Climate Change in China and Its Effects on the Sustainable Efficiency of Agricultural Land Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methodology
2.1.1. Assessment of Climate Change Trends
2.1.2. Measuring AGUE
2.1.3. GTWR Model
2.1.4. Kernel Density Estimation
2.2. Variable Selection and Data Sources
2.2.1. Dependent Variable
2.2.2. Core Explanatory Variable
2.2.3. Control Variables
2.3. Data Sources
2.4. Research Process
3. Results and Analysis
3.1. Spatiotemporal Characteristics of Climate Change Nationwide
3.1.1. Temporal Characteristics of Annual Climate Change
3.1.2. Temporal Characteristics of Extreme Climate Change
3.1.3. Spatial Characteristics of Climate Change
3.2. Results of AGUE Measurement
3.2.1. Temporal Variation Characteristics of AGUE
3.2.2. Spatial Variation of AGUE
3.3. GTWR Model Validation
3.3.1. Test of Spatiotemporal Non-Stationarity
3.3.2. Spatial Autocorrelation
3.4. GTWR Model Regression Results
3.4.1. Analysis of the Temporal Evolution of Climate Change
3.4.2. Spatial Variation Characteristics of Climate Change
4. Discussion
4.1. Interannual Variability and Spatial Heterogeneity of Climate Risk
4.2. Dynamic Evolution of AGUE
4.3. The Impact of Annual Climate Change on AGUE
4.4. The Impact of Extreme Climate Change on AGUE
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Sun, X.; Feng, K. The Design of Food Security System Based on Feasible Ability Theory in China: Labor Transfer, Logic of Factor Substitution and Feasible Ability Improvement. Econ. Probl. 2020, 9, 100–108. [Google Scholar]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, E.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, M.; Zhang, C. Impact of high-standard basic farmland construction policies on agricultural eco-efficiency: Case of China. Natl. Account. Rev. 2022, 4, 147–166. [Google Scholar] [CrossRef]
- Ye, F.; Wang, L.; Razzaq, A.; Tong, T.; Zhang, Q.; Abbas, A. Policy impacts of high-standard farmland construction on agricultural sustainability: Total factor productivity-based analysis. Land 2023, 12, 283. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Guo, L. Impact of climatic change on agricultural production and response strategies in China. Chin. J. Eco-Agric. 2010, 18, 905–910. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, D. Progress on the impact, risk and adaptation of climate change in China. China Popul. Resour. Environ. 2020, 30, 1–9. [Google Scholar]
- Jin, W.; Jin, S. Accelerating China’s Transformation into an Agricultural Powerhouse:Present Basis, International Experiences and Path Selection. Chin. Rural. Econ. 2023, 01, 18–32. [Google Scholar]
- Ozdemir, D. The impact of climate change on agricultural productivity in Asian countries: A heterogeneous panel data approach. Environ. Sci. Pollut. Res. 2022, 29, 8205–8217. [Google Scholar] [CrossRef]
- Chou, J.; Dong, W.; Hong, J.; Tu, G. New Ideas for Research on the Impact of Climate Change on China’s Food Security. Clim. Environ. Res. 2022, 27, 206–216. [Google Scholar]
- He, L.; Mao, L. Change of soybean climatic suitability in Northeast China under climate change. Chin. J. Eco-Agric. 2023, 31, 690–698. [Google Scholar]
- Dai, M.; Yu, W. Research on Enhancing Agricultural Green Development Capability Under the Background of Climate Change. Acad. J. Zhongzhou 2024, 4, 49–56. [Google Scholar]
- Enete, I.C. Impacts of climate change on agricultural production in Enugu State, Nigeria. J. Earth Sci. Clim. Change 2014, 5, 234. [Google Scholar]
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alazhrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef]
- Lv, T.; Fu, S.; Hu, H.; Wang, L.; Geng, C. Dynamic Evolution and Convergence Characteristics of Cultivated Land Green Use Efficiency Based on the Constraint of Agricultural Green Transition: Taking the Main Grain Producing Areas in the Middle Reaches of the Yangtze River as an Example. China Land Sci. 2023, 37, 107–118. [Google Scholar]
- Li, Y.; Chen, Y. Development of an SBM-ML model for the measurement of green total factor productivity: The case of pearl river delta urban agglomeration. Renew. Sustain. Energy Rev. 2021, 145, 111131. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Zhao, Q.; Bao, H.X.H.; Zhang, Z. Off-farm employment and agricultural land use efficiency in China. Land Use Policy 2021, 101, 105097. [Google Scholar] [CrossRef]
- Wu, W.; Verburg, P.H.; Tang, H. Climate change and the food production system: Impacts and adaptation in China. Reg. Environ. Change 2014, 14, 1–5. [Google Scholar] [CrossRef]
- Lee, C.; Zeng, M.; Luo, K. How does climate change affect food security? Evidence from China. Environ. Impact Assess. Rev. 2024, 104, 107324. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, J.; An, N. The impact of natural risks on the allocation efficiency of farmland resources: From the perspective of risk coping capability differences. Resour. Sci. 2024, 46, 829–840. [Google Scholar]
- He, J.; Yang, J. Spatial—temporal characteristics and influencing factors of land-use carbon emissions: An empirical analysis based on the GTWR model. Land 2023, 12, 1506. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, Z.; Hu, Y.; Du, Z. Historical Logic, Theoretical Interpretation, and Practical Exploration of China’s Agricultural Green Transformation. Issues Agric. Econ. 2024, 3, 4–19. [Google Scholar]
- Ren, J.; Zhang, M.; You, S. Study on the Impact of Natural Disasters on Agricultural Production and Macroeconomy in China. Sci. Decis. Mak. 2024, 8, 55–79. [Google Scholar]
- Luo, W.; Hu, X.; Sun, H. Study on Influence of Environment Degradation Perception and Family Endowment on Farmers’ Well-Being in Arid Areas—Based on an Empirical Analysis of 1317 Survey Data from Gansu Province. For. Econ. 2022, 44, 42–59. [Google Scholar]
- Yin, S.; Yang, X.; Chen, J. Adaptive behavior of farmers’ livelihoods in the context of human-environment system changes. Habitat Int. 2020, 100, 102185. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y. Effect of Climate Change on Fertilizer Use Efficiency of Double-Season Rice:A Case Study of Southern Rice Growing Region. J. Agro-For. Econ. Manag. 2023, 22, 582–591. [Google Scholar]
- Chou, H.; Huang, Q. The Green Transformation of Agriculture and High-quality Development:Theoretical Logic and Practice. Issues Agric. Econ. 2025, 2, 15–23. [Google Scholar]
- Erbas, C.; Solakoglu, G. In the presence of climate change, the use of fertilizers and the effect of income on agricultural emissions. Sustainability 2017, 9, 1989. [Google Scholar] [CrossRef]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Meite, F.; Alvarez-Zaldívar, P.; Crochet, A.; Wiegert, C.; Payraudeau, S.; Imfeld, G. Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soil. Sci. Total Environ. 2018, 616, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhou, W.; Zhu, H.; Wang, C.; Wang, Y. Impact of Climate Change on Agriculture and its Countermeasures. J. Nanjing Agric. Univ. 2010, 10, 34–39. [Google Scholar]
- Chen, Y.; Zeng, M.; Chen, B. Impact of climate change on the resilience of food production: Research of the moderating effect based on crop diversification. Acta Ecol. Sin. 2024, 44, 6937–6951. [Google Scholar]
- Zhang, H. Impact of Climate Change on Ecosystems and Agricultural Production. J. Agric. Catastrophology 2023, 13, 201–203. [Google Scholar]
- Wang, Y.; Chen, W. Extreme Climate, Agricultural Machinery Operation Service Market and Food Production:An Empirical Analysis Based on Panel Data from 13 Major Grain-producing Areas. J. Agrotech. Econ. 2024, 10, 70–90. [Google Scholar]
- Yi, Z.; Liu, W. Variations of the Extreme Temperature in Wushui River Basin during the past 57 Years. China Rural. Water Hydropower 2018, 12, 106–109. [Google Scholar]
- Mudelsee, M. Trend analysis of climate time series: A review of methods. Earth-Sci. Rev. 2019, 190, 310–322. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Li, H.; Fang, K.; Yang, W.; Wang, D.; Hong, X. Regional environmental efficiency evaluation in China: Analysis based on the Super-SBM model with undesirable outputs. Math. Comput. Model. 2013, 58, 1018–1031. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and temporal weighted regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef]
- Song, M.; Wu, Q.; Zhu, H. Could the aging of the rural population boost green agricultural total factor productivity? Evidence from China. Sustainability 2024, 16, 6117. [Google Scholar] [CrossRef]
- Climate Change 2013. The Physicle Science Basis Technical Summary. IPCC. 2013. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 13 October 2024).
- Wu, F.; Li, L.; Zhang, H.; Chen, H. Net Carbon Emissions of Farmland Ecosystem Influenced by Conservation Tillage. J. Ecol. 2007, 26, 2035–2039. [Google Scholar]
- Dubey, A.; Lal, R. Carbon Footprint and Sustainability of Agricultural Production Systems in Punjab, India and Ohio, USA. Croplmprovement 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Hong, H.; Li, F.W.; Xu, J. Climate risks and market efficiency. J. Econom. 2019, 208, 265–281. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Xu, J. Impacts of climate change on agriculture: Evidence from China. J. Environ. Econ. Manag. 2016, 76, 105–124. [Google Scholar] [CrossRef]
Index Dimension | Variable Name | Index Name |
---|---|---|
Production Input | Land | Cropland Sown Area (1000 hectares) |
Labor | Agricultural Workforce (10,000 persons) | |
Production Materials | Total Agricultural Machinery Power (100,000 kW) | |
Fertilizer Application (pure) (10,000 tons) | ||
Pesticide Application (10,000 tons) | ||
Plastic Film Application (10,000 tons) | ||
Effective Irrigation Area (1000 hectares) | ||
Expected Output | Economic Output | Total Agricultural Output Value (100 million yuan) |
Per Capita Disposable Income of Rural Residents (yuan) | ||
Non-Expected Output | Carbon Emissions | Agricultural Carbon Emissions |
Evaluation Index | OLS | TWR | GWR | GTWR |
---|---|---|---|---|
R2 | 0.520 | 0.527 | 0.523 | 0.670 |
Adjusted R 2 | 0.507 | 0.518 | 0.514 | 0.664 |
AICc | −560.014 | −563.695 | −559.373 | −692.337 |
Bandwidth | — | 1.987 | 1.988 | 0.165 |
Residual Squares | — | 13.098 | 13.195 | 9.129 |
Sigma | — | 0.148 | 0.148 | 0.123 |
Year | Moran’s I | Z-Value | p-Value | Year | Moran’s I | Z-Value | p-Value |
---|---|---|---|---|---|---|---|
2003 | 0.188 | 2.720 | 0.007 | 2013 | 0.099 | 1.607 | 0.108 |
2004 | 0.132 | 2.170 | 0.030 | 2014 | 0.213 | 3.164 | 0.002 |
2005 | 0.216 | 3.135 | 0.002 | 2015 | 0.212 | 3.101 | 0.002 |
2006 | 0.201 | 3.334 | 0.000 | 2016 | 0.152 | 2.623 | 0.009 |
2007 | 0.131 | 2.315 | 0.021 | 2017 | 0.175 | 2.631 | 0.009 |
2008 | 0.207 | 3.097 | 0.002 | 2018 | 0.204 | 3.075 | 0.002 |
2009 | 0.136 | 2.187 | 0.029 | 2019 | 0.190 | 2.818 | 0.005 |
2010 | 0.013 | 0.543 | 0.587 | 2020 | −0.059 | −0.36 | 0.719 |
2011 | 0.129 | 2.001 | 0.045 | 2021 | 0.260 | 3.665 | 0.000 |
2012 | 0.198 | 2.919 | 0.004 | 2022 | 0.228 | 3.328 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Qing, S.; Wu, Q.; Zhu, H. Climate Change in China and Its Effects on the Sustainable Efficiency of Agricultural Land Use. Land 2025, 14, 1260. https://doi.org/10.3390/land14061260
Song M, Qing S, Wu Q, Zhu H. Climate Change in China and Its Effects on the Sustainable Efficiency of Agricultural Land Use. Land. 2025; 14(6):1260. https://doi.org/10.3390/land14061260
Chicago/Turabian StyleSong, Mengfei, Shuo Qing, Qiuyi Wu, and Honghui Zhu. 2025. "Climate Change in China and Its Effects on the Sustainable Efficiency of Agricultural Land Use" Land 14, no. 6: 1260. https://doi.org/10.3390/land14061260
APA StyleSong, M., Qing, S., Wu, Q., & Zhu, H. (2025). Climate Change in China and Its Effects on the Sustainable Efficiency of Agricultural Land Use. Land, 14(6), 1260. https://doi.org/10.3390/land14061260