The Impact of Different Almond Orchard Management Practices in Hyper-Arid Ecosystems on Soil Microbial Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Abiotic Analysis
2.3. Biotic Analysis
2.4. Sequencing
2.5. Data Analysis
3. Results
3.1. Abiotic
3.1.1. Soil Moisture
3.1.2. Soil Organic Matter
3.1.3. Soil Electrical Conductivity
3.2. Biotic Components
Effect of Regenerative Treatment of Bacteria Phyla Composition
3.3. Order
Characterization of Molecular Ecological Network of Bacteria Communities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, P.K.; Chudasama, H. Pathways for climate change adaptations in arid and semi-arid regions. J. Clean. Prod. 2021, 284, 124744. [Google Scholar] [CrossRef]
- Vukicevich, E.; Lowery, T.; Bowen, P.; Úrbez-Torres, J.R.; Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 2016, 36, 48. Available online: https://link.springer.com/article/10.1007/s13593-016-0385-7 (accessed on 14 December 2023). [CrossRef]
- Smith, S.; Read, D. Mycorrhizal Symbiosis; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 197. Available online: https://link.springer.com/article/10.1007/s11274-017-2364-9 (accessed on 14 December 2023). [CrossRef] [PubMed]
- Fierer, N.; Walsh, C.M. Can we manipulate the soil microbiome to promote carbon sequestration in croplands? PLoS Biol. 2023, 21, e3002207. Available online: https://pubmed.ncbi.nlm.nih.gov/37437031/ (accessed on 23 April 2025). [CrossRef]
- Guerra, C.A.; Bardgett, R.D.; Caon, L.; Crowther, T.W.; Delgado-Baquerizo, M.; Montanarella, L.; Navarro, L.M.; Orgiazzi, A.; Singh, B.K.; Tedersoo, L.; et al. Tracking, targeting, and conserving soil biodiversity: A monitoring and indicator system can inform policy. Science 2021, 371, 239–241. Available online: https://www.science.org/doi/10.1126/science.abd7926 (accessed on 23 April 2025). [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What Is Regenerative Agriculture? A Review of Scholar and Practitioner Definitions Based on Processes and Outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative Agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. Available online: https://journals.sagepub.com/doi/full/10.1177/0030727021998063 (accessed on 3 December 2023). [CrossRef]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef]
- Kim, N.; Zabaloy, M.C.; Guan, K.; Villamil, M.B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 2020, 142, 107701. [Google Scholar] [CrossRef]
- Hermans, S.M.; Lear, G.; Case, B.S.; Buckley, H.L. The soil microbiome: An essential, but neglected, component of regenerative agroecosystems. Iscience 2023, 26, 106028. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Zhang, X.C.; Myrold, D.D.; Shi, L.L.; Kuzyakov, Y.; Dai, H.C.; Hoang, D.T.T.; Dippold, M.A.; Meng, X.T.; Song, X.N.; Li, Z.Y.; et al. Resistance of microbial community and its functional sensitivity in the rhizosphere hotspots to drought. Soil Biol. Biochem. 2021, 161, 108360. [Google Scholar] [CrossRef]
- Dhananjay, S.; Mittal, N.; Verma, S.; Singh, A.; Siddiqui, M.H. Applications of some advanced sequencing, analytical, and computational approaches in medicinal plant research: A review. Mol. Biol. Rep. 2024, 51, 23. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2: An improved and customizable approach for metagenome inference. BioRxiv 2020, v2 672295. Available online: https://www.biorxiv.org/content/10.1101/672295v2 (accessed on 2 April 2023).
- Itkin, D.; Ronen, A.; Needelman, B.; Crouvi, O.; Eshel, G. Israel Soil Taxonomy GIS (Online Version 2-1/2025); Environmental Resources Management Division and Digital Informavon Technologies Division, Ministry of Agriculture and Food Security: Beit Dagan, Israel, 2025. [Google Scholar]
- Whitford, W.G.; Stinnets, K.; Steinberger, Y. Effects of rainfall supplementation on microarthropods on decomposition roots in the Chihuahuan Desert. Pedobiologia 1988, 31, 147–156. [Google Scholar] [CrossRef]
- Yosef, S.; Doniger, T.; Appelbaum, I.; Sherman, C.; Rotbart, N. Effects of Vineyard Agro-management Practices on Soil Bacterial Community Composition, and Diversity. Microb. Ecol. 2024, 87, 17. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P. Vegan: Community Ecology Package. 2025. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 2 April 2023).
- Semenov, A.M. The Role of Microbial Communities in Soil Formation and Soil Ecosystem Health. Paleontol. J. 2020, 54, 843–852. [Google Scholar] [CrossRef]
- Sarkar, S.; Kumar, R.; Kumar, A.; Kumar, U.; Singh, D.K.; Mondal, S.; Kumawat, N.; Singh, A.K.; Raman, R.K.; Sundaram, P.K.; et al. Role of Soil Microbes to Assess Soil Health. In Structure and Functions of Pedosphere; Springer: Singapore, 2022; pp. 339–363. Available online: https://link.springer.com/chapter/10.1007/978-981-16-8770-9_14 (accessed on 23 April 2025).
- Kabenomuhangi, R. International Journal of Research Publication and Reviews Regenerative Agriculture and Soil Health: Enhancing Biodiversity through Sustainable Farming Practices. Int. J. Res. Publ. Rev. 2024, 5, 3203–3215. Available online: www.ijrpr.com (accessed on 23 April 2025).
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Neilson, J.W.; Quade, J.; Ortiz, M.; Nelson, W.M.; Legatzki, A.; Tian, F.; LaComb, M.; Betancourt, J.L.; Wing, R.A.; Soderlund, C.A.; et al. Life at the hyperarid margin: Novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 2012, 16, 553–566. Available online: https://link.springer.com/article/10.1007/s00792-012-0454-z (accessed on 5 December 2023). [CrossRef]
- Feng, W.; Zhang, Y.; Yan, R.; Lai, Z.; Qin, S.; Sun, Y.; She, W.; Liu, Z. Dominant soil bacteria and their ecological attributes across the deserts in northern China. Eur. J. Soil Sci. 2020, 71, 524–535. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12866 (accessed on 5 December 2023). [CrossRef]
- Naidoo, Y.; Valverde, A.; Pierneef, R.E.; Cowan, D.A. Differences in Precipitation Regime Shape Microbial Community Composition and Functional Potential in Namib Desert Soils. Microb. Ecol. 2022, 83, 689–701. Available online: https://link.springer.com/article/10.1007/s00248-021-01785-w (accessed on 5 December 2023). [CrossRef] [PubMed]
- Demergasso, C.; Neilson, J.W.; Tebes-Cayo, C.; Véliz, R.; Ayma, D.; Laubitz, D.; Barberán, A.; Chong-Díaz, G.; Maier, R.M. Hyperarid soil microbial community response to simulated rainfall. Front. Microbiol. 2023, 14, 1202266. [Google Scholar] [CrossRef] [PubMed]
- Mącik, M.; Gryta, A.; Sas-Paszt, L.; Frąc, M. New insight into the soil bacterial and fungal microbiome after phosphorus biofertilizer application as an important driver of regenerative agriculture including biodiversity loss reversal and soil health restoration. Appl. Soil Ecol. 2023, 189, 104941. [Google Scholar] [CrossRef]
- Goberna, M.; Verdú, M. Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biol. Biochem. 2022, 166, 108534. [Google Scholar] [CrossRef]
- Jiao, S.; Chu, H.; Zhang, B.; Wei, X.; Chen, W.; Wei, G. Linking soil fungi to bacterial community assembly in arid ecosystems. iMeta 2022, 1, e2. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/imt2.2 (accessed on 23 April 2025). [CrossRef]
- Wang, X.; Zeng, J.; Chen, F.; Wang, Z.; Liu, H.; Zhang, Q.; Liu, W.; Wang, W.; Guo, Y.; Niu, Y.; et al. Aridity shapes distinct biogeographic and assembly patterns of forest soil bacterial and fungal communities at the regional scale. Sci. Total Environ. 2024, 948, 174812. [Google Scholar] [CrossRef]
Treat | Depth (cm) | Soil Moisture (%) | Organic Matter (%) | Electrical Conductivity (mS·cm−1) | pH |
---|---|---|---|---|---|
ORG | 0–10 | 2.8 ± 0.48 Bc | 3.71 ± 0.79 Ba | 3.2 ± 1 Aa | 7.79 ± 0.36 |
ORG | 10–30 | 4.97 ± 0.89 Bb | 0.67 ± 0.19 Bb | 0.78 ± 0.5 b | 7.91 ± 0.26 |
ORG | 30–60 | 6.87 ± 0.82 Ba | 0.53 ± 0.12 Bb | 0.74 ± 0.37 Bb | 7.7 ± 0.15 |
RA | 0–10 | 11.05 ± 3.69 A | 12.45 ± 4.34 Aa | 1.25 ± 1.41 B | 8.05 ± 0.14 |
RA | 10–30 | 7.82 ± 1.39 A | 1.35 ± 0.26 Ab | 0.73 ± 0.61 | 7.69 ± 0.16 |
RA | 30–60 | 8.17 ± 1.04 A | 1.05 ± 0.24 Ab | 0.55 ± 0.18 B | 7.77 ± 0.15 |
UC | 0–10 | 0.89 ± 0.19 Bb | 0.64 ± 0.1 Bb | 0.23 ± 0.07 Bb | 7.88 ± 0.11 |
UC | 10–30 | 1.69 ± 0.39 Ca | 0.6 ± 0.01 Bb | 1.46 ± 0.44 a | 7.66 ± 0.08 |
UC | 30–60 | 2 ± 0.31 Ca | 0.85 ± 0.11 Aa | 1.57 ± 0.17 Aa | 7.53 ± 0.06 |
Order | ORG | RA | UC |
---|---|---|---|
Acidimicrobiales | ** | ** | ** |
Actinomycetales | ** | ** | **** |
Bacillales | ** | **** | * |
Rhizobiales | *** | ** | ** |
Sphingomonadales | ** | ** | ** |
Pseudomonadales | *** | ** | **** |
Burkholderiales | * | * | *** |
iii1-15 | ** | * | |
DS-18 | * | ** | |
c:MB-A2-108 | ** | ** | |
[Rhodothermales] | * | ** | |
Cytophagales | ** | *** | |
Flavobacteriales | ** | *** | |
c:Gemm-1 | ** | * | |
Nitrospirales | ** | * | |
Pirellulales | * | ** | |
c:Alphaproteobacteria | ** | ** | |
Rhodospirillales | ** | ** | |
c:Betaproteobacteria | ** | * | |
Alteromonadales | * | ** | |
Oceanospirillales | ** | *** | |
Thiotrichales | ** | ** | |
Xanthomonadales | *** | ** | |
MND1 | *** | ** | |
AKIW781 | ** | ** | |
c:Ellin6529 | ** | ** | |
Nitriliruptorales | ** | *** | |
JG30-KF-CM45 | * | ** | |
c:TM7-1 | ** | ||
Sediment-1 | ** | ||
Aeromonadales | ** |
Treatment | Depth | CHAO1 | Shannon’s Index |
---|---|---|---|
ORG | 0–10 | 1525.01 ± 182.01 a | 5.56 ± 0.36 |
ORG | 10–30 | 1395.13 ± 44.56 a | 5.38 ± 0.15 a |
ORG | 30–60 | 1314.5 ± 165.82 a | 5.45 ± 0.11 a |
RA | 0–10 | 665.39 ± 544.32 b | 5.49 ± 0.45 |
RA | 10–30 | 1200.83 ± 94.04 b | 5.69 ± 0.17 a |
RA | 30–60 | 862.87 ± 494.26 a | 4.93 ± 0.65 a |
UC | 0–10 | 671.66 ± 65.76 bA | 5.07 ± 0.12 A |
UC | 10–30 | 185.1 ± 28.59 cB | 2.53 ± 0.59 bB |
UC | 30–60 | 197.61 ± 128.14 bB | 1.98 ± 0.64 bB |
Df | SumsOfSqs | MeanSqs | F.Model | R2 | Pr (>F) | |
---|---|---|---|---|---|---|
Depth | 2 | 1.286215 | 0.643108 | 4.394795 | 0.132366 | 0.0001 |
Treat | 2 | 3.823888 | 1.911944 | 13.06562 | 0.393522 | 0.0001 |
Depth: Treat | 4 | 1.972975 | 0.493244 | 3.370672 | 0.203042 | 0.0001 |
Residuals | 18 | 2.63401 | 0.146334 | 0.27107 | ||
Total | 26 | 9.717088 | 1 |
Network Characteristics | ORGANIC (ORG) | REGERATIVE (RA) | CONTROL (UC) |
---|---|---|---|
Nodes | 103 | 82 | 52 |
Edges | 506 | 159 | 174 |
Average degree | 4.63 | 3.878 | 3.346 |
Network diameter | 5 | 7 | 5 |
Modularity | 0.408 | 0.67 | 0.466 |
Average clustering coefficient | 0.69 | 0.539 | 0.686 |
Average path length | 3.024 | 2.298 | 2.42 |
Top most connected taxa | Erythrobacteraceae | Flavobacteriaceae | Geodermatophilaceae |
Aurantimonadaceae | Alcanivoracaceae | Rhodobacteraceae | |
Chitinophagaceae | Rhodobacteraceae | Micrococcaceae | |
Microbacteriaceae | Alteromonadaceae | Euzebyaceae | |
Planococcaceae | Trueperaceae | Dolo_23 | |
Nocardioidaceae | Balneolaceae | Sphingomonadaceae | |
Oxalobacteraceae | Cryomorphaceae | Ktedonobacteraceae | |
Acetobacteraceae | Dermabacteraceae | Cellulomonadaceae | |
Hyphomicrobiaceae | Flammeovirgaceae | Conexibacteraceae | |
Cellulomonadaceae | HTCC2188 | Solirubrobacteraceae | |
Isosphaeraceae | Promicromonosporaceae | Nitrospiraceae | |
Rhizobiaceae | Saccharospirillaceae | Oxalobacteraceae | |
Sanguibacteraceae | Salinisphaeraceae | Beijerinckiaceae | |
Armatimonadaceae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Applebaum, I.; Eshel, G.; Doniger, T.; Steinberger, Y. The Impact of Different Almond Orchard Management Practices in Hyper-Arid Ecosystems on Soil Microbial Communities. Land 2025, 14, 1281. https://doi.org/10.3390/land14061281
Applebaum I, Eshel G, Doniger T, Steinberger Y. The Impact of Different Almond Orchard Management Practices in Hyper-Arid Ecosystems on Soil Microbial Communities. Land. 2025; 14(6):1281. https://doi.org/10.3390/land14061281
Chicago/Turabian StyleApplebaum, Itaii, Gil Eshel, Tirza Doniger, and Yosef Steinberger. 2025. "The Impact of Different Almond Orchard Management Practices in Hyper-Arid Ecosystems on Soil Microbial Communities" Land 14, no. 6: 1281. https://doi.org/10.3390/land14061281
APA StyleApplebaum, I., Eshel, G., Doniger, T., & Steinberger, Y. (2025). The Impact of Different Almond Orchard Management Practices in Hyper-Arid Ecosystems on Soil Microbial Communities. Land, 14(6), 1281. https://doi.org/10.3390/land14061281