Alterations in Soil Arthropod Communities During the Degradation of Bayinbuluk Alpine Grasslands in China Closely Related to Soil Carbon and Nitrogen
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Determination of Soil Chemical Properties
2.4. Soil Arthropod Sample Isolation and Characterization
3. Results
3.1. Soil Arthropod Community Composition in Degraded Alpine Grassland Areas
3.2. Effect of Biochar Addition on Soil Organic Carbon Fractions in Degraded Grasslands
3.3. Distribution Patterns of Soil Arthropod Functional Groups in the Degradation Zones of Alpine Grasslands
3.4. Distribution Patterns of Dominant Soil Arthropod Species in the Degradation Zones of Alpine Grasslands
3.5. Variation Characteristics of Soil Arthropod Diversity Indices During the Degradation Process of Bayinbuluk Alpine Grasslands
3.6. Correlation Between Soil Fauna and Soil Environmental Factors
3.7. Redundancy Analysis of Soil Fauna with Soil Environmental Factors
4. Discussion
4.1. The Relationship Between Soil Arthropods and Soil Physicochemical Properties During Grassland Degradation
4.2. The Impact of Alpine Grassland Degradation on Soil Arthropod Communities
4.3. Changes in Soil Arthropod Communities During the Degradation of Alpine Grasslands
4.4. Discovery of Pioneer Species and Their Implications in the Process of Alpine Grassland Degradation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, L.; Han, X.; Zhang, Z.; Sun, O.J. Grassland ecosystems in China: Review of current knowledge and research advancement. Philos. Trans. R. Soc. B 2007, 362, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Scurlock, J.; Hall, D. The global carbon sink: A grassland perspective. Glob. Change Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef]
- Fang, J.; Geng, X.; Zhang, X.; Shen, H.; Hu, H. How many areas of grasslands are there in China. Chin. Sci. Bull. 2018, 63, 1731–1739. [Google Scholar] [CrossRef]
- Shen, H.; Zhu, Y.; Zhao, X.; Di, X.; Gao, S.; Fang, J. Analysis of current grassland resources in China. Chin. Sci. Bull. 2016, 61, 139–154. [Google Scholar]
- Zhang, A. Study on the Determination of Degradation Gradients in the Bayinbuluk Alpine Grassland. Ph.D. Thesis, Xinjiang Agricultural University, Ürümqi, China, 2018. [Google Scholar] [CrossRef]
- Bardgett, R.; Bullock, J.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Ding, X.; Li, G.; Zhang, X.; Li, L.; Wang, X. Biochar application significantly increases soil organic carbon under conservation tillage: An 11-year field experiment. Biochar 2023, 5, 28. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Rong, X.; Zhou, X.; Fei, J.; Peng, J.; Luo, J. Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality. Biochar 2024, 6, 3. [Google Scholar] [CrossRef]
- Qambrani, N.; Rahman, M.; Won, S.; Shim, A.; Ra, C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2008, 41, 210–219. [Google Scholar] [CrossRef]
- Luo, Y.; Durenkamp, M.; Nobili, M.; Lin, Q.; Devonshire, B.; Brookes, P. Microbial biomass growth, following incorporation of biochars produced at 350 °C or 700 °C, in a silty-clay loam soil of high and low pH. Soil Biol. Biochem. 2013, 57, 513–523. [Google Scholar] [CrossRef]
- Reed, E.; Chadwick, D.; Hill, P.; Jones, D. Critical comparison of the impact of biochar and wood ash on soil organic matter cycling and grassland productivity. Soil Biol. Biochem. 2017, 110, 134–142. [Google Scholar] [CrossRef]
- Han, F.; Ren, L.; Zhang, X. Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau. Catena 2016, 137, 554–562. [Google Scholar] [CrossRef]
- Biederman, L.; Phelps, J.; Ross, B.; Polzin, M.; Harpole, W. Biochar and manure alter few aspects of prairie development: A field test. Agric. Ecosyst. Environ. 2017, 236, 78–87. [Google Scholar] [CrossRef]
- Gebhardt, M.; Fehmi, J.; Rasmussen, C.; Gallery, R. Soil amendments alter plant biomass and soil microbial activity in a semidesert grassland. Plant Soil 2017, 419, 53–70. [Google Scholar] [CrossRef]
- Yin, W.; Hu, Y.; Liu, Y.; Gong, Y.; Zhang, W.; Liu, W.; Ailiewutalipu, A. A study on soil biological properties of artificial grassland over different cultivation times in Bayanbulak. Acta Prataculturae Sin. 2010, 19, 218–226. [Google Scholar]
- Lu, J.; Hu, Y.; Yue, P.; Li, K. Assessment on the health of alpine steppe in Bayinbuluk based on CVOR index. Arid Zone Res. 2017, 34, 862–869. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, W.; Wang, Y.; Feng, Y.; Qi, J.; Li, Y. Effects of grazing exclusion and grazing on the diversity of large and medium-sized soil arthropods in autumn in the alpine grassland of Qilian Mountains. Acta Prataculturae Sin. 2023, 32, 214–221. [Google Scholar]
- Dong, C.; Wang, W.; Liu, H.; Xu, X.; Zeng, H. Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: Evidence from soil extracellular enzyme stoichiometry. Ecol. Indic. 2019, 101, 453–464. [Google Scholar] [CrossRef]
- He, Z. Study on the Diversity of Soil Arthropods in Different Forest Types in Southern China. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2018. [Google Scholar]
- Sun, C. Responses of Soil Arthropod Community Structure and Its Seasonal Dynamics to Grazing Management in Alpine Grasslands. Ph.D. Thesis, Qinghai University, Xining, China, 2022. [Google Scholar] [CrossRef]
- Hu, Y. Evaluation of the Enhancement Effects of Biochar Addition on Soil Carbon Sink in Bayinbuluk Degraded Grassland. Ph.D. Thesis, Xinjiang Agricultural University, Ürümqi, China, 2024. [Google Scholar] [CrossRef]
- Zhou, D. Effects of Different Species Combinations in Artificial Grasslands of the Tibetan Plateau on Community Stability and Arthropod Diversity. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2021. [Google Scholar] [CrossRef]
- Hu, Y.; Abulaizi, M.; Tian, Y.; Chen, M.; Jia, H.; Zhou, J.; Kou, T.; Jia, Y. Effects of short-term biochar addition of cotton straw on the growth of Carex liparocarpos and Festuca arundinacea Schreb in alpine meadow. J. Agro-Environ. Sci. 2024, 43, 1–12. Available online: https://link-cnki-net-s.webvpn.xjau.edu.cn/urlid/12.1347.S.20240528.1251.002 (accessed on 14 July 2025).
- Yu, P.; Li, Y.; Liu, S.; Ding, Z.; Zhang, A.; Tang, X. The quantity and stability of soil organic carbon following vegetation degradation in a salt-affected region of Northeastern China. Catena 2022, 211, 105984. [Google Scholar] [CrossRef]
- Lin, Q. Evaluation of the Methods for Measuring Soil Microbial Biomass. J. China Agric. Univ. 1997, 2 (Suppl. S2), 1–11. [Google Scholar]
- Hu, Y.; Yu, G.; Zhou, J.; Li, K.; Chen, M.; Abulaizi, M.; Cong, M.; Yang, Z.; Zhu, X.; Jia, H. Grazing and reclamation-induced microbiome alterations drive organic carb on stability with in soil aggregates in alpine steppes. Catena 2023, 231, 107306. [Google Scholar] [CrossRef]
- Li, B.; Guo, Y.; Liang, F.; Liu, W.; Wang, Y.; Cao, W.; Song, H.; Chen, J.; Guo, J. Global integrative meta-analysis of the responses in soil organic carbon stock to biochar amendment. J. Environ. Manag. 2024, 351, 119745. [Google Scholar] [CrossRef] [PubMed]
- Hossain, Z.; Bahar, M.; Sarkar, B.; Donne, S.; Ok, Y.; Palansooriya, K.; Kirikham, M.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Panchal, P.; Preece, C.; Peñuelas, J.; Giri, J. Soil carbon sequestration by root exudates. Trends Plant Sci. 2022, 27, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Lu, J.; Preiser, J.; Widyastuti, R.; Scheu, S.; Potapov, A. Plant roots fuel tropical soil animal communities. Ecol. Lett. 2023, 26, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nakajima, T.; Mbonimpa, E.; Gautam, S.; Somireddy, U.; Kadono, A.; Rafique, R.; Fausey, N. Long-term tillage and drainage influences on soil organic carbon dynamics, aggregate stability and corn yield. Soil Sci. Plant Nutr. 2014, 60, 108–118. [Google Scholar] [CrossRef]
- Meng, Y. Effects of Biochar on Soil Organic Carbon Pools in Phaeozem. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2018. [Google Scholar]
- Zhao, S.; Yu, X.; Li, Z.; Yan, Y.; Zhang, X.; Wang, X.; Zhang, A. Effects of Biochar Pyrolyzed at Varying Temperatures on Soil Organic Carbon and Its Components: Influence on the Soil Active Organic Carbon. Environ. Sci. 2017, 38, 333–342. [Google Scholar] [CrossRef]
- Hua, L.; Jin, S.; Tang, Z. Effect of Bio-charcoal on Release of Carbon Dioxide in Soil. Anhui Agric. Sci. 2012, 40, 6501–6503. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, M.; Yang, Z.; Abulaizi, M.; Tian, Y.; Jia, H.; Kou, T.; Jia, Y. Effect of Snow Removal on Stability of Soil Organic Carbon Pool During Freeze-Thaw Period in Bayinbuluk Alpine Wetland. Bull. Soil Water Conserv. 2024, 44, 326–334. [Google Scholar] [CrossRef]
- Soong, J.; Fuchslueger, L.; Marañon-Jimenez, S.; Torn, M.; Janssens, I.; Penuelas, J.; Richter, A. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Change Biol. 2020, 26, 1953–1961. [Google Scholar] [CrossRef] [PubMed]
- Pathy, A.; Ray, J.; Paramasivan, B. Biochar amendments and its impact on soil biota for sustainable agriculture. Biochar 2020, 2, 287–305. [Google Scholar] [CrossRef]
- Yang, S.; Tang, F.; Yang, H.; Zhang, Y.; Peng, X.; Huang, Y. Effects of peach tree planting patterns on soil organic carbon fractions and carbon pool management index in southern Yunnan. Acta Ecol. Sin. 2023, 43, 14. [Google Scholar] [CrossRef]
- Jeffery, S.; van de Voorde, T.F.J.; Edwin Harris, W.; Mommer, L.; Van Groenigen, J.W.; De Deyn, G.B.; Ekelund, F.; Briones, M.J.I.; Bezemer, T.M. Biochar application differentially affects soil micro-, meso-macro-fauna and plant productivity within a nature restoration grassland. Soil Biol. Biochem. 2022, 174, 108789. [Google Scholar] [CrossRef]
- Wu, H.; Cui, H.; Fu, C.; Li, R.; Qi, F.; Liu, Z.; Yang, G.; Xiao, K.; Qiao, M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Sci. Total Environ. 2023, 909, 168627. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, X.; Ma, X.; Gong, L. Characteristics and Driving Factors of Soil Organic Carbon Fractions under Different Vegetation Types of the mid-Northern Piedmont of the Tianshan Mountains, Xinjiang. Ecol. Environ. Sci. 2022, 31, 1124–1131. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, R.; Sun, J.; Sun, Y.; Xu, G.; Wang, F. Microplastics change soil properties, plant performance, and bacterial communities in salt-affected soils. J. Hazard. Mater. 2024, 471, 134333. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Li, X.; Li, Z.; Wang, X.; Hou, N.; Li, D. Remediation of soda-saline-alkali soil through soil amendments: Microbially mediated carbon and nitrogen cycles and remediation mechanisms. Sci. Total Environ. 2024, 924, 171641. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, P.; Van Zwieten, L.; Bolan, N.; Wang, H.; Li, X.; Cheng, K.; Yang, Y.; Wang, M.; Liu, T.; et al. Towards a better understanding of the role of Fe cycling in soil for carbon stabilization and degradation. Carbon Res. 2022, 1, 5. [Google Scholar] [CrossRef]
- Belenguer-Manzanedo, M.; Rochera, C.; Alcaraz, C.; Martínez-Eixarch, M.; Camacho, A. Disentangling drivers of soil organic carbon storage in deltaic rice paddies from the Ebro Delta. Catena 2023, 228, 107131. [Google Scholar] [CrossRef]
Class | Order | Family | Number | Proportion (%) | Functional Groups |
---|---|---|---|---|---|
Arachnida | Pseudoscorpiones | Tridenchthoniidae | 3 | 0.88 | Pr |
Acariforemes | Pygmephoridae | 162 | 47.37 | Om | |
Angstidae | 2 | 0.58 | Pr | ||
Microdispidae | 36 | 10.53 | Sa | ||
Erythraeidae | 3 | 0.88 | Pr | ||
Parasiformes | Parasitidae | 19 | 5.56 | Pr | |
Laelapidae | 22 | 6.43 | Pr | ||
Macrochelidae | 1 | 0.29 | Pr | ||
Collembola | Collembola | Onychiuridae | 14 | 4.09 | Ph |
Poduridae | 21 | 6.14 | Sa | ||
Diplura | Diplura | Campodeidae | 19 | 5.56 | Sa |
Insecta | Blattoptera | Blattidae | 1 | 0.29 | Sa |
Orthoptrra | Acridoidae | 2 | 0.58 | Ph | |
Terigoidea | 2 | 0.58 | Sa | ||
Thysanoptera | Phlaeothripidae | 3 | 0.88 | Om | |
Diptera | Muscidae | 2 | 0.58 | Sa | |
Hymenptera | Formicidae | 16 | 4.67 | Om | |
Coleoptera | Carabidae | 3 | 0.88 | Pr | |
Lucanidae | 3 | 0.88 | Sa | ||
Curculionidae | 1 | 0.29 | Ph | ||
Tenebrionidae | 1 | 0.29 | Pr | ||
Geotrupidae | 1 | 0.29 | Sa | ||
Staphy | 3 | 0.88 | Pr | ||
Pselaphidae | 2 | 0.58 | Pr |
Alpine Grassland | pH | EC us/cm | BD g/cm3 | SOM g/kg | TN g/kg |
ND | 8.02 ± 0.04 c | 913.22 ± 161.3 a | 0.65 ± 0.03 d | 79.42 ± 14.8 a | 3.33 ± 0.33 a |
LD | 8.05 ± 0.03 c | 792.3 ± 133.62 a | 0.94 ± 0.03 c | 53.72 ± 6.11 b | 2.05 ± 0.21 b |
MD | 8.19 ± 0.11 b | 424.38 ± 70.07 b | 1.52 ± 0.02 b | 15.12 ± 2.36 c | 0.97 ± 0.19 c |
HD | 8.32 ± 0.06 a | 360.74 ± 26.79 c | 1.64 ± 0.04 a | 8.1 ± 2.12 c | 0.16 ± 0.05 d |
Alpine Grassland | TP g/kg | TK g/kg | AN mg/kg | AP mg/kg | AK mg/kg |
ND | 0.77 ± 0.08 a | 7.17 ± 1.02 a | 146.58 ± 20.85 a | 27.4 ± 6.11 a | 162.2 ± 13.66 a |
LD | 0.68 ± 0.05 b | 3.63 ± 0.76 b | 112.21 ± 28.5 b | 26.94 ± 6.28 a | 143.8 ± 22.37 a |
MD | 0.52 ± 0.07 c | 1.78 ± 0.28 c | 65.45 ± 14.37 c | 28.32 ± 4.47 a | 119 ± 11.07 b |
HD | 0.29 ± 0.04 d | 1.37 ± 0.25 c | 51.17 ± 6.47 c | 23.98 ± 1.67 a | 45.8 ± 3.03 c |
Alpine Grassland | H′ | Js | D | C |
---|---|---|---|---|
ND | 1.31 ± 0.14 a | 0.94 ± 0.10 a | 0.62 | 0.48 ± 0.79 a |
LD | 1.28 ± 0.11 a | 0.92 ± 0.08 a | 0.60 | 0.41 ± 0.63 a |
MD | 1.30 ± 0.08 a | 0.94 ± 0.06 a | 0.75 | 0.38 ± 0.52 a |
HD | 1.32 ± 0.06 a | 0.96 ± 0.04 a | 1.08 | 0.34 ± 0.45 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, T.; Hu, Y.; Jia, Y.; Abulaizi, M.; Tian, Y.; Yang, Z.; Jia, H. Alterations in Soil Arthropod Communities During the Degradation of Bayinbuluk Alpine Grasslands in China Closely Related to Soil Carbon and Nitrogen. Land 2025, 14, 1478. https://doi.org/10.3390/land14071478
Kou T, Hu Y, Jia Y, Abulaizi M, Tian Y, Yang Z, Jia H. Alterations in Soil Arthropod Communities During the Degradation of Bayinbuluk Alpine Grasslands in China Closely Related to Soil Carbon and Nitrogen. Land. 2025; 14(7):1478. https://doi.org/10.3390/land14071478
Chicago/Turabian StyleKou, Tianle, Yang Hu, Yuanbin Jia, Maidinuer Abulaizi, Yuxin Tian, Zailei Yang, and Hongtao Jia. 2025. "Alterations in Soil Arthropod Communities During the Degradation of Bayinbuluk Alpine Grasslands in China Closely Related to Soil Carbon and Nitrogen" Land 14, no. 7: 1478. https://doi.org/10.3390/land14071478
APA StyleKou, T., Hu, Y., Jia, Y., Abulaizi, M., Tian, Y., Yang, Z., & Jia, H. (2025). Alterations in Soil Arthropod Communities During the Degradation of Bayinbuluk Alpine Grasslands in China Closely Related to Soil Carbon and Nitrogen. Land, 14(7), 1478. https://doi.org/10.3390/land14071478