A Comparative Assessment of Food Security in South and North Korea Using Food Demand and Supply
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
3. Results
3.1. Estimate of Food Demand and Supply in South Korea
3.2. Estimated Food Demand and Supply in North Korea
3.3. Assess Food Security from 1991 to 2020
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kummu, M.; Fader, M.; Gerten, D.; Guillaume, J.H.; Jalava, M.; Jägermeyr, J.; Pfister, S.; Porkka, M.; Siebert, S.; Varis, O. Bringing It All Together: Linking Measures to Secure Nations’ Food Supply. Curr. Opin. Environ. Sustain. 2017, 29, 98–117. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.-H. Land as a Planetary Boundary: A Socioecological Perspective. In Handbook on Growth and Sustainability; Edward Elgar Publishing: Cheltenham, UK, 2017. [Google Scholar] [CrossRef]
- Duro, J.A.; Lauk, C.; Kastner, T.; Erb, K.H.; Haberl, H. Global Inequalities in Food Consumption, Cropland Demand and Land-Use Efficiency: A Decomposition Analysis. Glob. Environ. Change 2020, 64, 102124. [Google Scholar] [CrossRef]
- Vera, I.; Wicke, B.; Lamers, P.; Cowie, A.; Repo, A.; Heukels, B.; Zumpf, C.; Styles, D.; Parish, E.; Cherubini, F.; et al. Land Use for Bioenergy: Synergies and Trade-Offs between Sustainable Development Goals. Renew. Sustain. Energy Rev. 2022, 161, 112409. [Google Scholar] [CrossRef]
- Food Security Information Network and Global Network Against Food Crises. 2024 Global Report on Food Crises; Food Security Information Network and Global Network Against Food Crises: Rome, Italy, 2023. [Google Scholar]
- Beltran-Peña, A.; Rosa, L.; D’Odorico, P. Global Food Self-Sufficiency in the 21st Century under Sustainable Intensification of Agriculture. Environ. Res. Lett. 2020, 15, 095004. [Google Scholar] [CrossRef]
- El Bilali, H.; Bassole, I.H.N.; Dambo, L.; Berjan, S. Climate Change and Food Security. Agric. For. 2020, 66, 197–210. [Google Scholar] [CrossRef]
- Abah, R.C.; Petja, B.M. The Socio-Economic Factors Affecting Agricultural Development in the Lower River Benue Basin. J. Biol. Agric. Healthc. 2015, 5, 84–94. [Google Scholar]
- Fischer, G.; Shah, M.; Tubiello, F.N.; Van Velhuizen, H. Socio-Economic and Climate Change Impacts on Agriculture: An Integrated Assessment, 1990–2080. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2067–2083. [Google Scholar] [CrossRef]
- Olesen, J.E. Socio-Economic Impacts—Agricultural Systems. In North Sea Region Climate Change Assessment; SpringerOpen: New York, NY, USA, 2016; pp. 397–407. [Google Scholar]
- Borowski, P.F.; Patuk, I. Environmental, Social and Economic Factors in Sustainable Development with Food, Energy and Eco-Space Aspect Security. Present Environ. Sustain. Dev. 2021, 15, 153–169. [Google Scholar] [CrossRef]
- Keovilignavong, O.; Suhardiman, D. Linking Land Tenure Security with Food Security: Unpacking Farm Households’ Perceptions and Strategies in the Rural Uplands of Laos. Land Use Policy 2020, 90, 104260. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s Food Security and Land Use Policy under Rapid Urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Putra, A.S.; Tong, G.; Pribadi, D.O. Food Security Challenges in Rapidly Urbanizing Developing Countries: Insight from Indonesia. Sustain. 2020, 12, 9550. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Z.; He, C.; Gou, S.; Bai, Y.; Wang, Y.; Shen, M. The Occupation of Cropland by Global Urban Expansion from 1992 to 2016 and Its Implications. Environ. Res. Lett. 2020, 15, 084037. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Tang, Z.; Chen, C.; Berry, J. How Cropland Losses Shaped by Unbalanced Urbanization Process? Land Use Policy 2020, 96, 104715. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural Land Systems Importance for Supporting Food Security and Sustainable Development Goals: A Systematic Review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef] [PubMed]
- Avtar, R.; Aggarwal, R.; Kharrazi, A.; Kumar, P.; Kurniawan, T.A. Utilizing Geospatial Information to Implement SDGs and Monitor Their Progress. Environ. Monit. Assess. 2020, 192, 35. [Google Scholar] [CrossRef] [PubMed]
- Anghinoni, G.; Anghinoni, F.B.G.; Tormena, C.A.; Braccini, A.L.; de Carvalho Mendes, I.; Zancanaro, L.; Lal, R. Conservation Agriculture Strengthen Sustainability of Brazilian Grain Production and Food Security. Land Use Policy 2021, 108, 105591. [Google Scholar] [CrossRef]
- Schultze, M.; Kankam, S.; Sanfo, S.; Fürst, C. Agricultural Yield Responses to Climate Variabilities in West Africa: A Food Supply and Demand Analysis. Land 2024, 13, 364. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, B.; Huan, Y.; Guo, J.; Liu, X.; Han, J.; Li, K. Food Security and Land Use under Sustainable Development Goals: Insights from Food Supply to Demand Side and Limited Arable Land in China. Foods 2023, 12, 4168. [Google Scholar] [CrossRef]
- Qi, X.; Vitousek, P.M.; Liu, L. Provincial Food Security in China: A Quantitative Risk Assessment Based on Local Food Supply and Demand Trends. Food Secur. 2015, 7, 621–632. [Google Scholar] [CrossRef]
- Keating, B.A.; Herrero, M.; Carberry, P.S.; Gardner, J.; Cole, M.B. Food Wedges: Framing the Global Food Demand and Supply Challenge towards 2050. Glob. Food Sec. 2014, 3, 125–132. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Tokgoz, S.; Bhandary, P. The New Normal? A Tighter Global Agricultural Supply and Demand Relation and Its Implications for Food Security. Am. J. Agric. Econ. 2013, 95, 303–309. [Google Scholar] [CrossRef]
- Maya Gopal, P.S.; Bhargavi, R. A Novel Approach for Efficient Crop Yield Prediction. Comput. Electron. Agric. 2019, 165, 104968. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Lipping, T. Crop Yield Prediction with Deep Convolutional Neural Networks. Comput. Electron. Agric. 2019, 163, 104859. [Google Scholar] [CrossRef]
- Folberth, C.; Baklanov, A.; Balkovič, J.; Skalský, R.; Khabarov, N.; Obersteiner, M. Spatio-Temporal Downscaling of Gridded Crop Model Yield Estimates Based on Machine Learning. Agric. For. Meteorol. 2019, 264, 1–15. [Google Scholar] [CrossRef]
- Hong, S.Y.; Hur, J.; Ahn, J.-B.; Lee, J.-M.; Min, B.-K.; Lee, C.-K.; Kim, Y.; Lee, K.D.; Kim, S.-H.; Kim, G.Y.; et al. Estimating Rice Yield Using MODIS NDVI and Meteorological Data in Korea. Korean J. Remote Sens. 2012, 28, 509–520. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Yeom, J.M. Nationwide Projection of Rice Yield Using a Crop Model Integrated with Geostationary Satellite Imagery: A Case Study in South Korea. Remote Sens. 2018, 10, 1665. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, B.; Jia, L.; Huang, H. Conditional Distribution Selection for SPEI-Daily and Its Revealed Meteorological Drought Characteristics in China from 1961 to 2017. Atmos. Res. 2020, 246, 105108. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Yeom, J.M. Predicting Rice Yield at Pixel Scale through Synthetic Use of Crop and Deep Learning Models with Satellite Data in South and North Korea. Sci. Total Environ. 2022, 802, 149726. [Google Scholar] [CrossRef]
- Kosamkar, P.K.; Kulkarni, V.Y. Agriculture Crop Simulation Models Using Computational Intelligence. Int. J. Comput. Eng. Technol. 2019, 10, 134–140. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Williams, J.R.; McGill, W.B.; Rosenberg, N.J.; Jakas, M.C.Q. Simulating Soil C Dynamics with EPIC: Model Description and Testing Against Long-Term Data. Ecol. Modell. 2006, 192, 362–384. [Google Scholar] [CrossRef]
- Lim, C.H.; Choi, Y.; Kim, M.; Jeon, S.W.; Lee, W.K. Impact of Deforestation on Agro-Environmental Variables in Cropland, North Korea. Sustainability 2017, 9, 1354. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. EPIC Crop Growth Model. Trans. Am. Soc. Agric. Eng. 1989, 32, 497–511. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Kimball, B.A.; Wall, G.W. Methodologies for Simulating Impacts of Climate Change on Crop Production. Field Crops Res. 2011, 124, 357–368. [Google Scholar] [CrossRef]
- Balkovič, J.; van der Velde, M.; Skalský, R.; Xiong, W.; Folberth, C.; Khabarov, N.; Smirnov, A.; Mueller, N.D.; Obersteiner, M. Global Wheat Production Potentials and Management Flexibility under the Representative Concentration Pathways. Glob. Planet. Change 2014, 122, 107–121. [Google Scholar] [CrossRef]
- Folberth, C.; Gaiser, T.; Abbaspour, K.C.; Schulin, R.; Yang, H. Regionalization of a Large-Scale Crop Growth Model for Sub-Saharan Africa: Model Setup, Evaluation, and Estimation of Maize Yields. Agric. Ecosyst. Environ. 2012, 151, 21–33. [Google Scholar] [CrossRef]
- World Bank the Total Population in South Korea and North Korea. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 8 May 2024).
- Statistical Korea Annual Rice Consumption per Capita. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ED0001&conn_path=I2 (accessed on 2 April 2024).
- Statistical Korea Rice Production (Polished). Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0221&conn_path=I2 (accessed on 6 June 2023).
- Food and Agriculture Organization (FAO). The Cultivated Areas of Maize and Rice in North Korea (1981~2022). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 29 August 2024).
- Food and Agriculture Organization (FAO). Arable Land in North Korea (1964~2020). Available online: https://www.fao.org/faostat/en/#data/RL (accessed on 3 September 2024).
- Statistical Korea Composition of Cultivated Land in South Korea and North Korea. Available online: https://kosis.kr/statHtml/statHtml.do?sso=ok&returnurl=https%3A%2F%2Fkosis.kr%3A443%2FstatHtml%2FstatHtml.do%3Fconn_path%3DI3%26tblId%3DDT_1ZGA54%26orgId%3D101%26 (accessed on 6 June 2023).
- Food and Agriculture Organization (FAO). Rice and Maize Production in North Korea (1961~2022). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 29 August 2024).
- Jeong, O.Y.; Park, H.S.; Baek, M.K.; Kim, W.J.; Lee, G.M.; Lee, C.M.; Bombay, M.; Ancheta, M.B.; Lee, J.H. Review of Rice in Korea: Current Status, Future Prospects, and Comparisons with Rice in Other Countries. J. Crop Sci. Biotechnol. 2021, 24, 1–11. [Google Scholar] [CrossRef]
- Ducruet, C.; Yoon, I.J. Maritime Trade and Economic Development in North Korea. J. Transp. Geogr. 2024, 120, 103990. [Google Scholar] [CrossRef]
- Noland, M. North Korea as a Complex Humanitarian Emergency: Assessing Food Insecurity. Asia Glob. Econ. 2022, 2, 100049. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Huang, W.; Xu, J.; Cheng, Y.; Wang, C.; Zhu, T.; Yang, J. Effects of Irrigation Regimes on Yield and Quality of Upland Rice and Paddy Rice and Their Interaction with Nitrogen Rates. Agric. Water Manag. 2020, 241, 106344. [Google Scholar] [CrossRef]
- Choi, I.C.; Shin, H.J.; Nguyen, T.T.; Tenhunen, J. Water Policy Reforms in South Korea: A Historical Review and Ongoing Challenges for Sustainable Water Governance and Management. Water 2017, 9, 717. [Google Scholar] [CrossRef]
- Park, S. Analysis of Saemaul Undong: A Korean Rural Development Programme in the 1970s. Asia-Pac. Dev. J. 2012, 16, 113–140. [Google Scholar] [CrossRef]
- Hwang, J.; Seo, Y.; Jung, J.Y. Implication of the Saemaul Undong on Water Resources Development in Rural Communities during 1970’s. J. Korean Soc. Water Wastewater 2016, 30, 699–705. [Google Scholar] [CrossRef]
- Koen, V.; Beom, J. North Korea: The Last Transition Economy? OECD Economics Department Working Papers; OECD Publishing: Paris, France, 2020; Volume 1607. [Google Scholar] [CrossRef]
- Rhie, J.-H.; Lee, K.-S.; Seo, I.-H.; Min, S.-W.; Chung, D.-Y. Assessing the Limits of Agricultural Situation for the Food Security in North Korea. Korean J. Soil Sci. Fertil. 2017, 50, 275–284. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Han, K.-S.; Lee, Y.-W.; Park, N.-W.; Hong, S.; Chung, C.; Cho, J. Different Agricultural Responses to Extreme Drought Events in Neighboring Counties of South and North Korea. Remote Sens. 2019, 11, 1773. [Google Scholar] [CrossRef]
- Llanto, G.M. The Impact of Infrastructure on Agricultural Productivity; Philippine Institute for Development Studies: Makati City, Philippines, 2012; pp. 469–486. [Google Scholar]
- Douglass, M. The Saemaul Undong in Historical Perspective and in the Contemporary World. In Learning from the South Korean Developmental Success; Palgrave Macmillan: London, UK, 2014; pp. 136–171. [Google Scholar]
- He, J.; Xu, J. Is There Decentralization in North Korea? Evidence and Lessons from the Sloping Land Management Program 2004–2014. Land Use Policy 2017, 61, 113–125. [Google Scholar] [CrossRef]
- Oh, S.U.; Kim, E.H.; Kim, K.M. Characteristics of Forest Policy in the Kim Jong-Un Era. North Korean Study 2018, 14, 101–133. [Google Scholar]
- Sun, H.; Ma, J.; Wang, L. Changes in per Capita Wheat Production in China in the Context of Climate Change and Population Growth. Food Secur. 2023, 15, 597–612. [Google Scholar] [CrossRef]
- Carr, T.W.; Addo, F.; Palazzo, A.; Havlik, P.; Pérez-Guzmán, K.; Ali, Z.; Green, R.; Hadida, G.; Segnon, A.C.; Zougmoré, R.; et al. Addressing Future Food Demand in The Gambia: Can Increased Crop Productivity and Climate Change Adaptation Close the Supply–Demand Gap? Food Secur. 2024, 16, 691–704. [Google Scholar] [CrossRef]
- Gebre, G.G.; Amekawa, Y.; Fikadu, A.A.; Rahut, D.B. Do Climate Change Adaptation Strategies Improve Farmers’ Food Security in Tanzania? Food Secur. 2023, 15, 629–647. [Google Scholar] [CrossRef]
- Deng, S.; Tan, X.; Liu, B. Impacts of Changes in Climate Extremes on Maize Yields over Mainland China. Food Secur. 2024, 17, 185–205. [Google Scholar] [CrossRef]
- Engle, N.L. Adaptive Capacity and Its Assessment. Glob. Environ. Change 2011, 21, 647–656. [Google Scholar] [CrossRef]
- Prudhomme, R.; De Palma, A.; Dumas, P.; Gonzalez, R.; Leadley, P.; Levrel, H.; Purvis, A.; Brunelle, T. Combining Mitigation Strategies to Increase Co-Benefits for Biodiversity and Food Security. Environ. Res. Lett. 2020, 15, 114005. [Google Scholar] [CrossRef]
Category | Dataset | Temporal (Spatial) Resolution | Source |
---|---|---|---|
Climate data | Daily maximum temperature (℃) | 1981–2020 | Korea Meteorological Administration |
Daily minimum temperature (℃) | |||
Daily precipitation (mm) | |||
Daily average wind velocity (m/s) | |||
Daily average relative humidity (%) | |||
Topographical data | Digital Elevation Model (DEM) | (24 m) | - |
Land cover maps | 1990s, 2000s, 2010s (30 m) | Ministry of Environment | |
Modified Harmonized World Soil Database | - | International Institute for Applied Systems Analysis | |
Agricultural data | Planting schedules | - | Rural Development Administration |
Statistical data | Rice yield | 1991–2020 | Statistics Korea |
Maize yield in North Korea | 1991–2020 | Statistics Korea, Food and Agriculture Organization, United States Department of Agriculture | |
Ratio of cultivation area | 1991–2020 | (Paddy rice) Statistics Korea | |
(Maize) Food and Agriculture Organization | |||
Annual rice consumption per capita (South Korea) | 1991–2020 | Statistics Korea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.; Skalsky, R.; Folberth, C.; Lee, S.; Schepaschenko, D.; Kraxner, F.; Kim, J.; Kim, C.-G.; Jeon, S.-W.; Son, Y.; et al. A Comparative Assessment of Food Security in South and North Korea Using Food Demand and Supply. Land 2025, 14, 1703. https://doi.org/10.3390/land14091703
Kim W, Skalsky R, Folberth C, Lee S, Schepaschenko D, Kraxner F, Kim J, Kim C-G, Jeon S-W, Son Y, et al. A Comparative Assessment of Food Security in South and North Korea Using Food Demand and Supply. Land. 2025; 14(9):1703. https://doi.org/10.3390/land14091703
Chicago/Turabian StyleKim, Whijin, Rastislav Skalsky, Christian Folberth, Sujong Lee, Dmitry Schepaschenko, Florian Kraxner, Joon Kim, Chang-Gil Kim, Seong-Woo Jeon, Yowhan Son, and et al. 2025. "A Comparative Assessment of Food Security in South and North Korea Using Food Demand and Supply" Land 14, no. 9: 1703. https://doi.org/10.3390/land14091703
APA StyleKim, W., Skalsky, R., Folberth, C., Lee, S., Schepaschenko, D., Kraxner, F., Kim, J., Kim, C.-G., Jeon, S.-W., Son, Y., & Lee, W.-K. (2025). A Comparative Assessment of Food Security in South and North Korea Using Food Demand and Supply. Land, 14(9), 1703. https://doi.org/10.3390/land14091703