
Per capita retail sales of consumer goods (billions of yuan/ten thousand people) | Total retail sales of consumer goods/total population | 0.048 | + | |
Transportation land density (%) | Transport land/regional land area | 0.146 | + | |
Ecological function (e) | Total value of ecosystem services (billions) | Proposed by Costtanza et al. | 0.139 | + |
Intensity of agricultural fertilizer use (t/hm2) | Agricultural fertilizer application/cultivated land area | 0.083 | − |
Year | 2023 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | Production Function | Living Function | Ecological Function | |||||||||
Agricultural land | Industrial land | Urban land | Rural land | Forest land | Grassland | Water bodies | Other land | Sum | Change | |||
Production function | Agricultural land | 545,116 | 7834 | 14,516 | 10,580 | 37,767 | 9194 | 8178 | 198 | 633,384 | −32,076 | |
Industrial land | 265 | 1220 | 488 | 55 | 69 | 46 | 831 | 10 | 2983 | 11,421 | ||
Living function | Urban land | 474 | 82 | 8904 | 173 | 111 | 21 | 104 | 1 | 9869 | 18,120 | |
Rural land | 5042 | 179 | 1801 | 19,350 | 335 | 67 | 264 | 13 | 27,051 | 4329 | ||
Ecological function | Forest land | 34,678 | 3381 | 1289 | 734 | 890,403 | 25,849 | 2444 | 364 | 959,141 | 6433 | |
Grassland | 11,202 | 1031 | 342 | 278 | 35,496 | 282,840 | 1726 | 3512 | 336,428 | −13,949 | ||
Water bodies | 4398 | 657 | 641 | 207 | 987 | 660 | 45,963 | 785 | 54,298 | 6023 | ||
Other land | 134 | 21 | 8 | 4 | 407 | 3801 | 810 | 15,674 | 20,858 | −302 | ||
Sum | 601,308 | 14,404 | 27,989 | 31,380 | 965,574 | 322,479 | 60,321 | 20,556 | 2,044,012 | 0 |
Time | 2000 | 2023 | Time |
---|---|---|---|
Region | Main obstacles | Main obstacles | Region |
YREB | X6 (13.45) | X10 (35.52) | Upstream |
Midstream | X3 (16.31) | X6 (17.35) | Downstream |
2000 | 2010 | 2023 | |||
---|---|---|---|---|---|
Variance Percentage (%) | Percentage of Variance Cumulative Variance Contribution (%) | Variance Percentage (%) | Percentage of Variance Cumulative Variance Contribution (%) | Variance Percentage (%) | Percentage of Variance Cumulative Variance Contribution (%) |
62.48 | 62.48 | 57.23 | 57.23 | 59.25 | 59.25 |
25.39 | 87.87 | 26.39 | 83.62 | 32.16 | 91.41 |
Indicators | 2000 | 2010 | 2023 | |||
---|---|---|---|---|---|---|
First Principal Component | Second Principal Component | First Principal Component | Second Principal Component | First Principal Component | Second Principal Component | |
Total population | 0.86 | 0.47 | 0.76 | 0.04 | 0.81 | 0.32 |
Total grain output | −0.12 | 0.87 | −0.09 | 0.86 | −0.17 | 0.65 |
Total power of agricultural machinery | 0.07 | 0.87 | 0.02 | 0.87 | 0.85 | −0.16 |
GDP | 0.83 | 0.14 | 0.83 | −0.46 | 0.93 | −0.14 |
Disposable income of urban residents | 0.68 | 0.21 | 0.79 | −0.31 | 0.58 | −0.36 |
Total retail sales of consumer goods | 0.93 | 0.01 | 0.73 | −0.36 | −0.23 | 0.83 |
Value added of agriculture, forestry, animal husbandry, and fishery | 0.16 | 0.67 | −0.23 | 0.68 | 0.47 | 0.36 |
Value added of industry | 0.92 | 0.12 | 0.76 | −0.25 | −0.13 | 0.74 |
Value added of real estate | 0.89 | −0.25 | 0.82 | 0.34 | 0.63 | 0.37 |
Actual utilization of foreign capital | 0.94 | −0.16 | 0.74 | −0.47 | 0.86 | −0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Ye, L.; Jiang, Q.; Wang, Y.; Wan, G.; Gan, X.; Zhou, B. Spatial–Temporal Variation and Influencing Mechanism of Production–Living–Ecological Functions in the Yangtze River Economic Belt. Land 2025, 14, 1720. https://doi.org/10.3390/land14091720
Huang Y, Ye L, Jiang Q, Wang Y, Wan G, Gan X, Zhou B. Spatial–Temporal Variation and Influencing Mechanism of Production–Living–Ecological Functions in the Yangtze River Economic Belt. Land. 2025; 14(9):1720. https://doi.org/10.3390/land14091720
Chicago/Turabian StyleHuang, Ying, Lan Ye, Qingyang Jiang, Yufeng Wang, Guo Wan, Xiaoyu Gan, and Bo Zhou. 2025. "Spatial–Temporal Variation and Influencing Mechanism of Production–Living–Ecological Functions in the Yangtze River Economic Belt" Land 14, no. 9: 1720. https://doi.org/10.3390/land14091720
APA StyleHuang, Y., Ye, L., Jiang, Q., Wang, Y., Wan, G., Gan, X., & Zhou, B. (2025). Spatial–Temporal Variation and Influencing Mechanism of Production–Living–Ecological Functions in the Yangtze River Economic Belt. Land, 14(9), 1720. https://doi.org/10.3390/land14091720