Ownership Patterns and Landscape Diversity: Conservation Implications in Maryland
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Sources
2.2.1. Ownership Data
2.2.2. Land Use/Land Cover Data
2.2.3. Landowner Survey Data
2.3. Analytical Methods
2.3.1. Tabulation of Land Use by Landowner
2.3.2. Clustering of Landowners by Land Cover
- Patch Density: Measures the number of patches per unit area (patches per 100 acres), indicating landscape fragmentation.
- Edge Density: Quantifies total edge length per unit area (m/acre), reflecting patch boundary complexity.
- Largest Patch Index: Represents the percentage of the landscape occupied by the largest patch, identifying dominant cluster extents.
- Clumpiness Index: Assesses spatial aggregation of patches, with values approaching 1 indicating high connectivity and -1 indicating dispersion.
- Mean Euclidean Nearest Neighbor (ENN) distance: Calculates the average distance (m) between patches of the same cluster, evaluating patch isolation.
- Cohesion Index: Measures physical connectedness of patches, with higher values (0–100) indicating greater landscape connectivity.
- Proportional Landscape Adjacency: Estimates the proportion of shared edges between patches (%), capturing spatial arrangement.
- Effective Mesh Size: Represents the average patch size (acres) if all patches were equal, assessing habitat connectivity.
- Interspersion and Juxtaposition Index: Evaluates the intermixing of cluster types (0–100), with higher values indicating greater interspersion.
- Standard Deviation and Coefficient of Variation of ENN: Measures variability in nearest neighbor distances, revealing clustering or dispersion patterns.
2.3.3. Clustering as a Predictor of Landowner Behavior
3. Results
3.1. Land Ownership Distribution
3.2. Land Use/Land Cover Distribution
3.3. Cluster Analysis
3.3.1. Cluster Composition and Homogeneity
3.3.2. Cluster Coverage and Spatial Distribution
3.3.3. Cluster Size Class Ownership Patterns
3.3.4. Connectivity of Clusters
3.4. Cluster Prediction of Landowner Motivations and Behavior
3.4.1. Property Income
3.4.2. Conservation Interest
3.4.3. Recreation Motivation
3.4.4. Other Motivations and Barriers
4. Discussion
4.1. Land Ownership Distribution
4.2. Land Use/Land Cover Ownership Distribution
4.3. Cluster Analysis
4.4. Landowner Survey by Cluster
4.5. Limitations to Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ENN | Euclidean Nearest Neighbor |
IJI | Interspersion Juxtaposition Index |
PLA | Proportional Landscape Adjacency |
USDA | United States Department of Agriculture |
References
- Caro, T.; Rowe, Z.; Berger, J.; Wholey, P.; Dobson, A. An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. Conserv. Lett. 2022, 15, e12868. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Cordingley, J.E.; Newton, A.C.; Rose, R.J.; Clarke, R.T.; Bullock, J.M. Can landscape-scale approaches to conservation management resolve biodiversity-ecosystem service trade-offs? J. Appl. Ecol. 2016, 53, 96–105. [Google Scholar] [CrossRef]
- Prugh, L.R.; Hodges, K.E.; Sinclair, A.R.E.; Brashares, J.S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl. Acad. Sci. USA 2008, 105, 20770–20775. [Google Scholar] [CrossRef]
- Scott, J.M.; Davis, F.W.; McGhie, R.G.; Wright, R.G.; Grovers, C.; Estes, J. Nature reserves: Do they capture the full range of America’s biological diversity? Ecol. Appl. 2001, 11, 999–1007. [Google Scholar] [CrossRef]
- Bargelt, L.; Fortin, M.J.; Murray, D.L. Assessing connectivity and the contribution of private lands to protected area networks in the United States. PLoS ONE 2020, 15, e0228946. [Google Scholar] [CrossRef]
- Balukas, J.A.; Bell, K.P.; Bauer, D.M. Classifying private landowners to improve understanding of management decisions and conservation opportunities in urbanizing forested landscapes. J. Environ. Manag. 2019, 232, 751–758. [Google Scholar] [CrossRef]
- Hurst, Z.; Kreuter, U. Place-Based Identities of Landowners: Implications for Wildlife Conservation. Soc. Nat. Resour. 2021, 34, 659–680. [Google Scholar] [CrossRef]
- Riva, F.; Fahrig, L. Landscape-scale habitat fragmentation is positively related to biodiversity, despite patch-scale ecosystem decay. Ecol. Lett. 2023, 26, 268–277. [Google Scholar] [CrossRef]
- Żmihorski, M.; Chylarecki, P.; Rejt, Ł.; Mazgajski, T.D. The effects of forest patch size and ownership structure on tree stand characteristics in a highly deforested landscape of Central Poland. Eur. J. For. Res. 2010, 129, 393–400. [Google Scholar] [CrossRef]
- De Steven, D.; Lowrance, R. Agricultural conservation practices and wetland ecosystem services in the wetland-rich Piedmont-Coastal Plain region. Ecol. Appl. 2011, 21, S3–S17. [Google Scholar] [CrossRef]
- Wright, C.K.; Wimberly, M.C. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci. USA 2013, 110, 4134–4139. [Google Scholar] [CrossRef] [PubMed]
- Riitters, K.; Schleeweis, K.; Costanza, J. Forest Area Change in the Shifting Landscape Mosaic of the Continental United States from 2001 to 2016. Land 2020, 9, 417. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Mallick, P.H.; Chakraborty, S.K. Forest, wetland and biodiversity: Revealing multi-faceted ecological services from ecorestoration of a degraded tropical landscape. Ecohydrol. Hydrobiol. 2018, 18, 278–296. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Wu, J. The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities. PLoS ONE 2016, 11, e0154613. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.; Jiang, J.; Zhao, Y. Direct and indirect effects of agricultural expansion and landscape fragmentation processes on natural habitats. Agric. Ecosyst. Environ. 2023, 353, 108555. [Google Scholar] [CrossRef]
- Lister, T.W. Forests of Maryland, 2016; U.S. Department of Agriculture, Northern Research Station: Newtown Square, PA, USA, 2017. [CrossRef]
- Loehle, C.; Bently Wigley, T.; Rutzmoser, S.; Gerwin, J.A.; Keyser, P.D.; Lancia, R.A.; Reynolds, C.J.; Thill, R.E.; Weih, R.; White, D., Jr.; et al. Managed forest landscape structure and avian species richness in the southeastern US. For. Ecol. Manag. 2005, 214, 279–293. [Google Scholar] [CrossRef]
- Riitters, K.H.; Coulston, J.W.; Wickham, J.D. Fragmentation of forest communities in the eastern United States. For. Ecol. Manag. 2012, 263, 85–93. [Google Scholar] [CrossRef]
- Adhikari, A.; Hansen, A.J. Land use change and habitat fragmentation of wildland ecosystems of the North Central United States. Landsc. Urban Plan. 2018, 177, 196–216. [Google Scholar] [CrossRef]
- Maryland Department of Planning. Maryland Land Use/Land Cover 2022 Update: A Report on Statewide Land Use/Land Cover Trends and Statistics; Maryland Department of Planning: Baltimore, MD, USA, 2022. Available online: https://planning.maryland.gov/Documents/OurProducts/landuse/Statewide.pdf (accessed on 17 June 2025).
- Macaulay, L. Recovering Northern Bobwhite Quail: A Guide to Habitat Management (FS-2023-0683); University of Maryland Extension: College Park, MD, USA, 2024; Available online: https://extension.umd.edu/resource/recovering-northern-bobwhite-quail-guide-habitat-management-fs-2023-0683/ (accessed on 3 March 2025).
- Knight, R.L. Private Lands: The Neglected Geography. Conserv. Biol. 1999, 13, 223–224. [Google Scholar] [CrossRef]
- Sorice, M.G.; Conner, J.R.; Kreuter, U.P.; Wilkins, R.N. Centrality of the Ranching Lifestyle and Attitudes Toward a Voluntary Incentive Program to Protect Endangered Species. Rangel. Ecol. Manag. 2012, 65, 144–152. [Google Scholar] [CrossRef]
- Farmer, J.R.; Ma, Z.; Drescher, M.; Knackmuhs, E.G.; Dickinson, S.L. Private Landowners, Voluntary Conservation Programs, and Implementation of Conservation Friendly Land Management Practices. Conserv. Lett. 2017, 10, 58–66. [Google Scholar] [CrossRef]
- Sorice, M.G.; Kreuter, U.P.; Wilcox, B.P.; Fox, W.E., III. Changing landowners, changing ecosystem? Land-ownership motivations as drivers of land management practices. J. Environ. Manag. 2014, 133, 144–152. [Google Scholar] [CrossRef]
- Hanski, I. Habitat Connectivity, Habitat Continuity, and Metapopulations in Dynamic Landscapes. Oikos 1999, 87, 209–219. [Google Scholar] [CrossRef]
- Ferranto, S.; Huntsinger, L.; Kelly, M. Sustaining Ecosystem Services from Private Lands in California: The Role of the Landowner. Rangelands 2014, 36, 44–51. [Google Scholar] [CrossRef]
- Turner, M.G.; Wear, D.N.; Flamm, R.O. Land Ownership and Land-Cover Change in the Southern Appalachian Highlands and the Olympic Peninsula. Ecol. Appl. 1996, 6, 1150–1172. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Erickson, D.L.; Ryan, R.L.; De Young, R. Woodlots in the rural landscape: Landowner motivations and management attitudes in a Michigan (USA) case study. Landsc. Urban Plan. 2002, 58, 101–112. [Google Scholar] [CrossRef]
- Pouta, E.; Myyrä, S.; Hänninen, H. Farm Landowners’ Objectives in Finland: Two Approaches for Owner Classifications. Soc. Nat. Resour. 2011, 10, 1042–1062. [Google Scholar] [CrossRef]
- Zheng, D.; Heath, L.S.; Ducey, M.J.; Butler, B. Relationships Between Major Ownerships, Forest Aboveground Biomass Distributions, and Landscape Dynamics in the New England Region of USA. Environ. Manag. 2010, 45, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Pocewicz, A.; Nielsen-Pincus, M.; Goldberg, C.S.; Johnson, M.H.; Morgan, P.; Force, J.E.; Waits, L.P.; Vierling, L. Predicting land use change: Comparison of models based on landowner surveys and historical land cover trends. Landsc. Ecol. 2008, 23, 195–210. [Google Scholar] [CrossRef]
- Chesapeake Bay Program. Chesapeake Bay Land Use and Land Cover (LULC) Database 2022 Edition. U.S. Geological Survey Data Release. 2023. Available online: https://doi.org/10.5066/P981GV1L (accessed on 25 February 2025).
- Huntsinger, L.; Johnson, M.; Stafford, M.; Fried, J. Hardwood Rangeland Landowners in California from 1985 to 2004: Production, Ecosystem Services, and Permanence. Rangel. Ecol. Manag. 2010, 63, 324–334. [Google Scholar] [CrossRef]
- Sorice, M.G.; Kreuter, U.P.; Wilcox, B.P.; Fox, W.E., III. Classifying land-ownership motivations in central, Texas, USA: A first step in understanding drivers of large-scale land cover change. J. Arid Environ. 2012, 80, 56–64. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Napton, D.E.; Auch, R.F.; Headley, R.; Taylor, J.L. Land changes and their driving forces in the Southeastern United States. Reg. Environ. Change 2010, 10, 37–53. [Google Scholar] [CrossRef]
- van Vliet, J.; de Groot, H.L.F.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef]
- Macaulay, L.; Butsic, V. Ownership characteristics and crop selection in California cropland. Calif. Agric. 2017, 71, 221–230. [Google Scholar] [CrossRef]
- Wilkins, N.; Brown, R.D.; Conner, R.J.; Engle, J.; Gilliland, C.; Hays, A.; Slack, R.D.; Steinbach, D.W. Fragmented Lands: Changing Land Ownership in Texas; The Texas A&M University System, The Agriculture Program: College Station, TX, USA, 2000; Available online: https://www.landcan.org/pdfs/Fragemented_Land_study_IRNR.pdf (accessed on 9 April 2025).
- Butler, B.J.; Leatherberry, E.C. America’s Family Forest Owners. J. For. 2004, 102, 4–14. [Google Scholar] [CrossRef]
- Smith, K.; Cubbage, F. Land Fragmentation and Heirs Property: Current Issues and Policy Responses. Land 2024, 13, 459. [Google Scholar] [CrossRef]
- Creighton, J.H.; Blatner, K.A.; Carroll, M.S. For the Love of Land: The Influence of Generational Land Transfer on Forest Fragmentation in Washington State. Small-Scale For. 2015, 15, 1–15. [Google Scholar] [CrossRef]
- Lackett, J.M.; Galvin, K.A. From Fragmentation to Reaggregation of Rangelands in the Northern Great Plains, USA. In Fragmentation in Semi-Arid and Arid Landscapes, 1st ed.; Galvin, K.A., Hobbs, N.T., Reid, R.S., Behnke, R.H., Jr., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 1, pp. 113–134. [Google Scholar] [CrossRef]
- Irwin, E.G.; Bockstael, N.E. The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 20672–20677. [Google Scholar] [CrossRef] [PubMed]
- Heimlich, R.; Anderson, W. Development at the Urban Fringe and Beyond: Impacts on Agriculture and Rural Land; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2001. Available online: https://ers.usda.gov/sites/default/files/_laserfiche/publications/41350/19084_aer803_1_.pdf?v=74597 (accessed on 9 April 2025).
- Ferranto, S.; Huntsinger, L.; Getz, C.; Lahiff, M.; Stewart, W.; Nakamura, G.; Kelly, M. Management Without Borders? A Survey of Landowner Practices and Attitudes toward Cross-Boundary Cooperation. Soc. Nat. Resour. 2013, 26, 1082–1100. [Google Scholar] [CrossRef]
- Ferranto, S.; Huntsinger, L.; Getz, C.; Nakamura, G.; Stewart, W.; Drill, S.; Valachovic, Y.; DeLasaux, L.; Kelly, M. Forest and rangeland owners value land for natural amenities and as financial investment. Calif. Agric. 2011, 65, 184–191. [Google Scholar] [CrossRef]
- Butler, B.J.; Hewes, J.H.; Dickinson, B.J.; Andrejczyk, K.; Butler, S.M.; Markowski-Lindsay, M. Family Forest Ownerships of the United States, 2013: Findings from the USDA Forest Service’s National Woodland Owner Survey. J. For. 2016, 114, 638–647. [Google Scholar] [CrossRef]
- Maryland General Assembly. House Bill 322: Real Property—Restrictions on Use—Low-Impact Landscaping; Maryland General Assembly: Annapolis, MD, USA, 2021. Available online: https://mgaleg.maryland.gov/mgawebsite/Legislation/Details/HB0322?ys=2021rs (accessed on 3 June 2025).
- Riva, F.; Fahrig, L. The disproportionately high value of small patches for biodiversity conservation. Conserv. Lett. 2022, 15, e12881. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Tewksbury, J.J.; Levey, D.J.; Haddad, N.M.; Sargent, S.; Orrock, J.L.; Weldon, A.; Danielson, B.J.; Brinkerhoff, J.; Damschen, E.I.; Townsend, P. Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc. Natl. Acad. Sci. USA 2002, 99, 12923–12926. [Google Scholar] [CrossRef]
- Wratten, S.D.; Gillespie, M.; Decourtye, A.; Mader, E.; Desneux, N. Pollinator habitat enhancement: Benefits to other ecosystem services. Agric. Ecosyst. Environ. 2012, 159, 112–122. [Google Scholar] [CrossRef]
- Hall, D.M.; Camilo, G.R.; Tonietto, R.K.; Ollerton, J.; Ahrné, K.; Arduser, M.; Ascher, J.S.; Baldock, K.C.R.; Fowler, R.; Frankie, G.; et al. The city as a refuge for insect pollinators. Conserv. Biol. 2017, 31, 24–29. [Google Scholar] [CrossRef]
- Lerman, S.B.; Larson, K.L.; Narango, D.L.; Goddard, M.A.; Marra, P.P. Humanity for Habitat: Residential Yards as an Opportunity for Biodiversity Conservation. BioScience 2023, 73, 671–689. [Google Scholar] [CrossRef]
- Cortés-Capano, G.; Hanley, N.; Sheremet, O.; Hausmann, A.; Toivonen, T.; Garibotto-Carton, G.; Soutullo, A.; Di Minin, E. Assessing landowners’ preferences to inform voluntary private land conservation: The role of non-monetary incentives. Land Use Policy 2021, 109, 105626. [Google Scholar] [CrossRef]
- Loman, Z.G.; Blomberg, E.J.; Deluca, W.V.; Harrison, D.J.; Loftin, C.S.; Wood, P.B. Landscape capability predicts upland game bird abundance and occurrence. J. Wildl. Manag. 2017, 81, 1110–1116. [Google Scholar] [CrossRef]
- Kreye, J.; Kreye, M.; Groshek, B.; Hawthorne, N.; Patterson, E.; Pauletta, A.; Woodring, C. Restoring Pennsylvania’s Game Birds. 2024. Available online: https://extension.psu.edu/restoring-pennsylvanias-game-birds (accessed on 3 March 2025).
- English, P.A.; Nocera, J.J.; Pond, B.A.; Green, D.J. Habitat and food supply across multiple spatial scales influence the distribution and abundance of a nocturnal aerial insectivore. Landsc. Ecol. 2016, 32, 343–359. [Google Scholar] [CrossRef]
- Storch, F.; Boch, S.; Gossner, M.M.; Feldhaar, H.; Ammer, C.; Schall, P.; Polle, A.; Kroiher, F.; Müller, J.; Bauhaus, J. Linking structure and species richness to support forest biodiversity monitoring at large scales. Ann. For. Sci. 2023, 80, 3. [Google Scholar] [CrossRef]
- Loehle, C.; Miller, D.A.; Kovach, A.I.; Larsen-Gray, A.L.; Akresh, M.E.; McDonald, J.E.; Cheeseman, A.E.; King, D.; Petzinger, S.M.; Kanter, J. Forest Management Is Key for Conserving Biodiversity and Providing Ecosystem Services in the United States. Forests 2024, 15, 2087. [Google Scholar] [CrossRef]
- Oettel, J.; Lapin, K. Linking forest management and biodiversity indicators to strengthen sustainable forest management in Europe. Ecol. Indic. 2021, 122, 107275. [Google Scholar] [CrossRef]
- Jones, B.C.; Kleitch, J.L.; Harper, C.A.; Buehler, D.A. Ruffed grouse brood habitat use in a mixed hardwood forest: Implications for forest management in the Appalachians. For. Ecol. Manag. 2008, 255, 3580–3588. [Google Scholar] [CrossRef]
- Dessecker, D.R.; McAuley, D.G. Importance of Early Successional Habitat to Ruffed Grouse and American Woodcock. Wildl. Soc. Bull. 2001, 29, 456–465. Available online: https://www.jstor.org/stable/3784169 (accessed on 17 June 2025).
- Flory, S.L.; Clay, K. Invasive plant removal method determines native plant community responses. J. Appl. Ecol. 2009, 46, 434–442. [Google Scholar] [CrossRef]
- Vangi, E.; Dalmonech, D.; Cioccolo, E.; Marano, G.; Bianchini, L.; Puchi, P.F.; Grieco, E.; Cescatti, A.; Colantoni, A.; Chirici, G.; et al. Stand age diversity (and more than climate change) affects forests’ resilience and stability, although unevenly. J. Environ. Manag. 2024, 366, 121822. [Google Scholar] [CrossRef] [PubMed]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.B.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Stanton, R.L.; Morrissey, C.A.; Clark, R.G. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric. Ecosyst. Environ. 2018, 254, 244–254. [Google Scholar] [CrossRef]
- Tews, J.; Bert, D.G.; Mineau, P. Estimated Mortality of Selected Migratory Bird Species from Mowing and Other Mechanical Operations in Canadian Agriculture. Avian Conserv. Ecol. 2013, 8, 8. [Google Scholar] [CrossRef]
- Bollinger, E.K.; Bollinger, P.B.; Gavin, T.A. Effects of Hay-Cropping on Eastern Populations of the Bobolink. Wildl. Soc. Bull. 1990, 18, 142–150. Available online: https://www.jstor.org/stable/3782128 (accessed on 17 June 2025).
- Porath, W.R. Fawn Mortality Estimates in Farmland Deer Range. In White-Tailed Deer Population Management in the North Central States, Proceedings of the 41st Midwest Fish and Wildlife Conference, Urbana, IL, USA, 10 December 1979; Hine, R.L., Nehls, S., Eds.; North Central Section of the Wildlife Society: Osborn, MO, USA, 1980; pp. 55–63. [Google Scholar]
- Luscier, J.D.; Thompson, W.L. Short-Term Responses of Breeding Birds of Grassland and Early Successional Habitat to Timing of Haying in Northwestern Arkansas. Ornithol. Appl. 2009, 111, 538–544. [Google Scholar] [CrossRef]
- Freebury, J.; Macaulay, L. Haying for Wildlife; University of Maryland Extension: College Park, MD, USA, 2024. [Google Scholar]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef]
- Nocera, J.J.; Parsons, G.J.; Milton, G.R.; Fredeen, A.H. Compatibility of delayed cutting regime with bird breeding and hay nutritional quality. Agric. Ecosyst. Environ. 2005, 107, 245–253. [Google Scholar] [CrossRef]
- Gruntorad, M.P.; Graham, K.A.; Arcilla, N.; Chizinski, C.J. Is Hay for the Birds? Investigating Landowner Willingness to Time Hay Harvests for Grassland Bird Conservation. Animals 2021, 11, 1030. [Google Scholar] [CrossRef]
- Birckhead, J.L.; Harper, C.A.; Keyser, P.D.; McIntosh, D.; Holcomb, E.D.; Bates, G.E.; Waller, J.C. Structure of Avian Habitat Following Hay and Biofuels Production in Native Warm-season Grass Stands in the Mid-South. JSAFWA 2014, 1, 115–121. Available online: https://seafwa.org/sites/default/files/journal-articles/18Birckhead_et_al_115-121.pdf (accessed on 17 June 2025).
- Giuliano, W.M.; Daves, S.E. Avian response to warm-season grass use in pasture and hayfield management. Biol. Conserv. 2002, 106, 1–9. [Google Scholar] [CrossRef]
- Rater, B. Maryland Farmers Estimate $10.0 Million in 2011 Wildlife Related Crop Losses; United States Department of Agriculture, National Agricultural Statistics Service, Maryland Field Office: Annapolis, MD, USA, 2012. Available online: https://www.nass.usda.gov/Statistics_by_State/Maryland/Publications/Wildlife_Damage/mpr04-12Wildlife.pdf (accessed on 15 May 2025).
- Chesapeake Bay Program. High Resolution LULC Classification Accuracy Assessment Methodology; Chesapeake Bay Program: Annapolis, MD, USA, 2024; Available online: https://www.chesapeakebay.net/files/documents/lulcaccuracyassessment_detailed_methodology.pdf (accessed on 8 May 2025).
Land Use/Land Cover Categories | ||
---|---|---|
Water | Natural Succession | Impervious Roads |
Impervious Structures | Impervious, Other | Tree Canopy over Impervious |
Tree Canopy over Turf Grass | Turf Grass | Pervious Developed, Other |
Harvested Forest | Extractive | Forest |
Tree Canopy, Other | Wetlands, Riverine Non-forested | Wetlands, Terrene Non-forested |
Cropland | Pasture/Hay | Wetlands, Tidal Non-forested |
Original Land Use | Simplified Land Use |
---|---|
Pasture/Hay | Pasture/Hay |
Cropland | Cropland |
Impervious, Other | Developed |
Impervious Structures | Developed |
Pervious Developed, Other | Developed |
Tree Canopy over Impervious Roads | Developed |
Impervious Roads | Developed |
Extractive | Developed |
Forest | Forest |
Tree Canopy, Other | Forest |
Natural Succession | Successional |
Harvested Forest | Successional |
Turf Grass | Turf Grass |
Tree Canopy over Turf Grass | Turf Grass |
Wetlands, Tidal Non-forested | Wetlands |
Water | Wetlands |
Wetlands, Riverine Non-forested | Wetlands |
Wetlands, Terrene Non-forested | Wetlands |
Size Class (Acres) | Private Land Area (Acres) | Percent Private | State Land Area (Acres) | Percent State | County and City Land Area (Acres) | Percent County and City | Federal Land Area (Acres) | Percent Federal | Total Land Area (Acres) | Percent All Ownership |
---|---|---|---|---|---|---|---|---|---|---|
<1 | 415,416 | 98.20% | 1270 | 0.30% | 6089 | 1.40% | 253 | 0.10% | 423,029 | 6.80% |
1–3 | 397,076 | 96.90% | 1991 | 0.50% | 10,209 | 2.50% | 564 | 0.10% | 409,841 | 6.60% |
3–5 | 253,931 | 95.60% | 2053 | 0.80% | 9056 | 3.40% | 476 | 0.20% | 265,516 | 4.30% |
5–20 | 734,390 | 91.10% | 16,929 | 2.10% | 51,789 | 6.40% | 3024 | 0.40% | 806,132 | 13.00% |
20–100 | 1,463,698 | 89.40% | 68,978 | 4.20% | 91,988 | 5.60% | 11,713 | 0.70% | 1,636,377 | 26.40% |
100–250 | 1,272,653 | 89.20% | 82,048 | 5.80% | 53,967 | 3.80% | 17,358 | 1.20% | 1,426,026 | 23.00% |
>250 | 808,796 | 65.70% | 267,483 | 21.70% | 61,333 | 5.00% | 94,179 | 7.60% | 1,231,791 | 19.90% |
Total | 5,345,962 | 86.20% | 440,752 | 7.10% | 284,432 | 4.60% | 127,567 | 2.10% | 6,198,713 | 100.00% |
Land Use Type | Total Acres | Number of Owners | Average Acres | 25th Percentile | Median Acres | 75th Percentile | 95th Percentile | Largest Land Use Ownership | Percent of Land Cover in Largest Ownership |
---|---|---|---|---|---|---|---|---|---|
Forest | 2,392,720 | 301,214 | 7.94 | 0.18 | 0.76 | 2.96 | 27.6 | 20,609 | 0.86 |
Cropland | 1,070,741 | 54,819 | 19.53 | 0.03 | 0.96 | 11.72 | 105.75 | 2702 | 0.25 |
Pasture/Hay | 583,013 | 74,140 | 7.86 | 0.08 | 1.27 | 4.31 | 39.43 | 2407 | 0.41 |
Turf Grass | 351,547 | 479,797 | 0.73 | 0.18 | 0.38 | 0.74 | 2 | 1253 | 0.36 |
Tree Canopy over Turf Grass | 260,084 | 494,036 | 0.53 | 0.18 | 0.34 | 0.6 | 1.37 | 894 | 0.34 |
Wetlands, Tidal Non-forested | 177,403 | 26,105 | 6.8 | 0.02 | 0.12 | 0.86 | 14.71 | 8948 | 5.04 |
Impervious, Other | 141,178 | 466,431 | 0.3 | 0.02 | 0.06 | 0.14 | 0.96 | 1402 | 0.99 |
Natural Succession | 116,453 | 110,437 | 1.05 | 0.01 | 0.09 | 0.44 | 3.3 | 1177 | 1.01 |
Tree Canopy, Other | 109,478 | 213,299 | 0.51 | 0.01 | 0.06 | 0.3 | 2.17 | 511 | 0.47 |
Impervious Structures | 68,475 | 461,993 | 0.15 | 0.04 | 0.06 | 0.09 | 0.37 | 348 | 0.51 |
Pervious Developed, Other | 67,884 | 78,548 | 0.86 | 0 | 0.01 | 0.14 | 2.45 | 1937 | 2.85 |
Water | 63,889 | 49,683 | 1.29 | 0.01 | 0.06 | 0.35 | 2.63 | 7164 | 11.21 |
Tree Canopy over Impervious | 25,075 | 426,915 | 0.06 | 0.01 | 0.02 | 0.06 | 0.2 | 117 | 0.47 |
Wetlands, Riverine Non-forested | 25,055 | 21,283 | 1.18 | 0.02 | 0.11 | 0.66 | 4.52 | 345 | 1.38 |
Impervious Roads | 18,125 | 152,810 | 0.12 | 0 | 0.01 | 0.05 | 0.37 | 408 | 2.25 |
Extractive | 9325 | 488 | 19.11 | 0.22 | 3.22 | 15.74 | 103.51 | 435 | 4.66 |
Wetlands, Terrene Non-forested | 3290 | 5838 | 0.56 | 0.01 | 0.09 | 0.44 | 2.47 | 38 | 1.16 |
Harvested Forest | 1654 | 257 | 6.44 | 0.11 | 1.22 | 3.72 | 33.96 | 141 | 8.52 |
Cluster Description | Total Acres | Percent of Total Acres | Number of Owners | Percent of Total Owners | Average Acres | Median Acres |
---|---|---|---|---|---|---|
Forest | 3,004,443 | 54.7 | 180,132 | 34.5 | 16.7 | 3 |
Turf Grass | 376,370 | 6.9 | 250,651 | 48 | 1.5 | 1 |
Developed | 226,595 | 4.1 | 35,845 | 6.9 | 6.3 | 1.7 |
Hay/Pasture | 909,073 | 16.6 | 37,003 | 7.1 | 24.6 | 5.9 |
Crop | 973,008 | 17.7 | 18,777 | 3.6 | 51.8 | 11.8 |
Size Class (Acres) | Crop | Developed | Forest | Pasture/Hay | Turf Grass |
---|---|---|---|---|---|
<1 | 1.4% | 8.4% | 3.0% | 1.6% | 27.6% |
1–3 | 4.5% | 19.7% | 9.4% | 6.0% | 42.6% |
3–5 | 1.7% | 8.8% | 5.3% | 4.7% | 10.6% |
5–20 | 8.4% | 31.1% | 20.2% | 17.8% | 11.3% |
20–100 | 33.8% | 17.4% | 32.0% | 35.6% | 3.8% |
100–250 | 38.9% | 5.3% | 15.0% | 26.3% | 2.8% |
>250 | 11.3% | 9.2% | 15.1% | 8.0% | 1.4% |
Cluster | Patch Density (#/100 Acres) | Edge Density (m/Acres) | Largest Patch Index (%) | Clumpiness Index | Interspersion Juxtaposition Index (%) |
---|---|---|---|---|---|
Forest | 0.59 | 9.02 | 5.50 | 0.87 | 94.0 |
Turf Grass | 1.12 | 5.14 | 0.08 | 0.72 | 75.0 |
Developed | 0.38 | 1.74 | 0.11 | 0.82 | 79.2 |
Hay and Pasture | 0.23 | 5.02 | 0.42 | 0.91 | 78.0 |
Crop | 0.13 | 3.60 | 0.68 | 0.93 | 78.9 |
Cluster | Mean Euclidean Nearest Neighbor (ENN) Distance (m) | Cohesion (%) | Proportional Landscape Adjacency (%) | Effective Mesh Size (Acres) | Standard Deviation of ENN (m) | Coefficient of Variation of ENN (m) |
---|---|---|---|---|---|---|
Forest | 111.9 | 99.6 | 93.9 | 41,409.6 | 100.7 | 90.0 |
Turf Grass | 132.7 | 92.7 | 73.7 | 16.1 | 156.2 | 117.8 |
Developed | 207.6 | 95.3 | 82.7 | 31.1 | 364.0 | 175.4 |
Hay and Pasture | 235.3 | 98.2 | 92.4 | 411.9 | 379.2 | 161.2 |
Crop | 265.8 | 99.0 | 94.4 | 1,244.7 | 498.2 | 187.4 |
Regression Results for Landowner Motivations and Behaviors by Cluster | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OLS | OLS | logistic | OLS | OLS | OLS | OLS | OLS | OLS | OLS | OLS | OLS | |
Income (%) | Own Reason: Income | Econ Act: Hunting | Mean Interest | Own Reason: Hunting | Wildlife Reason: Hunting | Own Reason: Non-Hunting Recreation | Own Reason: Privacy | Barrier: Damage | Barrier: Priorities | Barrier: Labor | Barrier: Equipment | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |
Forest | −1.119 | −0.309 ** | 0.463 * | 0.028 | 0.617 *** | 0.389 ** | −0.762 *** | 0.223 ** | −0.209 | −0.478 *** | −0.080 | 0.208 |
(1.005) | (0.151) | (0.241) | (0.123) | (0.177) | (0.164) | (0.149) | (0.114) | (0.146) | (0.148) | (0.154) | (0.168) | |
Crop | 7.750 *** | 1.028 *** | 1.088 *** | −0.595 *** | 0.521 * | 0.076 | −1.062 *** | 0.286 | 0.882 *** | 0.232 | −0.565 ** | −0.259 |
(1.651) | (0.249) | (0.314) | (0.202) | (0.290) | (0.269) | (0.244) | (0.187) | (0.239) | (0.243) | (0.253) | (0.276) | |
Acres | 0.171 *** | 0.013 *** | 0.007 *** | −0.001 | 0.004 *** | 0.002 | −0.008 *** | −0.002 | 0.006 *** | 0.005 *** | −0.002 | −0.004 ** |
(0.009) | (0.001) | (0.001) | (0.001) | (0.002) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |
Forest:Acres | −0.130 *** | −0.009 *** | −0.001 | 0.002 * | −0.0002 | 0.001 | 0.005 *** | 0.0003 | −0.006 *** | −0.004 *** | 0.0004 | 0.001 |
(0.010) | (0.001) | (0.002) | (0.001) | (0.002) | (0.002) | (0.001) | (0.001) | (0.001) | (0.001) | (0.002) | (0.002) | |
Crop:Acres | −0.053 *** | −0.005 *** | −0.003 | 0.003 ** | −0.001 | 0.0005 | 0.003 * | −0.001 | −0.002 | −0.001 | 0.001 | 0.0004 |
(0.012) | (0.002) | (0.002) | (0.001) | (0.002) | (0.002) | (0.002) | (0.001) | (0.002) | (0.002) | (0.002) | (0.002) | |
Constant | 3.322 *** | 4.848 *** | −3.009 *** | 6.144 *** | 5.627 *** | 6.056 *** | 8.142 *** | 8.817 *** | 3.199 *** | 4.003 *** | 6.624 *** | 5.834 *** |
(0.854) | (0.129) | (0.212) | (0.105) | (0.150) | (0.139) | (0.126) | (0.097) | (0.124) | (0.126) | (0.131) | (0.143) | |
Observations | 2024 | 2024 | 2024 | 2024 | 2024 | 2024 | 2024 | 2024 | 2024 | 2024 | 2024 | 2024 |
R2 | 0.339 | 0.139 | 0.011 | 0.029 | 0.019 | 0.059 | 0.012 | 0.058 | 0.040 | 0.008 | 0.021 | |
Adjusted R2 | 0.337 | 0.137 | 0.008 | 0.027 | 0.017 | 0.057 | 0.009 | 0.056 | 0.037 | 0.006 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macaulay, L.; Pinnapu Reddy, Y.R.; Griffiths, E. Ownership Patterns and Landscape Diversity: Conservation Implications in Maryland. Land 2025, 14, 1342. https://doi.org/10.3390/land14071342
Macaulay L, Pinnapu Reddy YR, Griffiths E. Ownership Patterns and Landscape Diversity: Conservation Implications in Maryland. Land. 2025; 14(7):1342. https://doi.org/10.3390/land14071342
Chicago/Turabian StyleMacaulay, Luke, Yashwanth Reddy Pinnapu Reddy, and Evan Griffiths. 2025. "Ownership Patterns and Landscape Diversity: Conservation Implications in Maryland" Land 14, no. 7: 1342. https://doi.org/10.3390/land14071342
APA StyleMacaulay, L., Pinnapu Reddy, Y. R., & Griffiths, E. (2025). Ownership Patterns and Landscape Diversity: Conservation Implications in Maryland. Land, 14(7), 1342. https://doi.org/10.3390/land14071342