Predicting Future Built-Up Land Cover from a Yearly Time Series of Satellite-Derived Binary Urban Maps
Abstract
1. Introduction
2. Data
3. Methods
3.1. Pre-Processing
3.2. Cellular Automata Markov Chain
3.3. Random Forest and Support Vector Machine
3.4. Convolutional Neural Network
3.5. Convolutional Long Short-Term Memory
3.6. Linear Kernel Logistic Regression
3.7. Accuracy Metrics
3.7.1. Overall Accuracy
3.7.2. Cohen’s Kappa
3.7.3. Log-Loss
3.7.4. Metric Summary
4. Results
4.1. Spatial Kernel Size
4.2. Loss Function Weighting
4.3. Visual Comparison
4.4. Metric Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, J.; O’Neill, B. Different spatiotemporal patterns in global human population and built-up land. Earths Future 2021, 9, e2020EF001920. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, R.; Shen, C.; Da, L. Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China. Environ. Monit. Assess. 2010, 169, 101–112. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, K.; Sajjad, R.U.; Abbasi, A.M.; Nazeer, A.; Tahir, A.A. Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. J. Environ. Manag. 2019, 245, 348–357. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Kafy, A.; Tan, S. Simulating the relationship between land use/land cover change and urban thermal environment using machine learning algorithms in Wuhan City, China. Land 2022, 11, 14. [Google Scholar] [CrossRef]
- Rahaman, M.A.; Kalam, A.; Al-Mamun, M. Unplanned urbanization and health risks of Dhaka City in Bangladesh: Uncovering the associations between urban environment and public health. Front. Public Health 2023, 11, 1269362. [Google Scholar] [CrossRef]
- Bao, Z.; Ng, S.T.; Yu, G.; Zhang, X.; Ou, Y. The effect of the built environment on spatial-temporal pattern of traffic congestion in a satellite city in emerging economies. Dev. Built Environ. 2023, 14, 100173. [Google Scholar] [CrossRef]
- Slonecker, E.T.; Jennings, D.B.; Garofalo, D. Remote Sensing of Impervious Surfaces: A Review. Remote Sens. Rev. 2001, 20, 227–255. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MOSIA satellite data. Environ. Res. Lett. 2009, 4, 044003. [Google Scholar] [CrossRef]
- Brown de Colstoun, E.C.; Huang, C.; Wang, P.; Tilton, J.C.; Tan, B.; Phillips, J.; Niemczura, S.; Ling, P.Y.; Wolfe, R.E. Global Man-Made Impervious Surface (GMIS) Dataset from Landsat (Dataset); NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2017. [Google Scholar] [CrossRef]
- Guneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J.; Wang, W.; Liu, Z. Mapping 10m global impervious surface area (GISA-10m) using multi-source geospatial data. Earth Syst. Sci. Data 2022, 14, 3649–3672. [Google Scholar] [CrossRef]
- Lasko, K.; O’Neill, F.D. Automated method for artificial impervious surface area mapping in temperate, tropical, and arid environments using hyperlocal training data with sentinel-2 imagery. Appl. Earth Obs. Remote Sens. 2023, 99, 1–23. [Google Scholar] [CrossRef]
- Maloney, M.C.; Becker, S.J.; Griffin, A.W.; Lyon, S.L.; Lasko, K. Automated Built-Up Infrastructure Land Cover Extraction Using Index Ensembles with Machine Learning, Automated Training Data, and Red Band Texture Layers. Remote Sens. 2024, 16, 868. [Google Scholar] [CrossRef]
- Huang, B.; Xie, C.; Tay, R.; Wu, B. Land-use-change modeling using unbalanced support-vector machines. Environ. Plan. B Plan. Des. 2009, 3, 398–416. [Google Scholar] [CrossRef]
- Huang, B.; Xie, C.; Tay, R. Support vector machines for urban growth modeling. Geoinformatica 2010, 14, 83–99. [Google Scholar] [CrossRef]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Sussman, H.S.; Becker, S.B. Automated global method to detect rapid and future urban areas. Land 2025, 14, 1061. [Google Scholar] [CrossRef]
- Kari, J. Theory of cellular automata: A survey. Theor. Comput. Sci. 2005, 334, 3–33. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.Q.; Lv, L.N. A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecol. Model. 2012, 233, 11–19. [Google Scholar] [CrossRef]
- Al-sharif, A.A.; Pradhan, B. Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab. J. Geosci. 2014, 7, 4291–4301. [Google Scholar] [CrossRef]
- Rimal, B.; Zhang, L.; Keshtkar, H.; Haack, B.N.; Rijal, S.; Zhang, P. Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS Int. J. Geo-Inf. 2018, 7, 154. [Google Scholar] [CrossRef]
- Kushwaha, K.; Singh, M.M.; Singh, S.K.; Patel, A. Urban growth modeling using earth observation datasets, Cellular Automata-Markov Chain model and urban metrics to measure urban footprints. Remote Sens. Appl. Soc. Environ. 2021, 22, 100479. [Google Scholar] [CrossRef]
- Okwuashi, O.; Ndehedehe, C.E. Integrating machine learning with Markov chain and cellular automata models for modelling urban land use change. Remote Sens. Appl. Soc. Environ. 2021, 21, 100461. [Google Scholar] [CrossRef]
- Von Neumann, J.; Burks, A.W. Theory of self-reproducing automata. IEEE Trans. Neural Netw. 1966, 5, 3–14. [Google Scholar]
- Wolfram, S. Statistical mechanics of cellular automata. Rev. Mod. Phys. 1983, 55, 601. [Google Scholar] [CrossRef]
- Hougaard, P. Multi-state models: A review. Lifetime Data Anal. 1999, 5, 239–264. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhou, D.; Li, Y. Integrating ANNs and cellular automata–Markov chain to simulate urban expansion with annual land use data. Land 2022, 11, 1074. [Google Scholar] [CrossRef]
- Pal, S.; Ghosh, S.K. Rule based end-to-end learning framework for urban growth prediction. arXiv 2017, arXiv:1711.10801. [Google Scholar]
- Gomez, J.A.; Patino, J.; Duque, J.C.; Passos, S. Spatiotemporal modeling of urban growth using machine learning. Remote Sens. 2020, 12, 109. [Google Scholar] [CrossRef]
- Kim, Y.; Safikhani, A.; Tepe, E. Machine learning application to spatio-temporal modeling of urban growth. Comput. Environ. Urban Syst. 2022, 94, 101801. [Google Scholar] [CrossRef]
- Pozdnoukhov, A.; Matasci, G.; Kanevski, M.; Purves, R.S. Spatio-temporal avalanche forecasting with Support Vector Machines. Nat. Hazards Earth Syst. Sci. 2011, 11, 367–382. [Google Scholar] [CrossRef]
- Karimi, F.; Sultana, S.; Babakan, A.S.; Suthahatan, S. An enhanced support vector machine model for urban expansion and prediction. Comput. Environ. Urban Syst. 2019, 75, 61–75. [Google Scholar] [CrossRef]
- Mahboob, M.A.; Celik, T.; Genc, B. Predictive modelling of mineral prospectivity using satellite remote sensing and machine learning algorithms. Remote Sens. Appl. Soc. Environ. 2024, 36, 101316. [Google Scholar] [CrossRef]
- Bakhshayesh, P.R.; Ejtehadi, M.; Taheri, A.; Behzadipour, S. The Effects of Data Augmentation Methods on the Performance of Human Activity Recognition. In Proceedings of the 2022 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Behshahr, Iran, 28–29 December 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Raschka, S.; Mirjalili, V. Python Machine Learning, 3rd ed.; Packt Publishing Limited: Birmingham, UK, 2015. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, Canada, 7–12 December 2015; Curran Associates, Inc.: Red Hook, NY, USA, 2015. ISBN 9781510825024. [Google Scholar]
- Boulila, W.; Ghandorh, H.; Khan, M.A.; Ahmed, F.; Ahmad, J. A novel CNN-LSTM-based approach to predict urban expansion. Ecol. Inform. 2021, 64, 101325. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Lee, C.; Lee, S. Predicting of urban expansion using convolutional LSTM network model: The case of Seoul metropolitan area, Korea. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, X-4/W3-2022, 113–118. [Google Scholar] [CrossRef]
- Copernicus Sentinel-2 Level-2A Imagery. SentinelHub. Available online: https://dataspace.copernicus.eu/analyse/apis/sentinel-hub (accessed on 15 January 2024).
- European Space Agency. Sentinel-2 User Handbook, Issue 1 Rev. 2. 2015. Available online: https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 9 July 2024).
- New Privately Owned Housing Units Authorized. Building Permits Survey (BPS) Permits by CBSA; U.S. Census Bureau: Washington, DC, USA, 2025; Available online: https://www.census.gov/construction/bps/msamonthly.html (accessed on 20 July 2025).
- U.S. Geological Survey. Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global Dataset; Earth Resources Observation and Science (EROS) Center; U.S. Geological Survey: Reston, VA, USA, 2017. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 380–389. [Google Scholar] [CrossRef]
- Madow, W.G.; Madow, L.H. On the Theory of Systematic Sampling. Ann. Math. Stat. 1944, 15, 1–24. Available online: https://www.jstor.org/stable/2236209 (accessed on 19 December 2024). [CrossRef]
- Sadaiyandi, J.; Arumugam, P.; Sangaiah, A.K.; Zhang, C. Stratified sampling-based deep learning approach to increase prediction accuracy of unbalanced dataset. Electronics 2023, 12, 4423. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, X.; Gao, Y.; Mi, J.; Liu, W.; Wang, J.; Jian, M.; Liu, L. Assessing the accuracy and consistency of six fine-resolution global land cover products using a novel stratified random sampling validation dataset. Remote Sens. 2023, 15, 2285. [Google Scholar] [CrossRef]
- Schneider, J. Cross Validation. CMU School of Computer Science, 7 February 1997. Available online: https://www.cs.cmu.edu/~schneide/tut5/node42.html (accessed on 7 March 2025).
- Turk, G. GT index: A measure of the success of prediction. Remote Sens. Environ. 1979, 8, 65–75. [Google Scholar] [CrossRef]
- Khan, A.A.; Chaudhari, O.; Chandra, R. A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Syst. Appl. 2023, 244, 122778. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier score in binary classification assessment. IEEE Access 2021, 9, 78368–78381. [Google Scholar] [CrossRef]
- Vieira, S.M.; Kaymak, U.; Sousa, J.M. Cohen’s kappa coefficient as a performance measure for feature selection. In Proceedings of the International Conference on Fuzzy Systems, Barcelona, Spain, 18–23 July 2010; IEEE: Piscataway, NY, USA, 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Al-Dousari, A.E.; Mishra, A.; Singh, S. Land use land cover change detection and urban sprawl prediction for Kuwait metropolitan region, using multi-layer perceptron neural networks (MLPNN). Egypt. J. Remote Sens. Space Sci. 2023, 26, 381–392. [Google Scholar] [CrossRef]
- Rana, M.S.; Sarkar, S. Prediction of urban expansion by using land cover change detection approach. Heliyon 2018, 7, e08437. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, D.; Zhu, A.X.; Zhu, Y. Modelling urban expansion with cellular automata supported by urban growth intensity over time. Ann. GIS 2023, 29, 337–353. [Google Scholar] [CrossRef]
- Shahfahad; Naikoo, M.W.; Das, T.; Talukdar, S.; Asgher, M.S.; Rahman, A. Prediction of land use changes at a metropolitan city using integrated cellular automata: Past and future. Geol. Ecol. Landsc. 2024, 8, 287–305. [Google Scholar] [CrossRef]
- Asif, M.; Kazmi, J.H.; Tariq, A.; Zhao, N.; Guluzade, R.; Soufan, W. Modelling of land use and land cover changes and prediction using CA-Markov and Random Forests. Geocarto Int. 2022, 28, 2210532. [Google Scholar] [CrossRef]
- Lukas, P.; Melesse, A.M.; Kenea, T.T. Prediction of future land use/land cover changes using a coupled CA-ANN model in the upper Omo-Gibe river basin, Ethiopia. Remote Sens. 2023, 15, 1148. [Google Scholar] [CrossRef]
- Mansour, S.; Ghoneium, E.; El-Kersh, A.; Said, S.; Abedlnaby, S. Spatiotemporal monitoring of urban sprawl in a coastal city using GIS-based Markov chain and artificial neural network (ANN). Remote Sens. 2023, 15, 601. [Google Scholar] [CrossRef]
- Nath, N.; Sahariah, D.; Meraj, G.; Debnath, J.; Kumar, P.; Lahon, D.; Chand, K.; Farooq, M.; Chandan, P.; Singh, S.K.; et al. Land use and land cover change monitoring and prediction of a UNESCO world heritage site: Kaziranga eco-sensitive zone using cellular automata-markov model. Land 2023, 12, 151. [Google Scholar] [CrossRef]
- Altalhan, M.; Algarni, A.; Alouane, M.A. Imbalanced data problem in machine learning: A review. IEEE Access 2025, 13, 13686–13699. [Google Scholar] [CrossRef]
- Wang, H.; Meng, Y.; Xu, H.; Wang, H.; Guan, X.; Liu, Y.; Liu, M.; Wu, Z. Prediction of flood risk levels of urban flooded points though using machine learning with unbalanced data. J. Hydrol. 2024, 630, 130742. [Google Scholar] [CrossRef]
Study Site | Tile ID | Image Dates | ||||
---|---|---|---|---|---|---|
San Francisco, CA | 10SEG | 9 June 2019 | 18 June 2020 | 18 June 2021 | 13 June 2022 | 18 June 2023 |
Bozeman, MT | 12TVR | 3 September 2019 | 7 October 2020 | 2 October 2021 | 17 October 2022 | 17 September 2023 |
Denver, CO | 13SED | 10 November 2019 | 30 October 2020 | 4 November 2021 | 20 October 2022 | 4 November 2023 |
Austin, TX | 14RPU | 13 August 2019 | 29 August 2020 | 25 July 2021 | 4 August 2022 | 19 August 2023 |
New Orleans, LA | 15RXP | 21 January 2019 | 15 April 2020 | 6 March 2021 | 31 March 2022 | 30 April 2023 |
Chicago, IL | 16TDL | 8 October 2019 | 7 October 2020 | 17 October 2021 | 1 November 2022 | 2 October 2023 |
Orlando, FL | 17RMM | 29 May 2019 | 8 May 2020 | 8 May 2021 | 8 April 2022 | 8 May 2023 |
New York, NY | 18TWL | 2 November 2019 | 6 November 2020 | 6 November 2021 | 26 November 2022 | 21 December 2023 |
Washington, DC | 18SUJ | 28 October 2019 | 11 December 2020 | 26 December 2021 | 1 December 2022 | 16 November 2023 |
Tile ID | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|
10SEG | 2.2 | 2.9 | 3.5 | 2.5 | 2.7 |
12TVR | 3.2 | 1.1 | 6.5 | 1.2 | 1.3 |
13SED | 3.3 | 2.9 | 3.0 | 3.0 | 2.7 |
14RPU | 4.5 | 5.5 | 4.7 | 7.6 | 7.6 |
15RXP | 27.7 | 1.6 | 1.7 | 1.4 | 1.4 |
16TDL | 1.2 | 1.6 | 1.4 | 3.3 | 1.4 |
17RMM | 2.7 | 2.4 | 2.6 | 3.3 | 2.8 |
18TWL | 2.2 | 1.9 | 1.9 | 1.9 | 2.2 |
18SUJ | 4.4 | 2.1 | 4.4 | 3.3 | 5.5 |
Hyperparameter | Value |
---|---|
Neighborhood | 1 pixel |
Learning rate | 0.155 |
Maximum iterations | 100 |
Hidden layers | 10 |
Momentum | 0.05 |
Variable |
---|
Lag 1 Year |
Lag 2 Years |
Lag 3 Years |
Lag 4 Years |
Moore’s 3 × 3 Neighborhood, Year 1 |
Moore’s 3 × 3 Neighborhood, Year 2 |
Moore’s 3 × 3 Neighborhood, Year 3 |
Moore’s 3 × 3 Neighborhood, Year 4 |
10-Pixel Spatial Neighborhood, Year 1 |
10-Pixel Spatial Neighborhood, Year 2 |
10-Pixel Spatial Neighborhood, Year 3 |
10-Pixel Spatial Neighborhood, Year 4 |
Spatial Temporal Weight, Lag 1 Year |
Spatial Temporal Weight, Lag 2 Years |
Spatial Temporal Weight, Lag 3 Years |
Spatial Temporal Weight, Lag 4 Years |
Tile ID | SVM | RF | CNN | ConvLSTM | LKLR | CAMC (DEM) | CAMC (no DEM) |
---|---|---|---|---|---|---|---|
(a) | |||||||
10SEG | 0.96 | 0.90 | 0.93 | 0.82 | 0.90 | 0.85 | 0.85 |
12TVR | 0.88 | 0.75 | 0.82 | 0.68 | 0.83 | 0.70 | 0.71 |
13SED | 0.94 | 0.87 | 0.912 | 0.81 | 0.88 | 0.69 | 0.68 |
14RPU | 0.86 | 0.68 | 0.81 | 0.62 | 0.56 | 0.70 | 0.69 |
15RXP | 0.73 | 0.62 | 0.86 | 0.50 | 0.76 | 0.78 | 0.78 |
16TDL | 0.94 | 0.86 | 0.89 | 0.74 | 0.84 | 0.74 | 0.71 |
17RMM | 0.96 | 0.89 | 0.87 | 0.79 | 0.82 | 0.81 | 0.80 |
18SUJ | 0.97 | 0.93 | 0.90 | 0.77 | 0.87 | 0.79 | 0.79 |
18TWL | 0.94 | 0.90 | 0.82 | 0.62 | 0.81 | 0.83 | 0.84 |
Scene Bests | 8 | 0 | 1 | 0 | 0 | 0 | 0 |
STDEV | 0.08 | 0.11 | 0.04 | 0.11 | 0.1 | 0.06 | 0.06 |
(b) | |||||||
10SEG | 0.50 | 0.30 | 0.85 | 0.63 | 0.79 | 0.69 | 0.69 |
12TVR | 0.45 | 0.30 | 0.64 | 0.36 | 0.65 | 0.43 | 0.45 |
13SED | 0.36 | 0.25 | 0.82 | 0.61 | 0.76 | 0.34 | 0.36 |
14RPU | 0.35 | 0.19 | 0.62 | 0.23 | 0.11 | 0.44 | 0.43 |
15RXP | 0.71 | 0.04 | 0.72 | 0.00 | 0.51 | 0.49 | 0.51 |
16TDL | 0.28 | 0.13 | 0.77 | 0.47 | 0.69 | 0.44 | 0.42 |
17RMM | 0.4 | 0.28 | 0.74 | 0.57 | 0.64 | 0.64 | 0.62 |
18SUJ | 0.5 | 0.33 | 0.8 | 0.55 | 0.73 | 0.59 | 0.61 |
18TWL | 0.49 | 0.37 | 0.63 | 0.24 | 0.62 | 0.6 | 0.63 |
Scene Bests | 0 | 0 | 8 | 0 | 1 | 0 | 0 |
STDEV | 0.12 | 0.1 | 0.09 | 0.22 | 0.21 | 0.12 | 0.11 |
(c) | |||||||
10SEG | 0.34 | 0.29 | 0.21 | 0.57 | 0.31 | N/A | N/A |
12TVR | 0.38 | 0.29 | 0.41 | 0.87 | 0.4 | N/A | N/A |
13SED | 0.4 | 0.33 | 0.24 | 0.61 | 0.34 | N/A | N/A |
14RPU | 0.58 | 0.57 | 0.47 | 1.18 | 1.16 | N/A | N/A |
15RXP | 0.79 | 0.74 | 0.37 | 1.73 | 0.45 | N/A | N/A |
16TDL | 0.39 | 0.33 | 0.3 | 0.72 | 0.38 | N/A | N/A |
17RMM | 0.4 | 0.32 | 0.32 | 0.64 | 0.4 | N/A | N/A |
18SUJ | 0.34 | 0.26 | 0.26 | 0.75 | 0.35 | N/A | N/A |
18TWL | 0.46 | 0.31 | 0.48 | 1.62 | 0.43 | N/A | N/A |
Scene Bests | 0 | 2 | 7 | 0 | 0 | N/A | N/A |
STDEV | 0.14 | 0.16 | 0.1 | 0.44 | 0.26 | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Neill, F.D.; Wayant, N.M.; Becker, S.J. Predicting Future Built-Up Land Cover from a Yearly Time Series of Satellite-Derived Binary Urban Maps. Land 2025, 14, 1630. https://doi.org/10.3390/land14081630
O’Neill FD, Wayant NM, Becker SJ. Predicting Future Built-Up Land Cover from a Yearly Time Series of Satellite-Derived Binary Urban Maps. Land. 2025; 14(8):1630. https://doi.org/10.3390/land14081630
Chicago/Turabian StyleO’Neill, Francis D., Nicole M. Wayant, and Sarah J. Becker. 2025. "Predicting Future Built-Up Land Cover from a Yearly Time Series of Satellite-Derived Binary Urban Maps" Land 14, no. 8: 1630. https://doi.org/10.3390/land14081630
APA StyleO’Neill, F. D., Wayant, N. M., & Becker, S. J. (2025). Predicting Future Built-Up Land Cover from a Yearly Time Series of Satellite-Derived Binary Urban Maps. Land, 14(8), 1630. https://doi.org/10.3390/land14081630