Climate Change Mitigation vs. Renewable Energy Consumption and Biomass Demand
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
4.1. Trends in GDP, Energy Consumption, GHG Emissions, and LULUCF Removal
4.2. Trends in Renewables Consumption and Wood Used for Production of Wood Products and Energy
4.3. Substitution Effect of Wood Biomass Used for Material and Energy Production in the EU
4.4. The Role of LULUCF in Climate Mitigation
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abubakar, I.R.; Dano, U.L. Sustainable Urban Planning Strategies for Mitigating Climate Change in Saudi Arabia. Environ. Dev. Sustain. 2020, 22, 5129–5152. [Google Scholar] [CrossRef]
- Hasan, M.A.; Abubakar, I.R.; Rahman, S.M.; Aina, Y.A.; Islam Chowdhury, M.M.; Khondaker, A.N. The Synergy between Climate Change Policies and National Development Goals: Implications for Sustainability. J. Clean Prod. 2020, 249, 119369. [Google Scholar] [CrossRef]
- Beynon, J.; Wickstead, E. Climate Change and Development in Three Charts: An Update. 2024. Available online: https://www.cgdev.org/blog/climate-and-development-three-charts-update (accessed on 20 June 2025).
- Vavrek, R.; Chovancova, J. Decoupling of Greenhouse Gas Emissions from Economic Growth in V4 Countries. Procedia Econ. Financ. 2016, 39, 526–533. [Google Scholar] [CrossRef]
- OECD Economic Policies to Foster Green Growth. 2014. Available online: Https://Www.Oecd.Org/En/Topics/Sub-Issues/Economic-Policies-to-Foster-Green-Growth.Html (accessed on 7 June 2025).
- EC The European Green Deal. European Commission. Communication from the Commission to the European Parliament, the European Council, The Council, the European Economic and Social Committee and the Committee of Regions. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 7 June 2025).
- Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). PE/27/2021/REV/1, OJ L 243, 9.7.2021, p. 1–17. Available online: http://data.europa.eu/eli/reg/2021/1119/oj (accessed on 15 June 2025).
- EEA National Emissions Reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism, Oct. 2021. Total GHG Emissions and Removals in the EU. Available online: https://www.eea.europa.eu/en/datahub/datahubitem-view/3b7fe76c-524a-439a-bfd2-a6e4046302a2 (accessed on 7 June 2025).
- Berndes, G.; Abt, B.; Asikainen, A.; Cowie, A.; Dale, V.; Egnell, G.; Lindner, M.; Marelli, L.; Paré, D.; Pingoud, K.; et al. Forest Biomass, Carbon Neutrality and Climate Change Mitigation. Sci. Policy 2016, 3, 1–28. [Google Scholar]
- Regulation (EU) 2018/842 of the European Parliament and of the Council of 30 May 2018 on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) No 525/2013 (Text with EEA relevance). PE/3/2018/REV/2, OJ L 156, 19.6.2018, p. 26–4. Available online: http://data.europa.eu/eli/reg/2018/842/oj (accessed on 15 June 2025).
- Grassi, G.; House, J.; Dentener, F.; Federici, S.; Den Elzen, M.; Penman, J. The Key Role of Forests in Meeting Climate Targets Requires Science for Credible Mitigation. Nat. Clim. Change 2017, 7, 220–226. [Google Scholar] [CrossRef]
- Roe, S.; Streck, C.; Obersteiner, M.; Frank, S.; Griscom, B.; Drouet, L.; Fricko, O.; Gusti, M.; Harris, N.; Hasegawa, T.; et al. Contribution of the Land Sector to a 1.5 °C World. Nat. Clim. Change 2019, 9, 817–828. [Google Scholar] [CrossRef]
- Lago, C.; Herrera, I.; Caldés, N.; Lechón, Y. Nexus Bioenergy-Bioeconomy. In The Role of Bioenergy in the Emerging Bioeconomy: Resources, Technologies, Sustainability and Policy; Academic Press: Cambridge, MA, USA, 2018; pp. 3–24. [Google Scholar] [CrossRef]
- EC Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank “A Clean Planet for All”. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy. COM/2018/773 Final. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0773 (accessed on 7 June 2025).
- EC European Bioeconomy Policy: Stocktaking and Future Developments: Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. European Commission: Brussels, Belgium, Publications Office of the European Union, 2022, pp. 1–109. Available online: https://data.europa.eu/doi/10.2777/997651 (accessed on 15 April 2025).
- Andersen, S.P.; Allen, B.; Domingo, G.C. Biomass in the EU Green Deal: Towards Consensus on Sustainable Use of Biomass for EU Bioenergy? Policy Report, Institute for European Environmental Policy (IEEP). 2021. Available online: https://ieep.eu/publications/biomass-in-the-eu-green-deal-towards-consensus-on-sustainable-use-of-biomass-for-eu-bioenergy/ (accessed on 7 June 2025).
- Leskinen, P.; Cardellini, G.; González García, S.; Hurmekoski, E.; Sathre, R.; Seppälä, J.; Smyth, C.E.; Stern, T.; Verkerk, H. Substitution Effects of Wood-Based Products in Climate Change Mitigation. Sci. Policy 2018, 7, 28. [Google Scholar]
- Liu, Z. Building Global Energy Interconnection. In Global Energy Interconnection; Academic Press: Cambridge, MA, USA, 2015; pp. 183–237. [Google Scholar] [CrossRef]
- Ekpeni, L.E.N.; Benyounis, K.Y.; Nkem-Ekpeni, F.; Stokes, J.; Olabi, A.G. Energy Diversity through Renewable Energy Source (RES)—A Case Study of Biomass. Energy Procedia 2014, 61, 1740–1747. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Skjelhaugen, O.J.; Asplund, D.; Nesheim, L. An Overview of the Biomass Resource Potential of Norway for Bioenergy Use. Renew. Sustain. Energy Rev. 2011, 15, 3388–3398. [Google Scholar] [CrossRef]
- de Wit, M.; Londo, M.; Faaij, A. Productivity Developments in European Agriculture: Relations to and Opportunities for Biomass Production. Renew. Sustain. Energy Rev. 2011, 15, 2397–2412. [Google Scholar] [CrossRef]
- Yusaf, T.; Goh, S.; Borserio, J.A. Potential of Renewable Energy Alternatives in Australia. Renew. Sustain. Energy Rev. 2011, 15, 2214–2221. [Google Scholar] [CrossRef]
- Robledo-Abad, C.; Althaus, H.J.; Berndes, G.; Bolwig, S.; Corbera, E.; Creutzig, F.; Garcia-Ulloa, J.; Geddes, A.; Gregg, J.S.; Haberl, H.; et al. Bioenergy Production and Sustainable Development: Science Base for Policymaking Remains Limited. GCB Bioenergy 2017, 9, 541–556. [Google Scholar] [CrossRef]
- Haberl, H.; Sprinz, D.; Bonazountas, M.; Cocco, P.; Desaubies, Y.; Henze, M.; Hertel, O.; Johnson, R.K.; Kastrup, U.; Laconte, P.; et al. Correcting a Fundamental Error in Greenhouse Gas Accounting Related to Bioenergy. Energy Policy 2012, 45, 18–23. [Google Scholar] [CrossRef]
- Booth, M.S. Not Carbon Neutral: Assessing the Net Emissions Impact of Residues Burned for Bioenergy. Environ. Res. Lett. 2018, 13, 035001. [Google Scholar] [CrossRef]
- Elbein, S. Europe’s Renewable Energy Policy Is Built on Burning American Trees | Vox. Available online: https://www.vox.com/science-and-health/2019/3/4/18216045/renewable-energy-wood-pellets-biomass (accessed on 7 June 2025).
- Cho, R. Is Biomass Really Renewable? In State of the Planet; Earth Institute, Colombia University: New York, NY, USA, 2011; Available online: https://news.climate.columbia.edu/2011/08/18/is-biomass-really-renewable/ (accessed on 7 June 2025).
- Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol Can Contribute to Energy and Environmental Goals. Science 2006, 311, 506–508. [Google Scholar] [CrossRef]
- Goldemberg, J. Ethanol for a Sustainable Energy Future. Science 2007, 315, 808–810. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Seabra, J.E.A.; Machado, P.G.; de Barros Correia, B.; de Oliveira, C.O.F. Sustainability of Biomass. In Biomass and Green Chemistry: Building a Renewable Pathway; Vaz, S., Jr., Ed.; Springer: Cham, Switzerland, 2017; pp. 1–252. [Google Scholar] [CrossRef]
- UN Transforming Our World: The 2030 Agenda for Sustainable Development | a Resolution Adopted by the General Assembly on 25 September 2015. Department of Economic and Social Affairs. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 7 June 2025).
- US Energy Independence and Security Act, 2007. Public Law 110–140–DEC. 19, 2007. Available online: https://afdc.energy.gov/laws/eisa.html (accessed on 15 June 2025).
- Sorda, G.; Banse, M.; Kemfert, C. An Overview of Biofuel Policies across the World. Energy Policy 2010, 38, 6977–6988. [Google Scholar] [CrossRef]
- Yang, X.J.; Hu, H.; Tan, T.; Li, J. China’s Renewable Energy Goals by 2050. Environ. Dev. 2016, 20, 83–90. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast) (Text with EEA relevance.) PE/48/2018/REV/1, OJ L 328, 21.12.2018, p. 82–209. Available online: http://data.europa.eu/eli/dir/2018/2001/oj (accessed on 15 June 2025).
- EU EU’s Global Leadership in Renewables; Final Synthesis Report; July 2021. Publications Office of the European Union: Luxembourg, 2022. [CrossRef]
- Brack, D.; Hewitt, J.; Marchand, T.M. Woody Biomass for Power and Heat. Demand and Supply in Selected EU Member States. Research Paper. Chatham House. Available online: https://espas.secure.europarl.europa.eu/orbis/document/woody-biomass-power-and-heat-demand-and-supply-selected-eu-member-states (accessed on 7 June 2025).
- Bell, J.; Paula, L.; Dodd, T.; Németh, S.; Nanou, C.; Mega, V.; Campos, P. EU Ambition to Build the World’s Leading Bioeconomy—Uncertain Times Demand Innovative and Sustainable Solutions. New Biotechnol. 2018, 40, 25–30. [Google Scholar] [CrossRef]
- Brunet-Navarro, P.; Jochheim, H.; Muys, B. The Effect of Increasing Lifespan and Recycling Rate on Carbon Storage in Wood Products from Theoretical Model to Application for the European Wood Sector. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 1193–1205. [Google Scholar] [CrossRef]
- Koukios, E.; Monteleone, M.; Texeira Carrondo, M.J.; Charalambous, A.; Girio, F.; Hernández, E.L.; Mannelli, S.; Parajó, J.C.; Polycarpou, P.; Zabaniotou, A. Targeting Sustainable Bioeconomy: A New Development Strategy for Southern European Countries. The Manifesto of the European Mezzogiorno. J. Clean Prod. 2018, 172, 3931–3941. [Google Scholar] [CrossRef]
- Lainez, M.; González, J.M.; Aguilar, A.; Vela, C. Spanish Strategy on Bioeconomy: Towards a Knowledge Based Sustainable Innovation. New Biotechnol. 2018, 40, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy framework, and amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU (Text with EEA relevance). PE/68/2017/REV/1, OJ L 156, 19.6.2018, p. 1–25. Available online: http://data.europa.eu/eli/reg/2018/841/oj (accessed on 15 June 2025).
- Nabuurs, G.J.; Lindner, M.; Verkerk, P.J.; Gunia, K.; Deda, P.; Michalak, R.; Grassi, G. First Signs of Carbon Sink Saturation in European Forest Biomass. Nat. Clim. Change 2013, 3, 792–796. [Google Scholar] [CrossRef]
- Ceccherini, G.; Duveiller, G.; Grassi, G.; Lemoine, G.; Avitabile, V.; Pilli, R.; Cescatti, A. Abrupt Increase in Harvested Forest Area over Europe after 2015. Nature 2020, 583, 72–77. [Google Scholar] [CrossRef]
- EEA Greenhouse Gas Emissions from Land Use, Land Use Change and Forestry. Indicator Assessment, CLIM 057. Available online: https://www.eea.europa.eu/data-and-maps/indicators/greenhouse-gas-emissions-from-land/assessment (accessed on 7 June 2025).
- EEA Forest: Growing Stock, Increment and Fellings. European Environment Agency, Copenhagen. Available online: https://www.eea.europa.eu/data-and-maps/indicators/forest-growing-stock-increment-and-fellings-3/assessment (accessed on 7 June 2025).
- Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B.D.; Ciais, P.; Poulter, B.; Bayer, A.D.; Bondeau, A.; Calle, L.; Chini, L.P.; et al. Historical Carbon Dioxide Emissions Caused by Land-Use Changes Are Possibly Larger than Assumed. Nat. Geosci. 2017, 10, 79–84. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Fitzgerald, J.B.; Datta, P.; Dees, M.; Hengeveld, G.M.; Lindner, M.; Zudin, S. Spatial Distribution of the Potential Forest Biomass Availability in Europe. For. Ecosyst. 2019, 6, 5. [Google Scholar] [CrossRef]
- Mozgeris, G.; Kazanavičiūtė, V.; Juknelienė, D. Does Aiming for Long-Term Non-Decreasing Flow of Timber Secure Carbon Accumulation: A Lithuanian Forestry Case. Sustainability 2021, 13, 2778. [Google Scholar] [CrossRef]
- Holmgren, P. Climate Effects of the Forest-Based Sector in the European Union; FutureVistas AB: Stockholm, Sweden, 2020. [Google Scholar]
- Hurmekoski, E.; Seppälä, J.; Kilpeläinen, A.; Kunttu, J.; Hurmekoski, E.; Seppälä, J.; Kilpeläinen, A. Contribution of Wood-Based Products to Climate Change Mitigation. In Forest Bioeconomy and Climate Change; Springer: Cham, Switzerland, 2022; pp. 129–149. [Google Scholar] [CrossRef]
- Brunet-Navarro, P.; Jochheim, H.; Cardellini, G.; Richter, K.; Muys, B. Climate Mitigation by Energy and Material Substitution of Wood Products Has an Expiry Date. J. Clean Prod. 2021, 303, 127026. [Google Scholar] [CrossRef]
- Holmgren, P. Report: Contribution of the Swedish Forestry Sector to Global Climate Change; Swedish Forest Industries Federation: Stockholm, Sweden, 2019; 15p. [Google Scholar]
- Ward, J.D.; Sutton, P.C.; Werner, A.D.; Costanza, R.; Mohr, S.H.; Simmons, C.T. Is Decoupling GDP Growth from Environmental Impact Possible? PLoS ONE 2016, 11, e0164733. [Google Scholar] [CrossRef]
- Newman, P.; Beatley, T.; Boyer, H. Resilient Cities: Overcoming Fossil Fuel Dependence; Island Press: Washington, DC, USA, 2017; pp. 1–253. Available online: https://link.springer.com/book/10.5822/978-1-61091-686-8 (accessed on 15 June 2025).
- Sulaiman, C.; Abdul-Rahim, A.S.; Ofozor, C.A. Does Wood Biomass Energy Use Reduce CO2 Emissions in European Union Member Countries? Evidence from 27 Members. J. Clean Prod. 2020, 253, 119996. [Google Scholar] [CrossRef]
- Schulze, E.D.; Bouriaud, O.; Irslinger, R.; Valentini, R. The Role of Wood Harvest from Sustainably Managed Forests in the Carbon Cycle. Ann. For. Sci. 2022, 79, 17. [Google Scholar] [CrossRef]
- Knauf, M.; Köhl, M.; Mues, V.; Olschofsky, K.; Frühwald, A. Modeling the CO2-Effects of Forest Management and Wood Usage on a Regional Basis. Carbon Balance Manag. 2015, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Hyyrynen, M.; Ollikainen, M.; Seppälä, J. European Forest Sinks and Climate Targets: Past Trends, Main Drivers, and Future Forecasts. Eur. J. For. Res. 2023, 142, 1207–1224. [Google Scholar] [CrossRef]
- Korosuo, A.; Pilli, R.; Abad Viñas, R.; Blujdea, V.N.B.; Colditz, R.R.; Fiorese, G.; Rossi, S.; Vizzarri, M.; Grassi, G. The Role of Forests in the EU Climate Policy: Are We on the Right Track? Carbon Balance Manag. 2023, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Hlásny, T.; Barka, I.; Merganičová, K.; Křístek, Š.; Modlinger, R.; Turčáni, M.; Marušák, R. A New Framework for Prognosing Forest Resources under Intensified Disturbance Impacts: Case of the Czech Republic. For. Ecol. Manag. 2022, 523, 120483. [Google Scholar] [CrossRef]
- UNEP Decoupling: Natural Resource Use and Environmental Impacts from Economic Growth | UNEP—UN Environment Programme. Available online: https://www.unep.org/resources/report/decoupling-natural-resource-use-and-environmental-impacts-economic-growth (accessed on 7 June 2025).
- Hickel, J.; Kallis, G. Is Green Growth Possible? New Political Econ. 2020, 25, 469–486. [Google Scholar] [CrossRef]
- Jackson, T.; Victor, P.A. Unraveling the Claims for (and against) Green Growth. Science 2019, 366, 950–951. [Google Scholar] [CrossRef]
- Parrique, T.; Barth, J.; Briens, F.; Kerschner, C.; Kraus-Polk, A.; Kuokkanen, A.; Spangenberg, J.H. Decoupling Debunked—Evidence and Arguments against Green Growth as a Sole Strategy for Sustainability—EEB—The European Environmental Bureau. 2019. Available online: https://eeb.org/library/decoupling-debunked/ (accessed on 7 June 2025).
- NEP Global Resources Outlook 2019: Natural Resources for the Future We Want: Summary for Policymakers; Note/: By the Secretariat; United Nations Environment Program: Paris, France, 2019.
- Chovancová, J.; Tej, J. Decoupling Economic Growth from Greenhouse Gas Emissions: The Case of the Energy Sector in v4 Countries. Equilib. Q. J. Econ. Econ. Policy 2020, 15, 235–251. [Google Scholar] [CrossRef]
- Bluszcz, A. Decoupling Economic Growth from Emissions in Poland on the Background of EU Countries. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012119. [Google Scholar] [CrossRef]
- Liobikiene, G.; Dagiliute, R. The Relationship between Economic and Carbon Footprint Changes in EU: The Achievements of the EU Sustainable Consumption and Production Policy Implementation. Environ. Sci. Policy 2016, 61, 204–211. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, R.; Li, L. The Impact of Renewable Energy on Decoupling Economic Growth from Ecological Footprint—An Empirical Analysis of 166 Countries. J. Clean Prod. 2022, 354, 131706. [Google Scholar] [CrossRef]
- Ehigiamusoe, K.U.; Dogan, E. The Role of Interaction Effect between Renewable Energy Consumption and Real Income in Carbon Emissions: Evidence from Low-Income Countries. Renew. Sustain. Energy Rev. 2022, 154, 111883. [Google Scholar] [CrossRef]
- Ciais, P.; Schelhaas, M.J.; Zaehle, S.; Piao, S.L.; Cescatti, A.; Liski, J.; Luyssaert, S.; Le-Maire, G.; Schulze, E.D.; Bouriaud, O.; et al. Carbon Accumulation in European Forests. Nat. Geosci. 2008, 1, 425–429. [Google Scholar] [CrossRef]
- Repo, A.; Eyvindson, K.; Halme, P.; Mönkkönen, M. Forest Bioenergy Harvesting Changes Carbon Balance and Risks Biodiversity in Boreal Forest Landscapes. Can. J. For. Res. 2020, 50, 1184–1193. [Google Scholar] [CrossRef]
- EC Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Energy Roadmap 2050. COM(2011) 885. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52011DC0885 (accessed on 7 June 2025).
- Beurskens, L.W.M.; Hekkenberg, M.; Haydock, H.; Bole, T.; Bulder, B.; Gerdes, J.; Loos, M.; Pronk, L.; Rösler, H.; Volkers, C.; et al. Renewable Energy Projections as Published in the National Renewable Energy Action Plans of the European Member States Covering All 27 EU Member States; European Environment Agency: Copenhagen, Denmark, 2011. [Google Scholar]
- Kalt, G.; Höher, M.; Lauk, C.; Schipfer, F.; Kranzl, L. Carbon Accounting of Material Substitution with Biomass: Case Studies for Austria Investigated with IPCC Default and Alternative Approaches. Environ. Sci. Policy 2016, 64, 155–163. [Google Scholar] [CrossRef]
- Sathre, R.; Gustavsson, L. Energy and Carbon Balances of Wood Cascade Chains. Resour. Conserv. Recycl. 2006, 47, 332–355. [Google Scholar] [CrossRef]
- Gustavsson, L.; Holmberg, J.; Dornburg, V.; Sathre, R.; Eggers, T.; Mahapatra, K.; Marland, G. Using Biomass for Climate Change Mitigation and Oil Use Reduction. Energy Policy 2007, 35, 5671–5691. [Google Scholar] [CrossRef]
- Perez-Garcia, J.; Lippke, B.; Comnick, J.; Manriquez, C. An Assessment of Carbon Pools, Storage, and Wood Products Market Substitution Using Life-Cycle Analysis Results. Wood Fiber Sci. 2005, 37, 140–148. [Google Scholar]
- Sathre, R.; O’Connor, J. Meta-Analysis of Greenhouse Gas Displacement Factors of Wood Product Substitution. Environ. Sci. Policy 2010, 13, 104–114. [Google Scholar] [CrossRef]
- Dagiliūtė, R.; Kazanavičiūtė, V. Impact of Land-Use Changes on Climate Change Mitigation Goals: The Case of Lithuania. Land 2024, 13, 131. [Google Scholar] [CrossRef]
- Kazanavičiūtė, V.; Dagiliūtė, R. Impact of LULUCF Accounting Rules for Climate Change Mitigation Goals: Winning or Losing? J. Environ. Eng. Landsc. Manag. 2023, 31, 164–175. [Google Scholar] [CrossRef]
Item | Conversion/Substitution Factor | Source |
---|---|---|
Biomass (Kt) to oil equivalent (for primary energy substitution) | 1 kg = 5.2 kWh; 1 kWh = 8.59845 × 10−5 ktoe | Schulze et al. [57] |
Material substitution (biomass to products) | 1.2 | Leskinen et al. [17] |
Secondary energy substitution—share of harvested wood product residues to energy | 34% | Brunet-Navarro et al. [52] |
Secondary energy substitution—displacement factor | 0.67 | Knauf et al. [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dagiliūtė, R.; Kazanavičiūtė, V. Climate Change Mitigation vs. Renewable Energy Consumption and Biomass Demand. Land 2025, 14, 1320. https://doi.org/10.3390/land14071320
Dagiliūtė R, Kazanavičiūtė V. Climate Change Mitigation vs. Renewable Energy Consumption and Biomass Demand. Land. 2025; 14(7):1320. https://doi.org/10.3390/land14071320
Chicago/Turabian StyleDagiliūtė, Renata, and Vaiva Kazanavičiūtė. 2025. "Climate Change Mitigation vs. Renewable Energy Consumption and Biomass Demand" Land 14, no. 7: 1320. https://doi.org/10.3390/land14071320
APA StyleDagiliūtė, R., & Kazanavičiūtė, V. (2025). Climate Change Mitigation vs. Renewable Energy Consumption and Biomass Demand. Land, 14(7), 1320. https://doi.org/10.3390/land14071320