Differentiated Microbial Strategies in Carbon Metabolic Processes Responding to Salt Stress in Cold–Arid Wetlands
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Analysis of the Physiochemical Characteristics of Soil
2.3. Metagenomic Sequencing and Processing of Raw Sequence Data
2.4. Statistical Analysis
3. Results
3.1. Soil Characteristics
3.2. Impact of Salinity Level on the Abundance of C-Cycling Genes
3.3. Correlations of Salinity on the Composition with C-Cycling Microbial Populations in Soil
3.4. Correlations of Carbon-Cycling Related Genes with Key Environmental Variables
4. Discussion
4.1. Changes in Soil Characteristics and Distribution of Microbes in Response to Increasing Salinity
4.2. Response of C-Cycling Genes to Increasing Soil Salinity
4.3. Correlations of Microbial Community and C-Cycling Genes with Soil Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Till. Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Cunha, J.; Cabecinha, E.; Villasante, S.; Gonçalves, J.A.; Balbi, S.; Elliott, M.; Ramos, S. Quantifying the role of saltmarsh as a vulnerable carbon sink: A case study from Northern Portugal. Sci. Total Environ. 2024, 923, 171443. [Google Scholar] [CrossRef]
- Filbee-Dexter, K.; Pessarrodona, A.; Pedersen, M.F.; Wernberg, T.; Duarte, C.M.; Assis, J.; Bekkby, T.; Burrows, M.T.; Carlson, D.F.; Gattuso, J.P.; et al. Carbon export from seaweed forests to deep ocean sinks. Nat. Geosci. 2024, 17, 552–559. [Google Scholar] [CrossRef]
- Martínez-García, E.; Nilsson, M.B.; Laudon, H.; Lundmark, T.; Fransson, J.E.S.; Wallerman, J.; Peichl, M. Drought response of the boreal forest carbon sink is driven by understorey–tree composition. Nat. Geosci. 2024, 17, 197–204. [Google Scholar] [CrossRef]
- Schlesinger, W.H. An evaluation of abiotic carbon sinks in deserts. Glob. Change Biol. 2017, 23, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.L.; Arndt, J.L.; Montgomery, J.A. Hydrology of wetland and related soils. In Wetland Soils: Genesis, Hydrology, Landscapes, and Classification; Vepraskas, M.J., Richardson, J.L., Vepraskas, M.J., Craft, C.B., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 35–84. [Google Scholar] [CrossRef]
- Nahlik, A.M.; Fennessy, M.S. Carbon storage in US wetlands. Nat. Commun. 2016, 7, 13835. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Freeman, C.; Ostle, N.J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2008, 2, 805–814. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Mu, M.Q.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef]
- Sokol, N.W.; Slessarev, E.; Marschmann, G.L.; Nicolas, A.; Blazewicz, S.J.; Brodie, E.L.; Firestone, M.K.; Foley, M.M.; Hestrin, R.; Hungate, B.A.; et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 2022, 20, 415–430. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Frey, S.D.; Grandy, A.S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016, 7, 13630. [Google Scholar] [CrossRef]
- Wang, C.; Qu, L.R.; Yang, L.M.; Liu, D.W.; Morrissey, E.; Miao, R.H.; Liu, Z.P.; Wang, Q.K.; Fang, Y.T.; Bai, E. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Glob. Change Biol. 2021, 27, 2039–2048. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.Y.; Han, Y.C.; Zhang, D.L.; Zhang, C.C.; Hu, C.X. Carbon cycle in the microbial ecosystems of biological soil crusts. Soil Biol. Biochem. 2022, 171, 108729. [Google Scholar] [CrossRef]
- Woolf, D.; Lehmann, J. Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence. Sci. Rep. 2019, 9, 6522. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.D.; Lu, Y.; Weihe, C.; Goulden, M.L.; Martiny, A.C.; Treseder, K.K.; Martiny, J.B. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 2013, 94, 714–725. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, J.W.; Chen, R.R.; Zhong, L.H.; Lin, X.R.; Feng, Y.Z. Microbial community composition and activity in saline soils of coastal agro-ecosystems. Microorganisms 2022, 10, 835. [Google Scholar] [CrossRef]
- López-Mondéjar, R.; Tláskal, V.; Větrovský, T.; Štursová, M.; Toscan, R.; da Rocha, U.N.; Baldrian, P. Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biol. Biochem. 2020, 148, 107875. [Google Scholar] [CrossRef]
- Ren, C.J.; Zhang, X.Y.; Zhang, S.H.; Wang, J.Y.; Xu, M.P.; Guo, Y.X.; Wang, J.; Han, X.H.; Zhao, F.Z.; Yang, G.H.; et al. Altered microbial CAZyme families indicated dead biomass decomposition following afforestation. Soil Biol. Biochem. 2021, 160, 108362. [Google Scholar] [CrossRef]
- Li, A.Y.; Li, G.H.; Yang, J.J.; Yang, Y.F.; Liang, Y.T.; Zhang, D.Y. Geo-distribution pattern of microbial carbon cycling genes responsive to petroleum contamination in continental horizontal oilfields. Sci. Total Environ. 2020, 731, 139188. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, W.J.; Chen, W.L.; Zeng, H.; Fang, J.Y. Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate china. PLoS ONE 2013, 8, e71986. [Google Scholar] [CrossRef]
- Dai, Z.M.; Guo, X.; Lin, J.H.; Wang, X.; He, D.; Zeng, R.J.; Meng, J.; Luo, J.P.; Delgado-Baquerizo, M.; Moreno-Jiménez, E.; et al. Metallic micronutrients are associated with the structure and function of the soil microbiome. Nat. Commun. 2023, 14, 8456. [Google Scholar] [CrossRef]
- Li, Y.T.; Gao, Y.; Chen, W.; Zhang, W.G.; Lu, X. Shifts in bacterial diversity, interactions and microbial elemental cycling genes under cadmium contamination in paddy soil: Implications for altered ecological function. J. Hazard. Mater. 2024, 461, 132544. [Google Scholar] [CrossRef]
- Wang, G.S.; Gao, Q.; Yang, Y.F.; Hobbie, S.E.; Reich, P.B.; Zhou, J.Z. Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling. Glob. Change. Biol. 2022, 28, 1935–1950. [Google Scholar] [CrossRef]
- Du, X.J.; Ge, Y.N.; Zhang, Y.; Hu, H.; Zhang, Y.Y.; Yang, Z.Y.; Ren, X.Q.; Hu, S.W.; Feng, H.J.; Song, Y.L. Responses of soil carbon cycling microbial functional genes to nitrogen and phosphorus addition in saline-sodic soils. Plant Soil 2023, 490, 261–277. [Google Scholar] [CrossRef]
- Hassani, A.; Smith, P.; Shokri, N. Negative correlation between soil salinity and soil organic carbon variability. Proc. Natl. Acad. Sci. USA 2024, 121, e2317332121. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, X.Z.; Miao, F.H.; Li, Z.Y.; Tang, W.; Sun, J. Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Appl. Soil Ecol. 2020, 155, 103671. [Google Scholar] [CrossRef]
- Lu, H.; Yan, M.X.; Wong, M.H.; Mo, W.Y.; Wang, Y.H.; Chen, X.W.; Wang, J.J. Effects of biochar on soil microbial community and functional genes of a landfill cover three years after ecological restoration. Sci. Total Environ. 2020, 717, 137133. [Google Scholar] [CrossRef]
- Thomas, T.; Gilbert, J.; Meyer, F. Metagenomics—A guide from sampling to data analysis. Microb. Inform. Exp. 2012, 2, 3. [Google Scholar] [CrossRef]
- Li, D.H.; Liu, C.M.; Luo, R.B.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Noguchi, H.; Park, J.; Takagi, T. MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006, 34, 5623–5630. [Google Scholar] [CrossRef]
- Fu, L.M.; Niu, B.F.; Zhu, Z.W.; Wu, S.T.; Li, W.Z. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Li, R.Q.; Li, Y.R.; Kristiansen, K.; Wang, J. SOAP: Short oligonucleotide alignment program. Bioinformatics 2008, 24, 713–714. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Abrol, I.P.; Yadav, J.S.P.; Massoud, F.I. Salt-Affected Soils and Their Management; Food & Agriculture Organization of the United Nations: Rome, Italy, 1988; Volume 39.
- Volik, O.; Petrone, R.M.; Price, J.S. Soil respiration and litter decomposition along a salinity gradient in a saline boreal fen in the Athabasca Oil Sands Region. Geoderma 2021, 395, 115070. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.H.; Li, F.D. Spatial distribution characteristics of soil water-salt gradients in the ecological buffer zone of arid zone lakes and their influencing factors. J. Clean. Prod. 2024, 444, 141299. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Dalal, R.C.; Greene, R.S.B. Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. Appl. Soil Ecol. 2009, 41, 29–40. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Bai, J.H.; Lu, Q.Q.; Zhang, G.L. Effects of salinity on dynamics of soil carbon in degraded coastal wetlands: Implications on wetland restoration. Phys. Chem. Earth Parts A/B/C 2017, 97, 12–18. [Google Scholar] [CrossRef]
- Morrissey, E.M.; Gillespie, J.L.; Morina, J.C.; Franklin, R.B. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob. Change Biol. 2014, 20, 1351–1362. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Greene, R.S.B.; Dalal, R.C.; Murphy, B.W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manag. 2010, 26, 2–11. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, J.J.; Banerjee, S.; Zhou, N.; Zhao, Z.Y.; Zhang, K.; Tian, C.Y. Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Sci. Rep. 2018, 8, 4550. [Google Scholar] [CrossRef]
- Li, Z.R.; Zhang, X.N.; Wang, H.C.; Cheng, H.Y.; Wang, A.J.; Zhang, Y.Q.; Cui, C.W.; Sun, Y.L. Effects of salinity on sulfur-dominated autotrophic denitrification microorganisms: Microbial community succession, key microorganisms and response mechanisms. Chem. Eng. J. 2023, 478, 147308. [Google Scholar] [CrossRef]
- Rath, K.M.; Rousk, J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biol. Biochem. 2015, 81, 108–123. [Google Scholar] [CrossRef]
- Macêdo, W.V.; Sakamoto, I.K.; Azevedo, E.B.; Damianovic, M. The effect of cations (Na+, Mg2+, and Ca2+) on the activity and structure of nitrifying and denitrifying bacterial communities. Sci. Total Environ. 2019, 679, 279–287. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Bai, J.H.; Gao, Y.C.; Zhao, H.X.; Zhang, G.L.; Cui, B.S. Shifts in the soil bacterial community along a salinity gradient in the Yellow River Delta. Land Degrad. Dev. 2020, 31, 2255–2267. [Google Scholar] [CrossRef]
- Qadir, M.; Schubert, S. Degradation processes and nutrient constraints in sodic soils. Land Degrad. Dev. 2002, 13, 275–294. [Google Scholar] [CrossRef]
- Zhang, L.H.; Zhang, M.S.; Guo, J.B.; Zheng, J.; Chen, Z.C.; Zhang, H.F. Effects of K+ salinity on the sludge activity and the microbial community structure of an A2O process. Chemosphere 2019, 235, 805–813. [Google Scholar] [CrossRef]
- Han, M.; Zhu, X.Y.; Ruan, C.J.; Wu, H.Q.; Chen, G.W.; Zhu, K.; Liu, Y.; Wang, G. Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution. Environ. Technol. Innov. 2024, 33, 103524. [Google Scholar] [CrossRef]
- Singh, R.; Lemire, J.; Mailloux, R.J.; Chénier, D.; Hamel, R.; Appanna, V.D. An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens. PLoS ONE 2009, 4, e7344. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, S.; Sánchez-Osuna, M.; Collado-Padilla, A.; Barbé, J.; Erill, I. Flexible comparative genomics of prokaryotic transcriptional regulatory networks. BMC Genom. 2020, 21 (Suppl. S5), 466. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Sun, J. Soil salinity drives the distribution patterns and ecological functions of fungi in Saline-Alkali Land in the Yellow River Delta, China. Front. Microbiol. 2020, 11, 594284. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.J.; Li, C.S.; Feng, Q.; Wei, Y.P.; Zheng, H.; Zhao, Y.; Feng, Y.J.; Li, H.Y. Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China. Sci. Total Environ. 2017, 598, 64–70. [Google Scholar] [CrossRef]
- Yang, C.; Lv, D.T.; Jiang, S.Y.; Lin, H.; Sun, J.Q.; Li, K.J.; Sun, J. Soil salinity regulation of soil microbial carbon metabolic function in the Yellow River Delta, China. Sci. Total Environ. 2021, 790, 148258. [Google Scholar] [CrossRef]
- Chen, Q.L.; Ding, J.; Li, C.Y.; Yan, Z.Z.; He, J.Z.; Hu, H.W. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci. Total Environ. 2020, 734, 139479. [Google Scholar] [CrossRef]
- Shao, P.S.; Lynch, L.; Xie, H.T.; Bao, X.L.; Liang, C. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biol. Biochem. 2021, 153, 108112. [Google Scholar] [CrossRef]
- Thomson, B.C.; Tisserant, E.; Plassart, P.; Uroz, S.; Griffiths, R.I.; Hannula, S.E.; Buée, M.; Mougel, C.; Ranjard, L.; Van Veen, J.A.; et al. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol. Biochem. 2015, 88, 403–413. [Google Scholar] [CrossRef]
- Setia, R.; Gottschalk, P.; Smith, P.; Marschner, P.; Baldock, J.; Setia, D.; Smith, J. Soil salinity decreases global soil organic carbon stocks. Sci. Total Environ. 2013, 465, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Moorhead, D.L.; Craig, H.; Luo, M.; Chen, X.; Huang, J.F.; Olesen, J.E.; Chen, J. Differential responses of soil extracellular enzyme activities to salinization: Implications for soil carbon cycling in tidal wetlands. Glob. Biogeochem. Cycl. 2022, 36, e2021GB007285. [Google Scholar] [CrossRef]
- Qu, W.D.; Li, J.Y.; Han, G.X.; Wu, H.T.; Song, W.M.; Zhang, X.S. Effect of salinity on the decomposition of soil organic carbon in a tidal wetland. J. Soils Sediments 2019, 19, 609–617. [Google Scholar] [CrossRef]
- Kida, M.; Tomotsune, M.; Iimura, Y.; Kinjo, K.; Ohtsuka, T.; Fujitake, N. High salinity leads to accumulation of soil organic carbon in mangrove soil. Chemosphere 2017, 177, 51–55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, M.; Wu, T.; Zhao, J.; Li, J.; Xie, H.; Wang, L.; Wu, L. Differentiated Microbial Strategies in Carbon Metabolic Processes Responding to Salt Stress in Cold–Arid Wetlands. Land 2025, 14, 1607. https://doi.org/10.3390/land14081607
Wang Y, Wang M, Wu T, Zhao J, Li J, Xie H, Wang L, Wu L. Differentiated Microbial Strategies in Carbon Metabolic Processes Responding to Salt Stress in Cold–Arid Wetlands. Land. 2025; 14(8):1607. https://doi.org/10.3390/land14081607
Chicago/Turabian StyleWang, Yongman, Mingqi Wang, Tiezheng Wu, Jialin Zhao, Junyi Li, Hongliang Xie, Lixin Wang, and Linhui Wu. 2025. "Differentiated Microbial Strategies in Carbon Metabolic Processes Responding to Salt Stress in Cold–Arid Wetlands" Land 14, no. 8: 1607. https://doi.org/10.3390/land14081607
APA StyleWang, Y., Wang, M., Wu, T., Zhao, J., Li, J., Xie, H., Wang, L., & Wu, L. (2025). Differentiated Microbial Strategies in Carbon Metabolic Processes Responding to Salt Stress in Cold–Arid Wetlands. Land, 14(8), 1607. https://doi.org/10.3390/land14081607