Impact of Urbanization on Surface Temperature in Morocco: A Multi-City Comparative Study
Abstract
:1. Introduction
2. Study Area, Data, and Model
2.1. Study Area
2.2. Data
2.3. Model
2.4. Data Organization
3. Results and Discussion
3.1. Case of Coastal Cities
3.1.1. Temperature Structure in the Metropolitan Area of Rabat
3.1.2. Temperature Structure in Agadir
3.1.3. Temperature Structure in Casablanca
3.1.4. Temperature Structure in Dakhla
3.2. Case of Inland Cities
3.2.1. Temperature Structure in Marrakech
3.2.2. Temperature Structure in Errachidia
3.2.3. Temperature Structure in Oujda
3.3. Inter-City Comparison
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chestnut, L.G.; Breffle, W.S.; Smith, J.B.; Kalkstein, L.S. Analysis of Differences in Hot-Weather-Related Mortality across 44 U.S. Metropolitan Areas. Environ. Sci. Policy 1998, 1, 59–70. [Google Scholar] [CrossRef]
- Carnahan, W.H.; Larson, R.C. An Analysis of an Urban Heat Sink. Remote Sens. Environ. 1990, 33, 65–71. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote Sensing of the Urban Heat Island Effect across Biomes in the Continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Smithers, R.J.; Doick, K.J.; Burton, A.; Sibille, R.; Steinbach, D.; Harris, R.; Groves, L.; Blicharska, M. Comparing the Relative Abilities of Tree Species to Cool the Urban Environment. Urban Ecosyst. 2018, 21, 851–862. [Google Scholar] [CrossRef]
- Saranaathan, V.; Firoz, A.; Sridhar, K.; Govindaraju, M. Comprehensive Analysis of Urban Heat Island and Climate Change Impact on the Environment—An Overview. J. Basic Sci. 2024, 24, 326–334. [Google Scholar]
- Steeneveld, G.J.; Koopmans, S.; Heusinkveld, B.G.; van Hove, L.W.A.; Holtslag, A.A.M. Quantifying Urban Heat Island Effects and Human Comfort for Cities of Variable Size and Urban Morphology in the Netherlands. J. Geophys. Res. Atmos. 2011, 116, D20129. [Google Scholar] [CrossRef]
- Mohan, M.; Kikegawa, Y.; Gurjar, B.R.; Bhati, S.; Kolli, N.R. Assessment of Urban Heat Island Effect for Different Land Use–Land Cover from Micrometeorological Measurements and Remote Sensing Data for Megacity Delhi. Theor. Appl. Clim. 2013, 112, 647–658. [Google Scholar] [CrossRef]
- Ghous, M.; Khalida, K.; Basit, A.; Ougahi, J. Temporal analysis of urbanization and resulting local weather change: A case study of Lahore, Punjab, Pakistan. Sci. Int. 2015, 27, 1281–1287. [Google Scholar]
- Gherraz, H.; Guechi, I.; Alkama, D. Quantifying the Effects of Spatial Patterns of Green Spaces on Urban Climate and Urban Heat Island in a Semi-Arid Climate. Bull. Soc. R. Sci. Liege 2020, 89, 164–185. [Google Scholar] [CrossRef]
- Founda, D.; Santamouris, M. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an Extremely Hot Summer (2012). Sci. Rep. 2017, 7, 10973. [Google Scholar] [CrossRef]
- Zhao, L.; Oppenheimer, M.; Zhu, Q.; Baldwin, J.W.; Ebi, K.L.; Bou-Zeid, E.; Guan, K.; Liu, X. Interactions between Urban Heat Islands and Heat Waves. Environ. Res. Lett. 2018, 13, 034003. [Google Scholar] [CrossRef]
- Bounoua, L.; Thome, K.; Nigro, J. Cities Exacerbate Climate Warming. Urban Sci. 2021, 5, 27. [Google Scholar] [CrossRef]
- Koomen, E.; Diogo, V. Assessing Potential Future Urban Heat Island Patterns Following Climate Scenarios, Socio-Economic Developments and Spatial Planning Strategies. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 287–306. [Google Scholar] [CrossRef]
- Ahmed, S. Assessment of Urban Heat Islands and Impact of Climate Change on Socioeconomic over Suez Governorate Using Remote Sensing and GIS Techniques. Egypt. J. Remote Sens. Space Sci. 2018, 21, 15–25. [Google Scholar] [CrossRef]
- Hong, J.-W.; Hong, J.; Kwon, E.E.; Yoon, D.K. Temporal Dynamics of Urban Heat Island Correlated with the Socio-Economic Development over the Past Half-Century in Seoul, Korea. Environ. Pollut. 2019, 254, 112934. [Google Scholar] [CrossRef]
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Quart. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Roth, M. Review of Urban Climate Research in (Sub)Tropical Regions. Int. J. Climatol. 2007, 27, 1859–1873. [Google Scholar] [CrossRef]
- Rajagopalan, P.; Lim, K.C.; Jamei, E. Urban Heat Island and Wind Flow Characteristics of a Tropical City. Sol. Energy 2014, 107, 159–170. [Google Scholar] [CrossRef]
- Tiafack, O.; Prisca, N.; Dian, T. Understanding Urban Growth through Heat Islands Using Remotely Sensed Data: Yaounde Case Study, Cameroon. Curr. Urban Stud. 2022, 10, 163–187. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial Analysis of Surface Urban Heat Islands in Four Rapidly Growing African Cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef]
- Isioye, O.A.; Ikwueze, H.U.; Akomolafe, E.A. Urban Heat Island Effects and Thermal Comfort in Abuja Municipal Area Council of Nigeria. FUTY J. Environ. 2020, 14, 19–34. [Google Scholar]
- Haut Commissariat au Plan (HCP). Indicateurs Recensement général RGPH, Taux d’urbanisation; Site institutionnel du Haut-Commissariat au Plan du Royaume du Maroc: Rabat, Morocco, 2024; Available online: https://www.hcp.ma/Taux-d-urbanisation_a3243.html (accessed on 23 December 2024).
- Bounoua, L.; Nigro, J.; Zhang, P.; Thome, K.; Lachir, A. Mapping Urbanization in the United States from 2001 to 2011. Appl. Geogr. 2018, 90, 123–133. [Google Scholar] [CrossRef]
- Tilton, J.C.; De Colstoun, E.B.; Wolfe, R.E.; Tan, B.; Huang, C. Generating Ground Reference Data for a Global Impervious Surface Survey. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Munich, Germany, 2012; pp. 5993–5996. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid. SIN Grid V061. 2022. Available online: https://lpdaac.usgs.gov/products/mcd12q1v061/ (accessed on 28 August 2024). [CrossRef]
- Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich, D.A.; Zhang, C.; Collelo, G.D.; Bounoua, L. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation. J. Clim. 1996, 9, 676–705. [Google Scholar] [CrossRef]
- Bounoua, L.; Safia, A.; Masek, J.; Peters-Lidard, C.; Imhoff, M.L. Impact of Urban Growth on Surface Climate: A Case Study in Oran, Algeria. J. Clim. 2009, 48, 217–231. [Google Scholar] [CrossRef]
- Collatz, G.J.; Ribas-Carbo, M.; Berry, J.A. Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants. Funct. Plant Biol. 1992, 19, 519–538. [Google Scholar] [CrossRef]
- Zhang, C.; Dazlich, D.A.; Randall, D.A.; Sellers, P.J.; Denning, A.S. Calculation of the Global Land Surface Energy, Water and CO2 Fluxes with an off-line Version of SiB2. J. Geophys. Res. Atmos. 1996, 101, 19061–19075. [Google Scholar] [CrossRef]
- Denning, A.S.; Collatz, G.J.; Zhang, C.; Randall, D.A.; Berry, J.A.; Sellers, P.J.; Colell0, G.D.; Dazlich, D.A. Simulations of Terrestrial Carbon Metabolism and Atmospheric CO2 in a General Circulation Model, Part 1: Surface Carbon Fluxes. Tellus B Chem. Phys. Meteorol. 1996, 48, 521–542. [Google Scholar] [CrossRef]
- Denning, A.S.; Randall, D.A.; Collatz, G.J.; Sellers, P.J. Simulations of Terrestrial Carbon Metabolism and Atmospheric CO2 in a General Circulation Model, Part 2: Simulated CO2 Concentrations. Tellus B Chem. Phys. Meteorol. 1996, 48, 543–567. [Google Scholar] [CrossRef]
- Al-Hamdan, M.Z.; Quattrochi, D.A.; Bounoua, L.; Lachir, A.; Zhang, P. Using Landsat, MODIS, and a Biophysical Model to Evaluate LST in Urban Centers. Remote Sens. 2016, 8, 952. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Parastatidis, D.; Mitraka, Z.; Chrysoulakis, N.; Abrams, M. Online Global Land Surface Temperature Estimation from Landsat. Remote Sens. 2017, 9, 1208. [Google Scholar] [CrossRef]
- Fathi, N.; Bounoua, L.; Messouli, M. A Satellite Assessment of the Urban Heat Island in Morocco. Can. J. Remote Sens. 2019, 45, 26–41. [Google Scholar] [CrossRef]
- Haut Commissariat au Plan (HCP). Population Legale du Royaume du Maroc Répartie par Régions, Provinces et Préfectures et Communes Selon les Résultats du Recensement Général de la Population et de L’habitat 2024; Site institutionnel du Haut-Commissariat au Plan du Royaume du Maroc: Rabat, Marocco; Available online: https://www.hcp.ma/Population-legale-du-Royaume-du-Maroc-repartie-par-regions-provinces-et-prefectures-et-communes-selon-les-resultats-du_a3974.html (accessed on 1 December 2024).
- El Ghazouani, L.; Bounoua, L.; Nigro, J.; Mansour, M.; Radoine, H.; Souidi, H. Combining Satellite Data and Spatial Analysis to Assess the UHI Amplitude and Structure within Urban Areas: The Case of Moroccan Cities. Urban Sci. 2021, 5, 67. [Google Scholar] [CrossRef]
- Azmi, R.; Saadane, A.; Kacimi, I. Estimation of Spatial Distribution and Temporal Variability of Land Surface Temperature over Casablanca and the Surroundings of the City Using Different Landat Satellite Sensor Type (TM, ETM+ and OLI). Int. J. Innov. Appl. Stud. 2015, 11, 49–57. [Google Scholar]
- Bahi, H.; Rhinane, H.; Bensalmia, A.; Fehrenbach, U.; Scherer, D. Effects of Urbanization and Seasonal Cycle on the Surface Urban Heat Island Patterns in the Coastal Growing Cities: A Case Study of Casablanca, Morocco. Remote Sens. 2016, 8, 829. [Google Scholar] [CrossRef]
- Centre Royal de Télédétection Spatiale (CRTS). Cartographie des Cultures Irriguees et Suivi de leur Evolution a Partir des Images Satellite; Centre Royal de Télédétection Spatiale: Rabat, Morocco, 2014. Available online: https://crts.gov.ma/files/Rapport_final_cartograhie_irrigation_nationale.pdf (accessed on 25 December 2024).
- Gourfi, A.; Taïbi, A.N.; Salhi, S.; Hannani, M.E.; Boujrouf, S. The Surface Urban Heat Island and Key Mitigation Factors in Arid Climate Cities, Case of Marrakesh, Morocco. Remote Sens. 2022, 14, 3935. [Google Scholar] [CrossRef]
- Shepherd, J.M. Evidence of Urban-Induced Precipitation Variability in Arid Climate Regimes. J. Arid. Environ. 2006, 67, 607–628. [Google Scholar] [CrossRef]
City | Urban Impact on LST (°C) | Transect Direction | Urban Center–Rural Difference (UHI/UHS) | ||
---|---|---|---|---|---|
Coastal Cities | Rabat | 0.2 | Perpendicular | NW (10 km) 4.8 °C | SE (10 km) −0.5 °C |
Parallel | NE (20 km) −0.2 °C | SW (20 km) 0.0 °C | |||
Casablanca | 0.2 | Perpendicular | NW (10 km) 5.1 °C | SE (10 km) 0.0 °C | |
Parallel | NE (20 km) 0.0 °C | SW (10 km) 0.4 °C | |||
Agadir | 0.2 | Perpendicular | W (10 km) 6.1 °C | E (10 km) −0.6 °C | |
Parallel | N (10 km) −0.1 °C | S (20 km) 0.5 °C | |||
Dakhla | 0.2 | NE-SW | NE (10 km) 8.7 °C | SW (10 km) 8.7 °C | |
NW-SE | NW (10 km) 8.7 °C | SE (10 km) 8.7 °C | |||
Inland Cities | Errachidia | 0.1 | N-S | N (10 km) 0.7 °C | S (10 km) −0.5 °C |
W-E | W (10 km) 1.1 °C | E (10 km) −0.7 °C | |||
Marrakech | 0.2 | N-S | N (10 km) 0.3 °C | S (10 km) 0.1 °C | |
W-E | W (10 km) 0.2 °C | E (10 km) 0.6 °C | |||
Oujda | 0.4 | N-S | N (10 km) −0.2 °C | S (10 km) 0.6 °C | |
W-E | W (10 km) 0.3 °C | E (10 km) 0.2 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachkham, M.A.; Bounoua, L.; Ed-dahmany, N.; Yacoubi Khebiza, M. Impact of Urbanization on Surface Temperature in Morocco: A Multi-City Comparative Study. Land 2025, 14, 1280. https://doi.org/10.3390/land14061280
Lachkham MA, Bounoua L, Ed-dahmany N, Yacoubi Khebiza M. Impact of Urbanization on Surface Temperature in Morocco: A Multi-City Comparative Study. Land. 2025; 14(6):1280. https://doi.org/10.3390/land14061280
Chicago/Turabian StyleLachkham, Mohamed Amine, Lahouari Bounoua, Noura Ed-dahmany, and Mohammed Yacoubi Khebiza. 2025. "Impact of Urbanization on Surface Temperature in Morocco: A Multi-City Comparative Study" Land 14, no. 6: 1280. https://doi.org/10.3390/land14061280
APA StyleLachkham, M. A., Bounoua, L., Ed-dahmany, N., & Yacoubi Khebiza, M. (2025). Impact of Urbanization on Surface Temperature in Morocco: A Multi-City Comparative Study. Land, 14(6), 1280. https://doi.org/10.3390/land14061280