Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling and Physicochemical Properties Analysis
2.3. Field Data Monitoring
2.4. Data Analysis and Calculation
2.4.1. Soil Temperature
2.4.2. Soil Thermal Properties
2.4.3. Soil Heat Flux (G)
2.5. Statistical Analysis and Plotting
3. Results
3.1. Soil Temperature Dynamics and Its Statistical Characteristics in PF and UF
3.2. Differences in Soil Temperature Between PF and UF on Different Time Scales
3.2.1. Seasonal Scale
3.2.2. Monthly Scale
3.2.3. Daily Scale
3.2.4. Hourly Scale
3.3. Dynamics of Soil Thermal Properties in UF and PF
3.3.1. Volumetric Heat Capacity (Cs)
3.3.2. Thermal Conductivity (λθ)
3.4. Soil Heat Flux (G)
4. Discussion
4.1. Similarities in Soil Temperature, Thermal Properties, and Heat Flux in PF and UF
4.2. Mechanism of Differences in Soil Thermal Properties Between UF and PF
4.3. Mechanism of Differences in Soil Temperature and G Between UF and PF
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, M.H.; Dai, C.L.; Yu, M.; Yang, H.N.; Li, R.T.; Feng, X. Characteristics of Soil Temperature Change in Lhasa in the Face of Climate Change. Atmosphere 2024, 15, 450. [Google Scholar] [CrossRef]
- Firanj Sremac, A.; Lalic, B.; Cuxart, J.; Marcic, M. Maximum, Minimum, and Daily Air Temperature Range in Orchards: What Do Observations Reveal? Atmosphere 2021, 12, 1279. [Google Scholar] [CrossRef]
- Ogunjo, S.T.; Fuwape, I.; Babatunde Rabiu, A.; Oluyamo, S.S. Multifractal analysis of air and soil temperatures. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 033110. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.M.; Even, R.; King, A.E.; Lavallee, J.; Schipanski, M.; Cotrufo, M.F. Distinct, direct and climate-mediated environmental controls on global particulate and mineral-associated organic carbon storage. Glob. Change Biol. 2024, 30, 15. [Google Scholar] [CrossRef]
- Guo, C.R.; Zhao, R.X.; Jiang, H.T.; Qu, W.J. Climate Factors Dominate the Spatial Distribution of Soil Nutrients in Desert Grassland. Atmosphere 2024, 15, 1524. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Zhang, X. Simulations of Soil Water and Heat Processes for No Tillage and Conventional Tillage Systems in Mollisols of China. Land 2022, 11, 417. [Google Scholar] [CrossRef]
- Feng, X.; Qu, J.; Fan, Q.; Tan, L.; Dun, Y. Response of soil water content and temperature to rangeland desertification in an alpine region with seasonally frozen soil and plateau pika (Ochotona curzoniae) burrows. J. Soils Sediments 2020, 20, 3722–3732. [Google Scholar] [CrossRef]
- Wu, S.; Wei, Z.; Li, X.; Wang, H.; Guo, S. Variation characteristics of soil temperature, moisture, and heat flux in the understorey of evergreen broadleaf forest in South China. Theor. Appl. Climatol. 2022, 150, 929–940. [Google Scholar] [CrossRef]
- Costa, J.M.; Egipto, R.; Aguiar, F.C.; Marques, P.; Nogales, A.; Madeira, M. The role of soil temperature in mediterranean vineyards in a climate change context. Front. Plant Sci. 2023, 14, 1145137. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Pan, Z.; Zhao, P.; Zhang, J.; Jiang, K.; Wang, J.; Han, G.; Song, Y.; Huang, N.; et al. Quantitative Estimation of the Effects of Soil Moisture on Temperature Using a Soil Water and Heat Coupling Model. Agriculture 2022, 12, 1371. [Google Scholar] [CrossRef]
- Qi, L.H.; Hao, T.L.; Chen, K.; Zheng, L.X.; Guan, H.J.; Zhou, W.Q.; Yang, J.J.; Guan, C.F. Soil temperature elevation enhances phenanthrene phytoremediation by maize through improvement of plant growth and soil microbial activity. Plant Physiol. Biochem. 2025, 223, 109844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Tan, S.K.; Zhang, C.; Chen, E.Q. Machine learning in modelling the urban thermal field variance index and assessing the impacts of urban land expansion on seasonal thermal environment. Sust. Cities Soc. 2024, 106, 105345. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Lu, H.; Wang, Y. Effects of biochar on spatial and temporal changes in soil temperature in cold waterlogged rice paddies. Soil Tillage Res. 2018, 181, 102–109. [Google Scholar] [CrossRef]
- Zhu, H.J.; Wang, A.; Wang, P.T.; Hu, C.G.; Zhang, M.M. Spatiotemporal Dynamics and Response of Land Surface Temperature and Kernel Normalized Difference Vegetation Index in Yangtze River Economic Belt, China: Multi-Method Analysis. Land 2025, 14, 598. [Google Scholar] [CrossRef]
- Jiao, Y.X.; Chen, C.; Li, G.C.; Fu, H.Q.; Mi, X. Research on the variation patterns and predictive models of soil temperature in a solar greenhouse. Sol. Energy 2024, 270, 112267. [Google Scholar] [CrossRef]
- Mengistu, A.G.; van Rensburg, L.D.; Mavimbela, S.S.W. The effect of soil water and temperature on thermal properties of two soils developed from aeolian sands in South Africa. CATENA 2017, 158, 184–193. [Google Scholar] [CrossRef]
- Li, S.; Sun, F.; Chamizo, S.; Xiao, B. Towards moss-dominated biocrust effects on soil temperature across seasons in drylands: Insight from continuous measurements of soil thermal properties and solar radiation. Geoderma 2022, 421, 115911. [Google Scholar] [CrossRef]
- Vidana Gamage, D.N.; Biswas, A.; Strachan, I.B. Spatial variability of soil thermal properties and their relationships with physical properties at field scale. Soil Tillage Res. 2019, 193, 50–58. [Google Scholar] [CrossRef]
- Kharel, G.; Dhakal, M.; Deb, S.K.; Slaughter, L.C.; Simpson, C.; West, C.P. Effect of Long-Term Semiarid Pasture Management on Soil Hydraulic and Thermal Properties. Plants 2023, 12, 1491. [Google Scholar] [CrossRef]
- Chen, D.; Huang, X.; Chen, L. Analysis of Soil Heat Flux Characteristics at Different Time Scales in PaddyFields in the Middle and Lower Reaches of the Yangtze River. Res. Soil Water Conserv. 2021, 28, 151–158. [Google Scholar]
- Cross, J.F.; Drewry, D.T. Ensemble machine learning for interpretable soil heat flux estimation. Ecol. Inform. 2024, 82, 102697. [Google Scholar] [CrossRef]
- Liang, A.Z.; Xie, C.K.; Qin, Y.F.; Wang, J.; Wu, H.; Che, S.Q. Multi-scale temporal and spatial variations of soil heat flux under varying riparian forests: From a day to a year. J. Environ. Manag. 2025, 373, 123825. [Google Scholar] [CrossRef]
- Ju, Z.; Hu, C. Experimental warming alters soil hydro-thermal properties and heat flux in a winter wheat field. Arch. Agron. Soil Sci. 2018, 64, 718–730. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Zhang, C.M.; Liu, W.Y.; Niu, F.J.; Wang, Y.B.; Lin, Z.J.; Yin, G.A.; Ding, Z.K.; Shang, Y.H.; Luo, J. Extreme degradation of alpine wet meadow decelerates soil heat transfer by preserving soil organic matter on the Qinghai-Tibet Plateau. J. Hydrol. 2025, 653, 132748. [Google Scholar] [CrossRef]
- Haruna, S. Influence of winter wheat on soil thermal properties of a Paleudalf. Int. Agrophysics 2019, 33, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.X.; Liu, Z.W.; Fan, Y.W.; Li, Y.Y.; Tao, H.; Han, C.T.; Ao, X.M.; Chen, R.S. Patterns and Drivers of Surface Energy Flux in the Alpine Meadow Ecosystem in the Qilian Mountains, Northwest China. Plants 2025, 14, 155. [Google Scholar] [CrossRef]
- Qiao, C.; Zongxing, L.; Qi, F.; Baijuan, Z.; Juan, G. Soil bulk density and altitude are primary drivers of soil water content and soil temperature in the Three Rivers Headwaters Region, China. Soil Use Manag. 2023, 39, 1364–1387. [Google Scholar] [CrossRef]
- Gan, L.; Peng, X.; Peth, S.; Horn, R. Effects of grazing intensity on soil thermal properties and heat flux under Leymus chinensis and Stipa grandis vegetation in Inner Mongolia, China. Soil Tillage Res. 2012, 118, 147–158. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Yan, Z.J.; He, R.; Yang, H.; Ci, H.; Wang, R. Impacts of Land Use Conversion on Soil Erosion in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains. Land 2024, 13, 550. [Google Scholar] [CrossRef]
- Chen, T.D.; Chen, Y.L.; Wang, L.L.; Mei, X.S.; Wei, W.; Zhao, W.T.; Ma, X.W.; Deji, S. Spatiotemporal Variations and Socio-Economic Influencing Factors of Soil Erosion at Different Spatial Scales in Key Agricultural Areas of the Qinghai-Tibet Plateau from 2000 to 2022: A Case Study of the Huangshui River Basin. Water 2025, 17, 88. [Google Scholar] [CrossRef]
- Fan, Z.P.; Li, X.M.; Yang, C.W.; Zhang, H.; Guo, X.L.; Lai, S.H.; Sha, J.M. Does land use change decline the regional ecosystem health maintenance? Case study in subtropical coastal region, Fuzhou, China. J. Environ. Manag. 2025, 373, 123631. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ren, T.; Zhang, Q.; Du, Z.; Wang, Y. Effects of Biochar Amendment on Soil Thermal Properties in the North China Plain. Soil Sci. Soc. Am. J. 2016, 80, 1157–1166. [Google Scholar] [CrossRef]
- Haruna, S.; Anderson, S.; Nkongolo, N.; Reinbott, T.; Zaibon, S. Soil Thermal Properties Influenced by Perennial Biofuel and Cover Crop Management. Soil Sci. Soc. Am. J. 2017, 81, 1147–1156. [Google Scholar] [CrossRef]
- Bryś, K.; Bryś, T.; Sayegh, M.A.; Ojrzyńska, H. Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps. Renew. Energy 2020, 146, 1846–1866. [Google Scholar] [CrossRef]
- Alvalá, R.C.S.; Gielow, R.; da Rocha, H.R.; Freitas, H.C.; Lopes, J.M.; Manzi, A.O.; von Randow, C.; Dias, M.A.F.S.; Cabral, O.M.R.; Waterloo, M.J. Intradiurnal and seasonal variability of soil temperature, heat flux, soil moisture content, and thermal properties under forest and pasture in Rondônia. J. Geophys. Res. Atmos. 2002, 107, LBA 10-1–LBA 10-20. [Google Scholar] [CrossRef]
- Alberto, M.C.R.; Wassmann, R.; Hirano, T.; Miyata, A.; Kumar, A.; Padre, A.; Amante, M. CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the Philippines. Agric. For. Meteorol. 2009, 149, 1737–1750. [Google Scholar] [CrossRef]
- Xie, Z.-j.; Zhu, D.; Wei, W.-w.; Ye, C.; Wang, H.; Li, C.-h. Phosphorus leaching risk from black soil increased due to conversion of arid agricultural land to paddy land in northeast China. Chem. Biol. Technol. Agric. 2023, 10, 59. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; E, S.; Du, G.; Chen, Z. Analysis of Climatic Basis for the Change of Cultivated Land Area in Sanjiang Plain of China. Front. Earth Sci. 2022, 10, 862141. [Google Scholar] [CrossRef]
- Cheng, D.; Zhang, Y. Soil Physics Experiment Instruction; China Water Power Press: Beijing, China, 2012. [Google Scholar]
- Xu, X.T.; Zhang, W.D.; Wang, Y.T. Measuring and modeling the dielectric constant of soil during freezing and thawing processes: An application on silty clay. Acta Geotech. 2022, 17, 3867–3886. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Satoh, Y.; Kakiuchi, H. Calibration method to address influences of temperature and electrical conductivity for a low-cost soil water content sensor in the agricultural field. Agric. Water Manag. 2021, 255, 107015. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.; Fan, J.; Wang, W. Soil thermal properties determination and prediction model comparison. Trans. Chin. Soc. Agric. Eng. 2012, 28, 78–84. [Google Scholar]
- De Vries, D.A.; van Wijk, W.R. Thermal properties of soils. In Physics of Plant Environment; Van Wijk, W.R., Ed.; North Holland Publishing Company: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Campbell, G.S. Soil Physics with BASIC-Transport Models for Soil-Plant Systems; Elsevier: Amsterdam, The Netherlands, 1985; p. 150. [Google Scholar]
- Zhao, T.Y.; Liu, S.C.; Xu, J.; He, H.L.; Wang, D.; Horton, R.; Liu, G. Comparative analysis of seven machine learning algorithms and five empirical models to estimate soil thermal conductivity. Agric. For. Meteorol. 2022, 323, 109080. [Google Scholar] [CrossRef]
- Sauer, T.J.; Peng, X. Soil Temperature and Heat Flux. Agroclimatol. Link. Agric. Clim. 2020, 60, 73–93. [Google Scholar]
- López-Vicente, M.; Pereira-Rodríguez, L.; da Silva-Dias, R.; Raposo-Díaz, X.; Wu, G.L.; Paz-González, A. Role of cultivars and grass in the stability of soil moisture and temperature in an organic vineyard. Geoderma Reg. 2023, 33, e00631. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, D.H.; van der Velde, R.; Wen, J.; Su, Z.B. Impact of model physics, meteorological forcing, and soil property data on simulating soil moisture and temperature profiles on the Tibetan Plateau. J. Hydrol. 2025, 654, 132809. [Google Scholar] [CrossRef]
- Zhang, M.; Wen, Z.; Li, D.; Chou, Y.; Zhou, Z.; Zhou, F.; Lei, B. Impact process and mechanism of summertime rainfall on thermal–moisture regime of active layer in permafrost regions of central Qinghai–Tibet Plateau. Sci. Total Environ. 2021, 796, 148970. [Google Scholar] [CrossRef] [PubMed]
- Ju, Z.; Lu, S.; Guo, K.; Liu, X. Changes in the thermal conductivity of soil with different salts. J. Soils Sediments 2023, 23, 3376–3383. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J. The effect of exogenous organic matter on the thermal properties of tilled soils in Poland and the Czech Republic. J. Soils Sediments 2020, 20, 365–379. [Google Scholar] [CrossRef]
- Najera, F.; Dippold, M.A.; Boy, J.; Seguel, O.; Koester, M.; Stock, S.; Merino, C.; Kuzyakov, Y.; Matus, F. Effects of drying/rewetting on soil aggregate dynamics and implications for organic matter turnover. Biol. Fertil. Soils 2020, 56, 893–905. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Li, X.; Wang, J. Mechanisms of biochar effects on thermal properties of red soil in south China. Geoderma 2018, 323, 41–51. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhang, Z.Y.; Wang, W.K.; Wang, Z.F. Experimental and Numerical Analysis of Evaporation Processes in a Semi-Arid Region. Water 2025, 17, 1113. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Y.; Bu, K.; Wang, W.J.; Zhang, S. Soil temperature mitigation due to vegetation biophysical feedbacks. Glob. Planet. Change 2022, 218, 103971. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.; Wang, P.; Wang, X.; Wang, L.; Wang, C.; Zhang, C.; Huo, Z. Impact of straw return on soil temperature and water during the freeze-thaw period. Agric. Water Manag. 2023, 282, 108292. [Google Scholar] [CrossRef]
- Xiao, B.B.; Hu, Y.; Liu, Y.P.; Jia, S.Y.; Zhang, T.T.; Yin, S.Y.; Xiao, C.X.; Jiang, J.; Wang, L.; Yang, C.W. Physiological and transcriptional analysis provides insights into responses of a spring wheat variety to combination of salt and heat stresses. Physiol. Plant. 2025, 177, e70154. [Google Scholar] [CrossRef]
- Mohammed, A.A.A.; Tsubo, M.; Kurosaki, Y.; Ibaraki, Y. Characterization of the Energy Balance of Wheat Grown under Irrigation in the Hot, Arid Environment of Sudan. Atmosphere 2024, 15, 18. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, Y.C.; Bao, H.; Niu, P.P.; Jin, Z.; Niu, Z.G. Drought effects on evapotranspiration and energy exchange over a rain-fed maize cropland in the Chinese Loess Plateau. Agric. Water Manag. 2024, 293, 108711. [Google Scholar] [CrossRef]
- Maruyama, A.; Kuwagata, T. Coupling land surface and crop growth models to estimate the effects of changes in the growing season on energy balance and water use of rice paddies. Agric. For. Meteorol. 2010, 150, 919–930. [Google Scholar] [CrossRef]
Plot | Depth (cm) | Bulk Density (g cm−3) | SOM Content (g kg−1) | Total Porosity % | Soil Texture% | ||
---|---|---|---|---|---|---|---|
Clay <0.002 mm | Silt 0.002–0.02 mm | Sand 0.02–2 mm | |||||
UF | 0–15 | 1.26 ± 0.04 a | 21.91 ± 2.55 a | 52.20 ± 1.33 | 22.60 ± 0.23 | 34.50 ± 0.03 | 42.89 ± 0.53 |
15–30 | 1.32 ± 0.04 a | 15.12 ± 1.40 a | 49.84 ± 1.59 | 29.91 ± 0.60 | 41.29 ± 0.15 | 28.79 ± 0.68 | |
30–50 | 1.25 ± 0.05 a | 10.99 ± 1.39 a | 52.74 ± 1.31 | 33.08 ± 0.07 | 43.05 ± 1.03 | 23.86 ± 2.33 | |
50–70 | 1.24 ± 0.02 a | 11.65 ± 1.98 a | 52.87 ± 0.84 | 27.81 ± 0.09 | 46.74 ± 0.09 | 25.45 ± 0.16 | |
>70 | 1.14 ± 0.08 a | 12.61 ± 1.43 a | 56.72 ± 3.16 | 47.36 ± 0.08 | 44.64 ± 0.05 | 8.00 ± 0.13 | |
PF | 0–15 | 1.21 ± 0.04 b | 23.79 ± 1.09 a | 53.30 ± 3.02 | 25.94 ± 0.15 | 42.02 ± 0.13 | 32.04 ± 0.27 |
15–30 | 1.43 ± 0.07 b | 21.03 ± 3.11 b | 46.02 ± 2.49 | 32.87 ± 0.22 | 40.02 ± 0.16 | 27.1 ± 0.38 | |
30–50 | 1.38 ± 0.02 b | 9.65 ± 0.46 a | 48.08 ± 0.92 | 21.9 ± 0.06 | 39.02 ± 0.08 | 39.08 ± 0.14 | |
50–70 | 1.31 ± 0.06 b | 7.20 ± 0.56 b | 50.14 ± 2.57 | 17.5 ± 4.92 | 28.94 ± 6.96 | 53.55 ± 10.18 | |
>70 | 1.35 ± 0.04 b | 7.20 ± 0.45 b | 48.77 ± 1.63 | 38.37 ± 6.35 | 43.4 ± 0.11 | 18.24 ± 6.25 |
Field | Depth (cm) | Mean Temperature (°C) | Maximum Temperature (°C) | Time | Minimum Temperature (°C) | Time | Temperature Range (°C) |
---|---|---|---|---|---|---|---|
UF | 10 | 17.3 | 33.1 | 28 July 2017 | 1.5 | 30 January 2018 | 31.5 |
20 | 17.0 | 31.3 | 28 July 2017 | 2.9 | 30 January 2018 | 28.4 | |
40 | 17.4 | 29.8 | 29 July 2017 | 5.1 | 31 January 2018 | 24.7 | |
60 | 17.5 | 28.3 | 8 August 2017 | 7.0 | 1 February 2018 | 21.3 | |
90 | 17.8 | 27.0 | 9 August 2017 | 8.1 | 7 February 2018 | 18.9 | |
PF | 10 | 17.0 | 31.4 | 20 July 2018 | 3.1 | 1 January 2019 | 28.4 |
20 | 17.1 | 31.2 | 21 July 2018 | 4.6 | 19 February 2019 | 26.7 | |
40 | 17.1 | 30.7 | 20 July 2018 | 4.6 | 19 February 2019 | 26.1 | |
60 | 17.5 | 30.5 | 19 July 2018 | 5.9 | 20 February 2019 | 24.7 | |
90 | 17.7 | 29.9 | 19 July 2018 | 6.1 | 21 February 2019 | 23.8 |
Plot | Depth (cm) | Soil Thermal Parameters | Rainfall (cm) | Mean Temperature (°C) | Relative Humidity (%) | Saturated Vapor Pressure (kPa) | Wind Speed (m s−1) | Net Solar Radiation (MJ m−2 day−1) |
---|---|---|---|---|---|---|---|---|
Total | 0–15 cm | Cs/cal cm−3 °C−1 | 0.116 | −0.245 | 0.183 | −0.183 | 0.092 | −0.348 * |
λθ/Wm−1K−1 | 0.083 | −0.28 | 0.078 | −0.25 | 0.061 | −0.367 * | ||
Soil heat flux (G)/Wm−2 | 0.312 * | 0.619 ** | −0.03 | 0.609 ** | 0.373 ** | 0.687 ** | ||
15–30 cm | Cs/cal cm−3 °C−1 | 0.045 | −0.017 | 0.109 | 0.006 | 0.037 | −0.037 | |
λθ/Wm−1K−1 | 0.045 | −0.011 | 0.111 | 0.009 | 0.037 | −0.034 | ||
Soil heat flux (G)/Wm−2 | 0.274 | 0.719 ** | 0.005 | 0.691 ** | 0.357 * | 0.781 ** | ||
30–90 cm | Cs/cal cm−3 °C−1 | 0.06 | 0.127 | 0.198 | 0.119 | 0.076 | −0.052 | |
λθ/Wm−1K−1 | 0.009 | 0.019 | 0.033 | 0.016 | 0.011 | −0.013 | ||
Soil heat flux (G)/Wm−2 | 0.263 | 0.884 ** | 0.13 | 0.828 ** | 0.302 * | 0.819 ** | ||
Upland Field | 0–15 cm | Cs/cal cm−3 °C−1 | 0.215 | −0.305 | 0.241 | 0.094 | 0.165 | −0.114 |
λθ/Wm−1K−1 | 0.205 | −0.325 | 0.21 | 0.096 | 0.148 | −0.111 | ||
Soil heat flux (G)/Wm−2 | 0.314 | 0.764 ** | −0.015 | 0.764 ** | 0.375 | 0.833 ** | ||
15–30 cm | Cs/cal cm−3 °C−1 | 0.254 | −0.437 * | 0.369 | −0.22 | 0.204 | −0.436 | |
λθ/Wm−1K−1 | 0.254 | −0.438 * | 0.368 | −0.22 | 0.204 | −0.436 | ||
Soil heat flux (G)/Wm−2 | 0.281 | 0.813 ** | −0.013 | 0.788 ** | 0.356 | 0.877 ** | ||
30–90 cm | Cs/cal cm−3 °C−1 | 0.237 | −0.253 | 0.102 | −0.022 | 0.292 | −0.374 | |
λθ/Wm−1K−1 | 0.235 | −0.283 | 0.098 | −0.069 | 0.285 | −0.417 | ||
Soil heat flux (G)/Wm−2 | 0.276 | 0.888 ** | 0.104 | 0.820 ** | 0.315 | 0.867 ** | ||
Paddy Field | 0–15 cm | Cs/cal cm−3 °C−1 | 0.07 | −0.239 | 0.17 | −0.331 | 0.059 | −0.495 * |
λθ/Wm−1K−1 | 0.061 | −0.32 | 0.052 | −0.395 | 0.046 | −0.526 * | ||
Soil heat flux (G)/Wm−2 | 0.362 | 0.531 ** | −0.054 | 0.498 * | 0.431 * | 0.600 ** | ||
15–30 cm | Cs/cal cm−3 °C−1 | −0.031 | 0.684 ** | 0.393 | 0.530 * | −0.015 | 0.501 * | |
λθ/Wm−1K−1 | −0.03 | 0.681 ** | 0.393 | 0.527 * | −0.016 | 0.494 * | ||
Soil heat flux (G)/Wm−2 | 0.292 | 0.670 ** | 0.03 | 0.652 ** | 0.396 | 0.754 ** | ||
30–90 cm | Cs/cal cm−3 °C−1 | −0.141 | 0.574 ** | 0.322 | 0.315 | −0.167 | 0.318 | |
λθ/Wm−1K−1 | −0.141 | 0.568 ** | 0.322 | 0.309 | −0.167 | 0.312 | ||
Soil heat flux (G)/Wm−2 | 0.252 | 0.906 ** | 0.163 | 0.863 ** | 0.292 | 0.796 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, J.; Xu, M.; Ren, Q.; Zhang, H.; Liu, M.; Fei, Y.; Li, S.; Nie, H.; Li, Q.; Ni, X.; et al. Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes. Land 2025, 14, 1352. https://doi.org/10.3390/land14071352
Yi J, Xu M, Ren Q, Zhang H, Liu M, Fei Y, Li S, Nie H, Li Q, Ni X, et al. Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes. Land. 2025; 14(7):1352. https://doi.org/10.3390/land14071352
Chicago/Turabian StyleYi, Jun, Mengyi Xu, Qian Ren, Hailin Zhang, Muxing Liu, Yuanhang Fei, Shenglong Li, Hanjiang Nie, Qi Li, Xin Ni, and et al. 2025. "Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes" Land 14, no. 7: 1352. https://doi.org/10.3390/land14071352
APA StyleYi, J., Xu, M., Ren, Q., Zhang, H., Liu, M., Fei, Y., Li, S., Nie, H., Li, Q., Ni, X., & Wang, Y. (2025). Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes. Land, 14(7), 1352. https://doi.org/10.3390/land14071352