Land Unit Delineation Based on Soil-Forming Factors: A Tool for Soil Survey in Mountainous Protected Areas
Abstract
1. Introduction
2. Materials and Methods
2.1. Conceptual Model for Land Unit and Soil Map Unit Delineation
2.2. Study Area Description
2.3. Soil Survey, Sampling, Laboratory Analyses, and Classification
- pH: measured potentiometrically in 1:2.5 soil–water suspension.
- Particle size: determined by pipette method after sodium hexametaphosphate dispersion [48].
- Organic C and total N: determined via dry combustion (Flash 2000, Thermo Fisher Scientific, Waltham, MA, USA).
- Cation exchange capacity (CEC) and exchangeable bases (Ca, Mg, Na and K): extracted with 1 M NH4-acetate at pH 7 and analyzed by inductive coupled plasma optical emission spectrometry (ICP-OES, Arcos II, Kleve, Germany, Ameteck Spectro).
- Exchange acidity: determined by NaOH titration after KCl extraction.
- Base saturation: calculated as the percentage of Ca, Mg, K, and Na over total CEC [49].
3. Results
3.1. Land Units
3.2. Soil Map Units
3.3. Soil Physicochemical Properties Across Soil Map Units and Land Units
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Salazar, S.; Ochoa, A.; McCarthy, P.J. How the visit of pedologist Hans Jenny to Colombia (1946–1947) contributed to the theory of soil-forming factors. Geoderma 2023, 437, 116575. [Google Scholar] [CrossRef]
- Ibanez, J.J.; De-Alba, S.; Lobo, A.; Zucarello, V.; Yaalon, D.H. Pedodiversity and global soil patterns at coarse scales (with discussion). Geoderma 1998, 83, 171–192. [Google Scholar] [CrossRef]
- Yaalon, D.H. The soils we classify Essay review of recent publications on soil taxonomy. Catena 1995, 24, 233–241. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Zurqani, H.A.; Post, C.J.; Schlautman, M.A.; Post, G.C. Soil diversity (Pedodiversity) and ecosystem services. Land 2021, 10, 288. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Songchao, C.; Dominique, A.; Leatitia, M.V.; Laura, P.; Budiman, M.; Pierre, R.; Zamir, L.; Philippe, L.; Zhou, S.; Jacqueline, H.; et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 2021, 409, 115567. [Google Scholar]
- Brevik, E.C.; Calzolari, C.; Miller, B.A.; Pereira, P.; Kabala, C.; Baumgarten, A.; Jordán, A. Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma 2016, 264, 256–274. [Google Scholar] [CrossRef]
- Stoorvogel, J.J.; Bakkenes, M.; Temme, A.J.A.M.; Batjes, N.H.; ten Brink, B.J.E. S-World: A Global Soil Map for Environmental Modelling. Land Degrad. Dev. 2017, 28, 22–33. [Google Scholar] [CrossRef]
- Sermin, T.; Jeff, J. GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. J. Appl. Sci. 2008, 8, 910–921. [Google Scholar] [CrossRef]
- McBratney, A.B.; Odeh, I.O.A.; Bishop, T.F.A.; Dunbar, M.S.; Shatar, T.M. An overview of pedometric techniques for use in soil survey. Geoderma 2000, 97, 293–327. [Google Scholar] [CrossRef]
- Rossiter, D.G. Digital Soil Resource Inventories: Status and Prospects in 2015. In Digital Soil Mapping Across Paradigms, Scales and Boundaries; Springer: Singapore, 2016; pp. 275–286. [Google Scholar]
- Hartemink, A.E.; Krasilnikov, P.; Bockheim, J.G. Soil maps of the world. Geoderma 2013, 207–208, 256–267. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Lorenzetti, R. Soil degradation processes in Italian agricultural and forest ecosystems. Ital. J. Agron. 2013, 8, e28. [Google Scholar] [CrossRef]
- Arrouays, D.; Leenaars, J.G.B.; Richer-de-Forges, A.C.; Adhikari, K.; Ballabio, C.; Greve, M.; Grundy, M.; Guerrero, E.; Hempel, J.; Hengl, T.; et al. Soil legacy data rescue via GlobalSoilMap and other international initiatives. GeoResJ 2017, 14, 1–19. [Google Scholar] [CrossRef]
- FAO & ITPS. State of Knowledge of Soil Biodiversity—Status, Challenges and Potentialities; FAO: Rome, Italy, 2020. [Google Scholar]
- Smiraglia, D.; Capotorti, G.; Guida, D.; Mollo, B.; Siervo, V.; Blasi, C. Land units map of Italy. J. Maps 2013, 9, 239–244. [Google Scholar] [CrossRef]
- Zonneveld, I.S. The land unit—A fundamental concept in landscape ecology, and its applications. Landsc. Ecol. 1989, 3, 67–86. [Google Scholar] [CrossRef]
- Fisher, R.A.; Koven, C.D. Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems. J. Adv. Model. Earth Syst. 2020, 12, e2018MS001453. [Google Scholar] [CrossRef]
- Sonneveld, M.P.W.; Hack-ten Broeke, M.J.D.; van Diepen, C.A.; Boogaard, H.L. Thirty years of systematic land evaluation in the Netherlands. Geoderma 2010, 156, 84–92. [Google Scholar] [CrossRef]
- Kiryushin, V.I. Methodology for Integrated Assessment of Agricultural Land. Eurasian Soil Sci. 2020, 53, 960–967. [Google Scholar] [CrossRef]
- Price, M.F. Mountains Move Up the European Agenda. Mt. Res. Dev. 2016, 36, 376–379. [Google Scholar] [CrossRef]
- Perrigo, A.; Hoorn, C.; Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 2020, 47, 315–325. [Google Scholar] [CrossRef]
- Locatelli, B.; Lavorel, S.; Sloan, S.; Tappeiner, U.; Geneletti, D. Characteristic trajectories of ecosystem services in mountains. Front. Ecol. Environ. 2017, 15, 150–159. [Google Scholar] [CrossRef]
- Chakraborty, A. Mountains as vulnerable places: A global synthesis of changing mountain systems in the Anthropocene. GeoJournal 2021, 86, 585–604. [Google Scholar] [CrossRef]
- Macchi, M. Mountains of the World—Ecosystem Services in a Time of Global and Climate Change; ICIMOD: Kathmandu, Nepal, 2010. [Google Scholar]
- D’Amico, M.E.; Pintaldi, E.; Sapino, E.; Colombo, N.; Quaglino, E.; Stanchi, S.; Navillod, E.; Rocco, R.; Freppaz, M. Soil types of Aosta Valley (NW-Italy). J. Maps 2020, 16, 755–765. [Google Scholar] [CrossRef]
- Jenkins, C.N.; Joppa, L. Expansion of the global terrestrial protected area system. Biol. Conserv. 2009, 142, 2166–2174. [Google Scholar] [CrossRef]
- Chape, S.; Harrison, J.; Spalding, M.; Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 443–455. [Google Scholar] [CrossRef]
- Vincent, S.; Lemercier, B.; Berthier, L.; Walter, C. Spatial disaggregation of complex Soil Map Units at the regional scale based on soil-landscape relationships. Geoderma 2018, 311, 130–142. [Google Scholar] [CrossRef]
- Odgers, N.P.; Sun, W.; McBratney, A.B.; Minasny, B.; Clifford, D. Disaggregating and harmonising soil map units through resampled classification trees. Geoderma 2014, 214–215, 91–100. [Google Scholar] [CrossRef]
- RER. 2017—Coperture Vettoriali Uso del Suolo di Dettaglio—Edizione 2020. 2020. Available online: https://metasfera.regione.emilia-romagna.it/ricerca_metadato?uuid=r_emiro:2020-04-06T135318 (accessed on 13 June 2025).
- Copernicus. CORINE Land Cover (from 1990 to 2018). 2021. Available online: https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html/ (accessed on 13 June 2025).
- RER. Banca Dati Geologica 1:10,000. 2020. Available online: https://metasfera.regione.emilia-romagna.it/ricerca_metadato?uuid=r_emiro:2017-06-12T113543 (accessed on 13 June 2025).
- FAO. Guidelines for Soil Description. Rome: Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2006; ISBN 92-5-1055-21-1. [Google Scholar]
- ARPAE. Tabelle Climatologiche. 2024. Available online: https://www.arpae.it/it/temi-ambientali/clima/dati-e-indicatori/tabelle-climatiche (accessed on 13 June 2025).
- Vittori Antisari, L.; Agnelli, A.; Corti, G.; Falsone, G.; Ferronato, C.; Marinari, S.; Vianello, G. Modern and ancient pedogenesis as revealed by Holocene fire—Northern Apennines, Italy. Quat. Int. 2018, 467, 264–276. [Google Scholar] [CrossRef]
- Brombin, V.; Mistri, E.; De Feudis, M.; Forti, C.; Salani, G.M.; Natali, C.; Falsone, G.; Vittori Antisari, L.; Bianchini, G. Soil carbon investigation in three pedoclimatic and agronomic settings of northern Italy. Sustainability 2020, 12, 10539. [Google Scholar] [CrossRef]
- Dell’Abate, M.T.; Giovannini, C.; Pontalti, F.; Vianello, G.; Vittori Antisari, L. Caratterizzazione Quali-Quantitativa della Sostanza Organica degli Epipedon di Suoli Bruni Acidi dell’Appennino Emiliano sotto Bosco di Latifoglie e di Conifere; Gessa, C., Lorito, S., Vianello, G., Vittori Antisari, L., Eds.; Atti Convegno Nazionale Società Italiana di Scienze del Suolo “Suolo Ambiente Paesaggio”; Alma Mater Studiorum Universita di Bologna: Bologna, Italy, 2007; Volume 1, pp. 332–342. ISBN 978.88.902831-1-6. (In Italian) [Google Scholar]
- Falsone, G.; Marinari, S.; Vittori Antisari, L.; Vianello, G. Soil processes related to organic matter modifications following Douglas-fir mature reforestation. Biol. Fertil. Soils 2015, 51, 277–287. [Google Scholar] [CrossRef]
- Marinari, S.; Bonifacio, E.; Moscatelli, M.C.; Falsone, G.; Vittori Antisari, L.; Vianello, G. Soil development and microbial functional diversity: Proposal for a methodological approach. Geoderma 2013, 192, 437–445. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Vianello, G.; Pontalti, F.; Lorito, S.; Gherardi, M. Land use effects on organic matter in brown soils of the emilian apennines. In the Soils Tomorrow: Soils Changing in a Changing World, Proceedings of the 5th International Congress of the European Society for Soil Conservation "Soils Changing in a Changing World: The Soils of Tomorrow", Palermo, Italy, 25–30 June 2007; Catena Verlag: Reiskirchen, Germany, 2008; pp. 311–328. [Google Scholar]
- Vittori Antisari, L.; Marinari, S.; Dell’Abate, M.T.; Baffi, C.; Vianello, G. Plant cover and epipedon SOM stability as factors affecting brown soil profile development and microbial activity. Geoderma 2011, 161, 212–224. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Falsone, G.; Carbone, S.; Marinari, S.; Vianello, G. Douglas-fir reforestation in North Apennine (Italy): Performance on soil carbon sequestration, nutrients stock and microbial activity. Appl. Soil Ecol. 2015, 86, 82–90. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Trenti, W.; De Feudis, M.; Bianchini, G.; Falsone, G. Soil quality and organic matter pools in a temperate climate (Northern italy) under different land uses. Agronomy 2021, 11, 1815. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Trenti, W.; Buscaroli, A.; Falsone, G.; Vianello, G.; De Feudis, M. Pedodiversity and Organic Matter Stock of Soils Developed on Sandstone Formations in the Northern Apennines (Italy). Land 2023, 12, 79. [Google Scholar] [CrossRef]
- De Feudis, M.; Falsone, G.; Vianello, G.; Agnelli, A.; Vittori Antisari, L. Soil organic carbon stock assessment in forest ecosystems through pedogenic horizons and fixed depth layers sampling: What’s the best one? Land Degrad. Dev. 2022, 33, 1446–1458. [Google Scholar] [CrossRef]
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C. Soil Survey Staff Field Book for Describing and Sampling Soils, Version 3.0; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2012.
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis; Soil Science Society of America (SSSA): Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Soil Chemistry. 1979. Available online: https://www.taylorfrancis.com/chapters/mono/10.1201/9781315137322-6/soil-chemistry-duane-winegardner (accessed on 13 June 2025).
- IUSS. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS) Working Group WRB: Vienna, Austria, 2022. [Google Scholar]
- USDA-NRCS. Soil Survey Staff Keys to Soil Taxonomy, 13th ed.; USDA-NRCS: Washington, DC, USA, 2022.
- Costantini, E.A.C.; Mocali, S. Soil health, soil genetic horizons and biodiversity. J. Plant Nutr. Soil Sci. 2022, 185, 24–34. [Google Scholar] [CrossRef]
- Buol, S.W.; Southard, R.J.; Graham, R.C.; McDaniel, P.A. Soil Genesis and Classification; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Chauvier, Y.; Thuiller, W.; Brun, P.; Lavergne, S.; Descombes, P.; Karger, D.N.; Renaud, J.; Zimmermann, N.E. Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecol. Monogr. 2021, 91, e01433. [Google Scholar] [CrossRef]
- Halleux, V. Soil Monitoring and Resilience (Soil Monitoring Directive); European Parliament: Strasbourg, France, 2024.
- Vacca, A.; Loddo, S.; Melis, M.T.; Funedda, A.; Puddu, R.; Verona, M.; Fanni, S.; Fantola, F.; Madrau, S.; Marrone, V.A.; et al. A GIS based method for soil mapping in Sardinia, Italy: A geomatic approach. J. Environ. Manag. 2014, 138, 87–96. [Google Scholar] [CrossRef]
- Bastian, O. Landscape classification in Saxony (Germany)—A tool for holistic regional planning. Landsc. Urban Plan. 2000, 50, 145–155. [Google Scholar] [CrossRef]
- di Lisio, A.; Russo, F. Thematic maps for land-use planning and policy decisionsin the calaggio stream catchment area. J. Maps 2010, 6, 68–83. [Google Scholar] [CrossRef]
- Şahin, Ş.; Bekişoğlu, Ü. Landscape planning and management strategies for the Zir Valley, near Ankara, Turkey. Environ. Geol. 2009, 57, 297–305. [Google Scholar] [CrossRef]
- Bockheim, J.G.; Gennadiyev, A.N.; Hartemink, A.E.; Brevik, E.C. Soil-forming factors and Soil Taxonomy. Geoderma 2014, 226–227, 231–237. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Viscarra Rossel, R.A.; Marx, D.B.; Samal, A.K. Using targeted sampling to process multivariate soil sensing data. Geoderma 2011, 163, 63–73. [Google Scholar] [CrossRef]
- Bouma, J. Contributing pedological expertise towards achieving the United Nations Sustainable Development Goals. Geoderma 2020, 375, 114508. [Google Scholar] [CrossRef]
- Vacek, O.; Vašát, R.; Borůvka, L. Quantifying the pedodiversity-elevation relations. Geoderma 2020, 373, 114441. [Google Scholar] [CrossRef]
- Ibáñez, J.J.; Feoli, E. Global Relationships of Pedodiversity and Biodiversity. Vadose Zo. J. 2013, 12, 1–5. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; L’Abate, G. Beyond the concept of dominant soil: Preserving pedodiversity in upscaling soil maps. Geoderma 2016, 271, 243–253. [Google Scholar] [CrossRef]
- Irl, S.D.H.; Harter, D.E.V.; Steinbauer, M.J.; Gallego Puyol, D.; Fernández-Palacios, J.M.; Jentsch, A.; Beierkuhnlein, C. Climate vs. topography—Spatial patterns of plant species diversity and endemism on a high-elevation island. J. Ecol. 2015, 103, 1621–1633. [Google Scholar] [CrossRef]
- Garcia-Pausas, J.; Casals, P.; Camarero, L.; Huguet, C.; Sebastià, M.T.; Thompson, R.; Romanyà, J. Soil organic carbon storage in mountain grasslands of the Pyrenees: Effects of climate and topography. Biogeochemistry 2007, 82, 279–289. [Google Scholar] [CrossRef]
- Shrestha, D.P.; Suriyaprasit, M.; Prachansri, S. Assessing soil erosion in inaccessible mountainous areas in the tropics: The use of land cover and topographic parameters in a case study in Thailand. Catena 2014, 121, 40–52. [Google Scholar] [CrossRef]
- Alexander, C.; Deák, B.; Heilmeier, H. Micro-topography driven vegetation patterns in open mosaic landscapes. Ecol. Indic. 2016, 60, 906–920. [Google Scholar] [CrossRef]
- Dufour, A.; Gadallah, F.; Wagner, H.H.; Guisan, A.; Buttler, A. Plant species richness and environmental heterogeneity in a mountain landscape: Effects of variability and spatial configuration. Ecography 2006, 29, 573–584. [Google Scholar] [CrossRef]
- Ballabio, C. Spatial prediction of soil properties in temperate mountain regions using support vector regression. Geoderma 2009, 151, 338–350. [Google Scholar] [CrossRef]
- Herbst, P.; Gross, J.; Meer, U.W.E.; Mosimann, T. Geomorphographic terrain classification for predicting forest soil properties in Northwestern Switzerland. Z. Fur Geomorphol. 2012, 56, 1–22. [Google Scholar] [CrossRef]
- Geitner, C.; Tusch, M.; Meißl, G.; Kringer, K.; Wiegand, C. Effects of topography on the spatial distribution of soils: Basic considerations on interdependencies and data sources with examples from the Eastern Alps. Z. Fur Geomorphol. 2011, 55, 127–146. [Google Scholar] [CrossRef]
- Fazlollahi Mohammadi, M.; Jalali, S.G.H.; Kooch, Y.; Said-Pullicino, D. Slope gradient and shape effects on soil profiles in the northern mountainous forests of Iran. Eurasian Soil Sci. 2016, 49, 1366–1374. [Google Scholar] [CrossRef]
- Badía, D.; Martí, C.; Aznar, J.M.; León, J. Influence of slope and parent rock on soil genesis and classification in semiarid mountainous environments. Geoderma 2013, 193–194, 13–21. [Google Scholar] [CrossRef]
- RER. Foto Aeree del Volo IGMI GAI 1954-1955. 2012. Available online: https://geoportale.regione.emilia-romagna.it/applicazioni-gis/regione-emilia-romagna/cartografia-di-base/cartografia-storica/foto-aeree-del-volo-igmi-gai-1954-1955 (accessed on 13 June 2025).
- RER. Ortofoto RER 1976-1978. 2022. Available online: https://geoportale.regione.emilia-romagna.it/catalogo/dati-cartografici/cartografia-di-base/immagini/layer-8 (accessed on 13 June 2025).
- Agnoletti, M.; Piras, F.; Venturi, M.; Santoro, A. Cultural values and forest dynamics: The Italian forests in the last 150 years. For. Ecol. Manag. 2022, 503, 119655. [Google Scholar] [CrossRef]
- Vacca, A.; Aru, F.; Ollesch, G. Short-term Impact of Coppice Management on Soil in a Quercus ilex l. Stand of Sardinia. Land Degrad. Dev. 2017, 28, 553–565. [Google Scholar] [CrossRef]
- Quinton, J.N.; Edwards, G.M.; Morgan, R.P.C. The influence of vegetation species and plant properties on runoff and soil erosion: Results from a rainfall simulation study in south east Spain. Soil Use Manag. 1997, 13, 143–148. [Google Scholar] [CrossRef]
- Mohammad, A.G.; Adam, M.A. The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 2010, 81, 97–103. [Google Scholar] [CrossRef]
- De Feudis, M.; Cardelli, V.; Massaccesi, L.; Bol, R.; Willbold, S.; Cocco, S.; Corti, G.; Agnelli, A. Effect of beech (Fagus sylvatica L.) rhizosphere on phosphorous availability in soils at different altitudes (Central Italy). Geoderma 2016, 276, 53–63. [Google Scholar] [CrossRef]
- De Feudis, M.; Massaccesi, L.; Poesio, C.; Vittori Antisari, L.; Bol, R.; Agnelli, A. Seasonal effects of altitude and vegetation on litter and organic carbon in deciduous and coniferous forest soils. Geoderma 2025, 459, 117382. [Google Scholar] [CrossRef]
- Costantini, E.A.; Barbetti, R.; Fantappiè, M.; L’Abate, G.; Lorenzetti, R.; Magini, S. Pedodiversity. In The Soils of Italy; World Soils Book Series; Costantini, E.A., Dazzi, C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 105–178. [Google Scholar] [CrossRef]
- Ibáñez, J.J.; Zinck, J.A.; Dazzi, C. Soil geography and diversity of the European biogeographical regions. Geoderma 2013, 192, 142–153. [Google Scholar] [CrossRef]
- Tóth, G.; Jones, A.; Montanarella, L. LUCAS Topsoil Survey. Methodology, Data and Results; Office of the European Union: Luxembourg, 2013; Number 26102. [Google Scholar]
- Van Miegroet, H.; Cole, D.W. Acidification sources in red alder and Douglas-fir soils. Soil Sci. Soc. Am. J. 1985, 49, 1274–1279. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Bockheim, J.G. Cryosols as a Three-Part System. In Cryopedology; Progress in Soil Science; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Anderson, S. Soils: Genesis and Geomorphology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Egli, M.; Mirabella, A.; Sartori, G. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps. Geomorphology 2008, 102, 307–324. [Google Scholar] [CrossRef]
Reclassified Land Uses | Elevation Ranges (m Above Sea Level) | ||||
---|---|---|---|---|---|
<900 | 900–1300 | 1300–1600 | 1600–2000 | >2000 | |
ha | |||||
Urbanized areas | 64.09 | 249.52 | 31.58 | 0.46 | 1.24 |
Agricultural and cultivated areas | 36.99 | 190.62 | 40.52 | 0 | 0 |
Grassland, pastures and bushes | 32.82 | 775.65 | 807.38 | 2159.63 | 39.72 |
Forest with prevalent beech | 44.59 | 6112.05 | 6229.63 | 554.98 | 0 |
Forest of the sub-mountain plane, chestnuts | 1514.12 | 847.52 | 369.28 | 19.69 | 0 |
Forest with prevalence conifers, reforestation | 27.22 | 468.64 | 527.96 | 110.35 | 0 |
Lithoid outcrops | 0.45 | 36.25 | 41.03 | 115.04 | 17.96 |
Water courses and bodies | 10.66 | 9.79 | 13.02 | 1.51 | 0 |
Total area | 1730.94 | 8690.04 | 8060.4 | 2961.66 | 58.92 |
Reclassified Lithology | Slope Gradient (%) | ||
---|---|---|---|
0–10 | 10–25 | >25 | |
ha | |||
Arenaceous formations | 53.81 | 477.05 | 7664.51 |
Arenaceous-pelitic formations | 5.19 | 48.55 | 1417.97 |
Pelitic-arenaceous formations | 1.32 | 13.64 | 281.5 |
Marly-calcareous formations | 7.95 | 72.68 | 648.49 |
Clay formations | 25.92 | 254.68 | 1009.24 |
Igneous and metamorphic formations | 0.03 | 0.25 | 5.81 |
Chaotic, detrital formations and quaternary deposits | 351.12 | 2228.41 | 6580.69 |
Alluvial formations and river terraces | 83.32 | 147.26 | 122.57 |
Total area | 528.66 | 3242.52 | 17,730.78 |
Land Unit (Area) | Description |
---|---|
A (37.06 ha) | Arable land, tree crops, meadows on river terraces and alluvial deposits, mainly adjacent to watercourses, below 1000 m a.s.l., with slopes generally < 10%. |
B (157.80 ha) | Land mainly cultivated for arable crops or used as pasture, mostly below 1300 m a.s.l., with slopes between 10 and 25%, on marly and clayey formations. |
C (932.22 ha) | Areas used for arable crops or pasture, mostly below 1500 m a.s.l., with slopes between 10 and 25%, on arenaceous and arenaceous-pelitic formations, also in detrital facies. |
D (1813.32 ha) | Transitional areas between submontane and montane zones (500–1200 m a.s.l.), with slopes between 10 and 25%, characterized by broadleaf tree and shrub cover, on marly, clayey, igneous-metamorphic formations and alluvial deposits. |
E (1579.82 ha) | Areas between 500 and 1400 m a.s.l., mainly with slopes > 25%, in a mesic temperature regime, covered by basal and submontane forest, on arenaceous and arenaceous-pelitic formations. |
E1 (969.08 ha) | Areas between 500 and 1400 m a.s.l., in a mesic temperature regime, with slopes between 15 and 30%, covered by basal and submontane forests, on quaternary deposits often in detrital or chaotic facies. |
F (2865.55 ha) | Areas between 900 and 1300 m a.s.l., in a mesic temperature regime, covered by broadleaf forests dominated by beech, on arenaceous and arenaceous-pelitic formations. |
F1 (2482.62 ha) | Areas between 900 and 1300 m a.s.l., in a mesic temperature regime, mainly with slopes >25%, covered by beech forests on quaternary deposits, often in detrital or chaotic facies. |
G (3254.50 ha) | Areas between 1300 and 1600 m a.s.l., in transition from mesic to frigid temperature regimes, with slopes > 25%, covered by deciduous forests, mostly beech, on arenaceous and arenaceous-pelitic formations. |
G1 (2735.38 ha) | Areas between 1300 and 1600 m a.s.l., in transition from mesic to frigid temperature regimes, with slopes > 25%, covered by deciduous forests, mostly beech, on quaternary deposits, often in glacial facies. |
H (1135.22 ha) | Areas mostly between 900 and 1600 m a.s.l., covered by coniferous forests from artificial reforestation, mainly on arenaceous and arenaceous-pelitic formations, also in detrital facies. |
I (2409.63 ha) | Areas between 1600 and 2000 m a.s.l., with slopes > 25%, characterized by polyphytic meadows and bilberry heaths, in a frigid temperature regime, mainly on arenaceous and glacial deposits. |
I1 (504.82 ha) | Areas between 1600 and 2000 m a.s.l., with slopes between 20 and 30%, characterized by mountain grasslands, in a frigid temperature regime, mainly on pelitic and glacial deposits, and to a lesser extent on marly, clayey, and chaotic formations. |
J (40.31 ha) | High-elevation grasslands above 2000 m a.s.l., in a cryic temperature regime, mainly on arenaceous and pelitic-arenaceous formations, also in detrital facies. |
L (211.70 ha) | Lithoid outcrops on marly, clayey, arenaceous, and pelitic formations, also in detrital facies. |
W (22.56 ha) | Hydromorphic areas, submerged or intermittently emerged, associated with lake surfaces above 1200 m a.s.l., characterized by peat deposits. |
Soil Map Unit (Area) | Description | Soil Classification (IUSS 2022/USDA-NRCS 2022) |
---|---|---|
A (37.06 ha) | Ap-B-C profiles, weakly developed, moderately deep, with anthropogenically influenced epipedon. | Hortic or Irragric Fluvic Cambisols/Typic or Oxyaquic Udifluvents |
B (157.80 ha) | Shallow Ap-Bw-C profiles with vertic features and redoximorphic characteristics due to clay accumulation. | Vertic Eutric Cambisols (Oxyaquic), Leptic Eutric Cambisols/Oxyaquic Eutrudepts, Lithic Eutrudepts |
C (932.22 ha) | Shallow to moderately deep Ap-AB-Bw-C profiles, weakly to moderately developed. | Eutric Cambisols, Dystric Cambisols/Typic Eutrudepts, Typic or Lithic Dystrudepts |
D (1813.32 ha) | Shallow O-A-Bw-C profiles with thick organic horizons and weak cambic features. | Leptic Eutric Cambisols (Humic), Eutric Cambisols/Typic Eutrudepts, Typic Dystrudepts |
E (1579.82 ha) | O-A-AB-C and O-A-C profiles, very shallow, weakly developed, stony. | Leptic Skeletic Umbrisols, Leptic Skeletic Regosols (Humic)/Lithic Eutrudepts, Typic Dystrudepts |
E1 (969.08 ha) | Shallow O-A-AB-Bt-C profiles, developed with argic horizons. Some Bw-C profiles. | Leptic Luvisols, Epileptic Dystric Cambisols (Humic)/Typic Hapludalfs, Typic Dystrudepts, Typic Humudepts |
F (2865.55 ha) | Shallow O-A-AB-Bw-C profiles with umbric features and moderate development. | Leptic Skeletic Dystric Cambisols (Humic)/Lithic Humudepts, Typic Dystrudepts, Lithic or Humic Dystrudepts, |
F1 (2482.62 ha) | Moderately deep O-A-AB-Bw-C profiles with umbric epipedon and cambic horizon. | Leptic Cambic Umbrisols, Leptic Eutric Cambisols (Humic)/Typic Humudepts, Typic Hapludolls, Lithic or Typic Eutrudepts |
G (3254.50 ha) | O-A-AB-Bw-C and O-A-AB-C profiles, shallow, stony, weak to moderate development. | Leptic Skeletic Dystric Cambisols (Loamic or Arenic), Dystric Leptosols (Humic)/Typic Dystrudepts, Lithic Udorthents |
G1 (2735.38 ha) | O-A-AB-Bw-C and O-A-AB-C profiles, shallow, skeletal, moderately to poorly developed. | Leptic Skeletic Dystric Cambisols (Loamic, Humic), Umbric Cambic Dystric Leptosols/Typic Dystrudepts, Humic or Lithic Dystrudepts |
H (1135.22 ha) | O-A-Bw-BC-C and O-AE-Bw-BC-C profiles, skeletal, with umbric/mollic epipedons and cambic horizon. | Epileptic Cambic Skeletic Umbrisols, Leptic Skeletic Dystric Cambisols (Loamic, Humic), Skeletic Dystric Cambisols (Protospodic)/Typic or Lithic Humudept, Humic Dystrudepts, Lithic Hapludolls, s |
I (2409.63 ha) | O-AE-Bw-C profiles, shallow, moderately developed, often umbric. | Leptic Dystric Cambisols (Humic, Novic, Protospodic), Haplic Podzols (Humic)/Lithic or Typic Dystrudepts, Lithic Dystrudepts |
I1 (504.82 ha) | O-A-AE-Bw-CR and O-A-(Bw)-BC-Cr profiles, shallow and skeletal, limited development. | Leptic Skeletic Cambisols (Humic), Leptic Colluvic Skeletic Regosols/Lithic Hapludolls, Lithic Humudepts, Lithic or Typic Dystrudepts |
J (40.31 ha) | A-(Bw)-C profiles, very shallow in cryic climate, minimal development. | Epileptic Dystric Regosols (Gelic), Dystric Leptosols (Gelic)/Lithic Haplocryolls, Lithic Dystrocryepts, Lithic Humicryepts, |
L (211.70 ha) | Lithoid outcrops with minimal soils or initial pedogenesis (A-C). | Leptic Regosols, Lithic Skeletic Leptosols/Lithic Entisols |
W (22.56 ha) | Hydromorphic profiles (OA-AC-BCg or Ag-ACg-Cg), with organic matter accumulation and water saturation. | Gleyic (Dystric) Stagnosols (arenic, colluvic, humic), Hemic or Fibric Leptic Histosols (Gleyic)/Typic or Aeric Fluviwassents, Hemic or Terric Haplofibrists, Oxyaquic Udifluvents |
SMU | Sand | Silt | Clay | pH | Caexch | BS | Ntot | OC | |
---|---|---|---|---|---|---|---|---|---|
g/kg | cmol(+)/kg | % | |||||||
B | 75 | 625 | 300 | 7.3 | 9.6 | 71.0 | 0.3 | 2.9 | mean |
29 | 74 | 87 | 0.7 | 2.9 | 11.6 | 0.3 | 3.1 | SD | |
C | 39 | 706 | 256 | 7.9 | 12.3 | 48.5 | 0.4 | 3.4 | mean |
9 | 57 | 65 | 0.6 | 2.4 | 2.2 | 0.3 | 4.3 | SD | |
D | 170 | 505 | 325 | 5.1 | 2.3 | 56.7 | 0.2 | 2.0 | mean |
199 | 159 | 111 | 0.2 | 0.7 | 20.3 | 0.1 | 2.2 | SD | |
E | 188 | 706 | 106 | 5.6 | 7.8 | 50.5 | 0.3 | 3.3 | mean |
41 | 33 | 13 | 0.8 | 3.9 | 8.1 | 0.2 | 3.6 | SD | |
E1 | 60 | 748 | 192 | 7.7 | 14.1 | 55.3 | 0.2 | 2.8 | mean |
21 | 69 | 75 | 0.65 | 3.1 | 10.1 | 0.1 | 3.0 | SD | |
F | 304 | 573 | 123 | 4.9 | 9.2 | 20.7 | 0.3 | 4.1 | mean |
47 | 51 | 24 | 0.1 | 1.1 | 8.3 | 0.1 | 2.4 | SD | |
F1 | 544 | 398 | 58 | 5.3 | 4.5 | 40.2 | 0.4 | 4.5 | mean |
11 | 8 | 13 | 0.4 | 1.0 | 3.4 | 0.5 | 5.7 | SD | |
G | 596 | 352 | 52 | 4.6 | 4.6 | 13.0 | 0.1 | 3.0 | mean |
43 | 40 | 13 | 0.4 | 2.3 | 3.9 | 0.1 | 2.2 | SD | |
G1 | 615 | 327 | 58 | 4.7 | 0.7 | 25.4 | 0.2 | 3.3 | mean |
28 | 34 | 11 | 0.3 | 0.9 | 13.2 | 0.1 | 2.3 | SD | |
H | 572 | 299 | 129 | 4.4 | 0.2 | 13.6 | 0.2 | 2.4 | mean |
51 | 59 | 16 | 0.3 | 0.0 | 3.5 | 0.1 | 1.3 | SD | |
I | 531 | 382 | 87 | 4.7 | 0.4 | 8.7 | 0.3 | 3.6 | mean |
99 | 66 | 43 | 0.3 | 0.6 | 9.7 | 0.3 | 2.9 | SD | |
I1 | 798 | 195 | 8 | 6.1 | 13.3 | 99.1 | 0.4 | 6.1 | mean |
8 | 5 | 3 | 0.2 | 0.8 | 0.2 | 0.1 | 1.7 | SD | |
J | 670 | 284 | 45 | 6.1 | 12.3 | 93.2 | 0.3 | 3.4 | mean |
10 | 12 | 3 | 0.1 | 1.1 | 0.6 | 0.0 | 0.4 | SD | |
W | 674 | 310 | 17 | 5.0 | 1.4 | 61.0 | 0.1 | 1.6 | mean |
89 | 96 | 12 | 0.2 | 0.3 | 5.1 | 0.0 | 0.7 | SD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trenti, W.; De Feudis, M.; Gherardi, M.; Vianello, G.; Vittori Antisari, L. Land Unit Delineation Based on Soil-Forming Factors: A Tool for Soil Survey in Mountainous Protected Areas. Land 2025, 14, 1683. https://doi.org/10.3390/land14081683
Trenti W, De Feudis M, Gherardi M, Vianello G, Vittori Antisari L. Land Unit Delineation Based on Soil-Forming Factors: A Tool for Soil Survey in Mountainous Protected Areas. Land. 2025; 14(8):1683. https://doi.org/10.3390/land14081683
Chicago/Turabian StyleTrenti, William, Mauro De Feudis, Massimo Gherardi, Gilmo Vianello, and Livia Vittori Antisari. 2025. "Land Unit Delineation Based on Soil-Forming Factors: A Tool for Soil Survey in Mountainous Protected Areas" Land 14, no. 8: 1683. https://doi.org/10.3390/land14081683
APA StyleTrenti, W., De Feudis, M., Gherardi, M., Vianello, G., & Vittori Antisari, L. (2025). Land Unit Delineation Based on Soil-Forming Factors: A Tool for Soil Survey in Mountainous Protected Areas. Land, 14(8), 1683. https://doi.org/10.3390/land14081683