Seed Mixes in Landscape Design and Management: An Untapped Conservation Tool for Pollinators in Cities
Abstract
1. Introduction
1.1. Pollination: From an Ecosystem Service Toward a Wider Public Understanding of Human Welfare
1.2. Urban Green Spaces to Support Pollinator Conservation
1.3. Commercially Available Wildflower Seed Mixes
2. Materials and Methods
2.1. Seed Mixes Selection
2.2. Data Variables and Analysis
3. Results and Discussion
3.1. What Is in the Mix?
3.2. Seed Mixes’ Intended Use and Cost–Value
3.3. Seed Mixes’ Taxa Composition, Native Status, and Life Cycle
3.4. Seed Mixes’ Flowering Period and Color Diversity
4. Conclusions
4.1. Regulatory Frameworks
4.2. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SMs | Seed Mixes |
WSMs | Wildflower Seed Mixes |
PWSMs | Pollinator-Friendly Wildflower Seed Mixes |
References
- Hipólito, J.; Coutinho, J.; Mahlmann, T.; Santana, T.B.R.; Magnusson, W.E. Legislation and pollination: Recommendations for policymakers and scientists. Perspect. Ecol. Conserv. 2021, 19, 1–9. [Google Scholar] [CrossRef]
- Senapathi, D.; Biesmeijer, J.C.; Breeze, T.D.; Kleijn, D.; Potts, S.G.; Carvalheiro, L.G. Pollinator conservation—The difference between managing for pollination services and preserving pollinator diversity. Curr. Opin. Insect Sci. 2015, 12, 93–101. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef] [PubMed]
- Havens, K.; Vitt, P. The Importance of Phenological Diversity in Seed Mixes for Pollinator Restoration. Nat. Areas J. 2016, 36, 531–537. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Veldtman, R.; Shenkute, A.G.; Tesfay, G.B.; Pirk, C.W.W.; Donaldson, J.S.; Nicolson, S.W. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 2011, 14, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.M.; Veddeler, D.; Bogdanski, A.K.; Klein, A.M.; Tscharntke, T.; Steffan-Dewenter, I.; Tylianakis, J.M. Caveats to quantifying ecosystem services: Fruit abortion blurs benefits from crop pollination. Ecol. Appl. 2007, 17, 1841–1849. [Google Scholar] [CrossRef] [PubMed]
- Winfree, R.; Bartomeus, I.; Cariveau, D.P. Native Pollinators in Anthropogenic Habitats. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 1–22. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed]
- IPBES. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016; 552p. [Google Scholar]
- Kevan, P.G.; Viana, B.F. The global decline of pollination services. Biodiversity 2003, 4, 3–8. [Google Scholar] [CrossRef]
- Ollerton, J. Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 353–376. [Google Scholar] [CrossRef]
- Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on Nature Restoration. Off. J. Eur. Union. 2024, OJ L, 1–93. Available online: https://eur-lex.europa.eu/eli/reg/2024/1991/oj/eng (accessed on 3 July 2025).
- Tonietto, R.K.; Larkin, D.J. Habitat restoration benefits wild bees: A meta-analysis. J. Appl. Ecol. 2018, 55, 582–590. [Google Scholar] [CrossRef]
- Barry, C.; Hodge, S. You Reap What You Sow: A Botanical and Economic Assessment of Wildflower Seed Mixes Available in Ireland. Conservation 2023, 3, 73–86. [Google Scholar] [CrossRef]
- Schueller, S.K.; Li, Z.; Bliss, Z.; Roake, R.; Weiler, B. How Informed Design Can Make a Difference: Supporting Insect Pollinators in Cities. Land 2023, 12, 1289. [Google Scholar] [CrossRef]
- Griffiths-Lee, J.; Nicholls, E.; Goulson, D. Sown mini-meadows increase pollinator diversity in gardens. J. Insect Conserv. 2022, 26, 299–314. [Google Scholar] [CrossRef]
- Langellotto, G.A.; Melathopoulos, A.; Messer, I.; Anderson, A.; McClintock, N.; Costner, L. Garden Pollinators and the Potential for Ecosystem Service Flow to Urban and Peri-Urban Agriculture. Sustainability 2018, 10, 2047. [Google Scholar] [CrossRef]
- Wenzel, A.; Grass, I.; Belavadi, V.V.; Tscharntke, T. How urbanization is driving pollinator diversity and pollination—A systematic review. Biol. Conserv. 2020, 241, 108321. [Google Scholar] [CrossRef]
- Llodrà-Llabrés, J.; Cariñanos, P. Enhancing pollination ecosystem service in urban green areas: An opportunity for the conservation of pollinators. Urban For. Urban Green. 2022, 74, 127621. [Google Scholar] [CrossRef]
- Donkersley, P.; Witchalls, S.; Bloom, E.H.; Crowder, D.W. A little does a lot: Can small-scale planting for pollinators make a difference? Agric. Ecosyst. Environ. 2023, 343, 108254. [Google Scholar] [CrossRef]
- Płaskonka, B.; Zych, M.; Mazurkiewicz, M.; Skłodowski, M.; Roguz, K. Pollinator-mediated connectivity in fragmented urban green spaces—Tracking pollen grain movements in the city center. Acta Oecol. 2024, 123, 103985. [Google Scholar] [CrossRef]
- Banaszak-Cibicka, W.; Żmihorski, M. Wild bees along an urban gradient: Winners and losers. J. Insect Conserv. 2012, 16, 331–343. [Google Scholar] [CrossRef]
- Herrmann, J.; Buchholz, S.; Theodorou, P. The degree of urbanisation reduces wild bee and butterfly diversity and alters the patterns of flower-visitation in urban dry grasslands. Sci. Rep. 2023, 13, 2702. [Google Scholar] [CrossRef] [PubMed]
- Uroy, L.; Ernoult, A.; Mony, C. Effect of landscape connectivity on plant communities: A review of response patterns. Landsc. Ecol. 2019, 34, 203–225. [Google Scholar] [CrossRef]
- Turo, K.J.; Gardiner, M.M. From potential to practical: Conserving bees in urban public green spaces. Front. Ecol. Environ. 2019, 17, 167–175. [Google Scholar] [CrossRef]
- Graffigna, S.; González-Vaquero, R.A.; Torretta, J.P.; Marrero, H.J. Importance of urban green areas’ connectivity for the conservation of pollinators. Urban Ecosyst. 2024, 27, 417–426. [Google Scholar] [CrossRef]
- Hall, D.M.; Camilo, G.R.; Tonietto, R.K.; Ollerton, J.; Ahrné, K.; Arduser, M.; Ascher, J.S.; Baldock, K.C.R.; Fowler, R.; Frankie, G.; et al. The city as a refuge for insect pollinators. Conserv. Biol. 2017, 31, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Daniels, B.; Jedamski, J.; Ottermanns, R.; Ross-Nickoll, M. A “plan bee” for cities: Pollinator diversity and plant-pollinator interactions in urban green spaces. PLoS ONE 2020, 15, e0235492. [Google Scholar] [CrossRef] [PubMed]
- Baldock, K.C.R.; Goddard, M.A.; Hicks, D.M.; Kunin, W.E.; Mitschunas, N.; Morse, H.; Osgathorpe, L.M.; Potts, S.G.; Robertson, K.M.; Scott, A.V.; et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 2019, 3, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Fischer, L.K.; Neuenkamp, L.; Lampinen, J.; Tuomi, M.; Alday, J.G.; Bucharova, A.; Cancellieri, L.; Casado-Arzuaga, I.; Čeplová, N.; Cerveró, L.; et al. Public attitudes toward biodiversity-friendly greenspace management in Europe. Conserv. Lett. 2020, 13, e12718. [Google Scholar] [CrossRef]
- Ignatieva, M.; Hedblom, M. An alternative urban green carpet. Science 2018, 362, 148–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xu, P.-Y. Urban green infrastructure: Bridging biodiversity conservation and sustainable urban development through adaptive management approach. Front. Ecol. Evol. 2024, 12, 1440477. [Google Scholar] [CrossRef]
- Haaland, C.; Naisbit, R.E.; Bersier, L.-F. Sown wildflower strips for insect conservation: A review. Insect Conserv. Divers. 2011, 4, 60–80. [Google Scholar] [CrossRef]
- Hardman, C.J.; Norris, K.; Nevard, T.D.; Hughes, B.; Potts, S.G. Delivery of floral resources and pollination services on farmland under three different wildlife-friendly schemes. Agric. Ecosyst. Environ. 2016, 220, 142–151. [Google Scholar] [CrossRef]
- Nichols, R.N.; Goulson, D.; Holland, J.M. The best wildflowers for wild bees. J. Insect Conserv. 2019, 23, 819–830. [Google Scholar] [CrossRef]
- Łąki, K. Flower Meadows are a Colorful and Useful Alternative to a Lawn. Available online: https://lakikwietne.pl/home/ (accessed on 3 July 2025).
- Program “Flowering Meadows”—Contracts for Protection of Biodiversity and Water Resources by Regular Mowing of Meadows. CONSOLE Project 2019. 2021. Available online: https://console-project.eu/blog/2021/09/21/program-flowering-meadows/ (accessed on 3 July 2025).
- Ribbons, R.; Toro, I.D. No Mow May: Generating buzz and community science action to manage yards for bees and other pollinators. Urban Ecosyst. 2024, 27, 2213–2221. [Google Scholar] [CrossRef]
- Gardiner, M.M.; Roy, H.E. The Role of Community Science in Entomology. Annu. Rev. Entomol. 2022, 67, 437–456. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Teixeira, C.; Martins, M.; Ferreira, S. Pollinators of the Oriental Park of the city of Porto: Designing ecological maintenance toward biodiversity. In Proceedings of the IALE 2022 European Landscape Ecology Congress: Making the Future, Learning from the Past, Warsaw, Poland, 11–15 July 2022; Wolski, J., Regulska, E., Affek, A., Eds.; p. 360. [Google Scholar]
- Fernandes, C.; Patoilo Teixeira, C.; Veludo, M.; Ferreira, S. Blooming Biodiversity: Exploring the interplay between pollinator communities’ diversity and differentiated lawn maintenance practices. In Proceedings of the 6th Euro-Mediterranean Conference for Environmental Integration (EMCEI), Marrakech, Morocco, 15–18 May 2024. [Google Scholar]
- Hoyle, H.; Hitchmough, J.; Jorgensen, A. All about the ‘wow factor’? The relationships between aesthetics, restorative effect and perceived biodiversity in designed urban planting. Landsc. Urban Plan. 2017, 164, 109–123. [Google Scholar] [CrossRef]
- Castañeda, N.R.; Pineda-Pinto, M.; Gulsrud, N.M.; Cooper, C.; O’Donnell, M.; Collier, M. Exploring the restorative capacity of urban green spaces and their biodiversity through an adapted One Health approach: A scoping review. Urban For. Urban Green. 2024, 100, 128489. [Google Scholar] [CrossRef]
- Graves, R.A.; Pearson, S.M.; Turner, M.G. Landscape dynamics of floral resources affect the supply of a biodiversity-dependent cultural ecosystem service. Landsc. Ecol. 2017, 32, 415–428. [Google Scholar] [CrossRef]
- Hoyle, H.; Norton, B.; Dunnett, N.; Richards, J.P.; Russell, J.M.; Warren, P. Plant species or flower colour diversity? Identifying the drivers of public and invertebrate response to designed annual meadows. Landsc. Urban Plan. 2018, 180, 103–113. [Google Scholar] [CrossRef]
- Campbell, D.R.; Bischoff, M.; Lord, J.M.; Robertson, A.W. Where have all the blue flowers gone: Pollinator responses and selection on flower colour in New Zealand Wahlenbergia albomarginata. J. Evol. Biol. 2012, 25, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Reverté, S.; Retana, J.; Gómez, J.M.; Bosch, J. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Ann. Bot. 2016, 118, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Nota, G.; Falla, N.M.; Scariot, V.; Lonati, M. An evaluation of ‘pollinator-friendly’ wildflower seed mixes in Italy: Are they potential vectors of alien plant species? NeoBiota 2024, 94, 205–224. [Google Scholar] [CrossRef]
- Aavik, T.; Edwards, P.J.; Holderegger, R.; Graf, R.; Billeter, R. Genetic consequences of using seed mixtures in restoration: A case study of a wetland plant Lychnis flos-cuculi. Biol. Conserv. 2012, 145, 195–204. [Google Scholar] [CrossRef]
- Nowakowski, M.; Pywell, R.F. Habitat Creation and Management for Pollinators; Centre for Ecology & Hydrology: Wallingford, UK, 2016. [Google Scholar]
- Flora-On: Flora de Portugal Interactiva. Available online: http://www.flora-on.pt (accessed on 13 March 2025).
- World Flora Online. Available online: http://www.worldfloraonline.org/ (accessed on 13 March 2025).
- SankeyMATIC. Build a Sankey Diagram. Available online: https://sankeymatic.com/ (accessed on 10 March 2025).
- Gratzl, S. Upsetjs: ‘HTMLWidget’ Wrapper of ‘UpSet.js’ for Exploring Large Set Intersections, R package version 1.11.1; 2022. Available online: https://upset.js.org/integrations/r/ (accessed on 24 April 2025).
- Kuhn, M.; Jackson, S.; Cimentada, J. Corrr: Correlations in R., R package version 0.4.4; 2022. Available online: https://cran.r-project.org/package=corrr (accessed on 17 April 2025).
- Le, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Tang, Y.; Horikoshi, M.; Li, W. ggfortify: Unified Interface to Visualize Statistical Result of Popular R Packages. R J. 2016, 8, 478–489. [Google Scholar] [CrossRef]
- Auguie, B. GridExtra: Miscellaneous Functions for “Grid” Graphics, R package version 2.3; 2017. Available online: https://CRAN.R-project.org/package=gridExtra (accessed on 17 April 2025).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses, R package version 1.0.7; 2020. Available online: https://cran.r-project.org/package=factoextra (accessed on 17 April 2025).
- Pywell, R.F.; Warman, E.A.; Hulmes, L.; Hulmes, S.; Nuttall, P.; Sparks, T.H.; Critchley, C.N.R.; Sherwood, A. Effectiveness of new agri-environment schemes in providing foraging resources for bumblebees in intensively farmed landscapes. Biol. Conserv. 2006, 129, 192–206. [Google Scholar] [CrossRef]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.-M.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef] [PubMed]
- Pound, M.J.; Vinkenoog, R.; Hornby, S.; Benn, J.; Goldberg, S.; Keating, B.; Woollard, F. Determining if honey bees (Apis mellifera) collect pollen from anemophilous plants in the UK. Palynology 2023, 47, 2154867. [Google Scholar] [CrossRef]
- Saunders, M.E. Insect pollinators collect pollen from wind-pollinated plants: Implications for pollination ecology and sustainable agriculture. Insect Conserv. Divers. 2018, 11, 13–31. [Google Scholar] [CrossRef]
- Nikolić, M.; Stevović, S. Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban For. Urban Green. 2015, 14, 782–789. [Google Scholar] [CrossRef]
- Kuppler, J.; Neumüller, U.; Mayr, A.V.; Hopfenmüller, S.; Weiss, K.; Prosi, R.; Schanowski, A.; Schwenninger, H.-R.; Ayasse, M.; Burger, H. Favourite plants of wild bees. Agric. Ecosyst. Environ. 2023, 342, 108266. [Google Scholar] [CrossRef]
- Basteri, G.; Benvenuti, S. Wildflowers pollinators-attractivity in the urban ecosystem. Acta Hortic. 2010, 881, 585–590. [Google Scholar] [CrossRef]
- Carvalho, C.; Oliveira, A.; Caeiro, E.; Miralto, O.; Parrinha, M.; Sampaio, A.; Silva, C.; Mira, A.; Salgueiro, P.A. Insect pollination services in actively and spontaneously restored quarries converge differently to natural reference ecosystem. J. Environ. Manag. 2022, 318, 115450. [Google Scholar] [CrossRef] [PubMed]
- Gurevitch, J.; Padilla, D.K. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 2004, 19, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Vanbergen, A.J.; Espíndola, A.; Aizen, M.A. Risks to pollinators and pollination from invasive alien species. Nat. Ecol. Evol. 2018, 2, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Valiente-Banuet, A.; Aizen, M.A.; Alcántara, J.M.; Arroyo, J.; Cocucci, A.; Galetti, M.; García, M.B.; García, D.; Gómez, J.M.; Jordano, P.; et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 2015, 29, 299–307. [Google Scholar] [CrossRef]
- Wastian, L.; Unterweger, P.A.; Betz, O. Influence of the reduction of urban lawn mowing on wild bee diversity (Hymenoptera, Apoidea). J. Hymenopt. Res. 2016, 49, 51–63. [Google Scholar] [CrossRef]
- Lerman, S.B.; Contosta, A.R.; Milam, J.; Bang, C. To mow or to mow less: Lawn mowing frequency affects bee abundance and diversity in suburban yards. Biol. Conserv. 2018, 221, 160–174. [Google Scholar] [CrossRef]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Garbuzov, M.; Fensome, K.A.; Ratnieks, F.L.W. Public approval plus more wildlife: Twin benefits of reduced mowing of amenity grass in a suburban public park in Saltdean, UK. Insect Conserv. Divers. 2015, 8, 107–119. [Google Scholar] [CrossRef]
- Mainz, A.K.; Wieden, M. Ten years of native seed certification in Germany—A summary. Plant Biol. 2019, 21, 383–388. [Google Scholar] [CrossRef] [PubMed]
Mix ID | Brand | Taxa Richness | Natives (%) | Lyfe Cycle (% of Perennials) | Forbs (%) | Flowering Period | Flowering Colors | Intended Use |
---|---|---|---|---|---|---|---|---|
1 | A | 30 | 87 | 43 | 80 | Excellent | 10 | Pollinators/UGS/Pastures |
2 | A | 27 | 100 | 67 | 85 | Excellent | 10 | UGS/Pastures |
3 | B | 26 | 54 | 69 | 85 | Excellent | 9 | UGS |
4 | A | 32 | 91 | 63 | 81 | Very Good | 8 | UGS/Pastures |
5 | A | 38 | 95 | 79 | 87 | Excellent | 8 | Pollinators/UGS |
6 | A | 35 | 91 | 71 | 80 | Very Good | 8 | UGS/Pastures |
7 | A | 27 | 85 | 30 | 100 | Excellent | 8 | Pollinators/UGS/Pastures |
8 | C | 16 | 75 | 100 | 44 | Excellent | 7 | Restoration |
9 | C | 18 | 56 | 56 | 89 | Very Good | 7 | UGS |
10 | C | 13 | 69 | 85 | 62 | Good | 6 | Restoration |
11 | D | 9 | 67 | 11 | 100 | Good | 5 | Pollinators/UGS/Pastures Agriculture/Forests |
12 | B | 8 | 63 | 63 | 100 | Very Good | 5 | UGS |
13 | A | 4 | 75 | 0 | 75 | Good | 4 | UGS/Pastures |
14 | C | 12 | 92 | 92 | 58 | Excellent | 4 | Restoration |
15 | D | 7 | 57 | 14 | 62 | Good | 4 | Pollinators/UGS/Pastures Agriculture/Forests |
16 | B | 13 | 92 | 77 | 100 | Very Good | 4 | UGS |
17 | C | 7 | 100 | 86 | 29 | Good | 3 | Restoration |
18 | B | 5 | 100 | 100 | 20 | Good | 3 | UGS |
19 | E | 6 | 83 | 67 | 33 | Good | 2 | UGS |
20 | C | 7 | 100 | 100 | 29 | Good | 2 | Restoration |
21 | B | 3 | 100 | 100 | 33 | Good | 1 | UGS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, C.; Medeiros, A.; Teixeira, C.; Porto, M.; Xavier, M.; Ferreira, S.; Afonso, A. Seed Mixes in Landscape Design and Management: An Untapped Conservation Tool for Pollinators in Cities. Land 2025, 14, 1477. https://doi.org/10.3390/land14071477
Fernandes C, Medeiros A, Teixeira C, Porto M, Xavier M, Ferreira S, Afonso A. Seed Mixes in Landscape Design and Management: An Untapped Conservation Tool for Pollinators in Cities. Land. 2025; 14(7):1477. https://doi.org/10.3390/land14071477
Chicago/Turabian StyleFernandes, Cláudia, Ana Medeiros, Catarina Teixeira, Miguel Porto, Mafalda Xavier, Sónia Ferreira, and Ana Afonso. 2025. "Seed Mixes in Landscape Design and Management: An Untapped Conservation Tool for Pollinators in Cities" Land 14, no. 7: 1477. https://doi.org/10.3390/land14071477
APA StyleFernandes, C., Medeiros, A., Teixeira, C., Porto, M., Xavier, M., Ferreira, S., & Afonso, A. (2025). Seed Mixes in Landscape Design and Management: An Untapped Conservation Tool for Pollinators in Cities. Land, 14(7), 1477. https://doi.org/10.3390/land14071477