Assessment of Terrestrial Carbon Sinks in China Simulated by Multiple Vegetation Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methods
3. Results
3.1. Spatiotemporal Evolution of Terrestrial Carbon Stocks
3.2. Spatiotemporal Evolution of Terrestrial Carbon Sinks
3.3. Responses of Terrestrial Carbon Stocks and Sinks to Different Drivers
3.4. Comparative Analysis of This Study and Existing Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, M.W.; Hauck, J.; Landschützer, P.; Quéré, C.L.; Li, H.M.; Luijkx, I.T.; Olsen, A.; et al. Global carbon budget 2024. Earth Syst. Sci. Data 2025, 17, 965–1039. [Google Scholar] [CrossRef]
- Gui, Y.H.; Wang, K.; Jin, Z.; Wang, H.Y.; Deng, H.Z.; Li, X.Y.; Tian, X.J.; Wang, T.; Chen, W.; Wang, T.J.; et al. The decline in tropical land carbon sink drove high atmospheric CO2 growth rate in 2023. Natl. Sci. Rev. 2024, 11, nwae365. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.K.; Xia, X.S.; Canadell, J.G.; Piao, S.L.; Lu, X.Q.; Mishra, U.; Wang, X.H.; Yuan, W.P.; Qin, Z.C. China’s carbon sinks from land-use change underestimated. Nat. Clim. Change 2025, 15, 428–435. [Google Scholar] [CrossRef]
- Piao, S.L.; Yue, C.; Ding, J.Z.; Guo, Z.T. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Sci. China Earth Sci. 2022, 65, 1178–1186. [Google Scholar] [CrossRef]
- Houghton, R.A.; Nassikas, A.A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- Pongratz, J.; Schwingshackl, C.; Bultan, S.; Obermeier, W.; Havermann, F.; Guo, S.Q. Land use effects on climate: Current state, recent progress, and emerging topics. Curr. Clim. Change Rep. 2021, 7, 99–120. [Google Scholar] [CrossRef]
- Yang, Y.H.; Shi, Y.; Sun, W.J.; Chang, J.F.; Zhu, J.X.; Chen, L.Y.; Wang, X.; Guo, Y.P.; Zhang, H.T.; Yu, L.F.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Peñuelas, J.; Chevallier, F.; Ciais, P.; Obersteiner, M.; Rödenbeck, C.; Sardans, J.; Vicca, S.; Yang, H.; Sitch, S.; et al. Diagnosing destabilization risk in global land carbon sinks. Nature 2023, 615, 848–853. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Friedlingstein, P.; Sitch, S.; Anthoni, P.; Arneth, A.; Arora, V.K.; Bastrikov, V.; Delire, C.; Goll, D.S.; Jain, A.; et al. Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nat. Commun. 2022, 13, 4781. [Google Scholar] [CrossRef]
- Piao, S.L.; He, Y.; Wang, X.H.; Chen, F.H. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Sitch, S.; Huntingford, C.; Gedney, N.; Levy, P.E.; Lomas, M.; Piao, S.L.; Betts, R.; Ciais, P.; Cox, P.; Friedlingstein, P.; et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 2008, 14, 2015–2039. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Quéré, C.L.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data. 2019, 11, 1783–1838. [Google Scholar] [CrossRef]
- Obermeier, W.A.; Nabel, J.E.M.S.; Loughran, T.; Hartung, K.; Bastos, A.; Havermann, F.; Anthoni, P.; Arneth, A.; Goll, D.; Lienert, S.; et al. Modelled land use and land cover change emissions-a spatio-temporal comparison of different approaches. Earth Syst. Dynam. 2021, 12, 635–670. [Google Scholar] [CrossRef]
- Bultan, S.; Nabel, J.E.M.S.; Hartung, K.; Ganzenmüller, R.; Xu, L.; Saatchi, S.; Pongratz, J. Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration. Nat. Commun. 2022, 13, 5516. [Google Scholar] [CrossRef]
- Haverd, V.; Smith, B.; Nieradzik, L.; Briggs, P.R.; Woodgate, W.; Trudinger, C.M.; Canadell, J.G. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 2018, 11, 2995–3026. [Google Scholar] [CrossRef]
- Melton, J.R.; Arora, V.K. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v.2.0. Geosci. Model Dev. 2016, 9, 323–361. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; Kampenhout, L.V.; Kennedy, D.; et al. The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef]
- Tian, H.Q.; Chen, G.S.; Lu, C.Q.; Xu, X.F.; Hayes, D.J.; Ren, W.; Pan, S.F.; Huntzinger, D.N.; Wofsy, S.C. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: Toward a full accounting of the greenhouse gas budget. Clim. Change 2015, 129, 413–426. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPIM earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef]
- Sellar, A.A.; Jones, C.G.; Mulcahy, J.P.; Tang, Y.M.; Yool, A.; Wiltshire, A.; O’Connor, F.M.; Stringer, M.; Hill, R.; Palmieri, J.; et al. UKESM1: Description and evaluation of the U.K. earth system model. J. Adv. Model. Earth Syst. 2019, 11, 4513–4558. [Google Scholar] [CrossRef]
- Zaehle, S.; Ciais, P.; Friend, A.D.; Prieur, V. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat. Geosci. 2011, 4, 601–605. [Google Scholar] [CrossRef]
- Krinner, G.; Viovy, N.; de Noblet-Ducoudré, N.; Ogée, J.; Polcher, J.; Friedlingstein, P.; Ciais, P.; Sitch, S.; Prentice, I.C. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 2005, 19, GB1015. [Google Scholar] [CrossRef]
- Goll, D.S.; Vuichard, N.; Maignan, F.; Jornet-Puig, A.; Sardans, J.; Violette, A.; Peng, S.S.; Sun, Y.; Kvakic, M.; Guimberteau, M.; et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 2017, 10, 3745–3770. [Google Scholar] [CrossRef]
- Walker, A.P.; Quaife, T.; van Bodegom, P.M.; De Kauwe, M.G.; Keenan, T.F.; Joiner, J.; Lomas, M.R.; MacBean, N.; Xu, C.G.; Yang, X.J.; et al. The impact of alternative traitscaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. New Phytol. 2017, 215, 1370–1386. [Google Scholar] [CrossRef]
- Kato, E.; Kinoshita, T.; Ito, A.; Kawamiya, M.; Yamagata, Y. Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process based biogeochemical model. J. Land Use Sci. 2013, 8, 104–122. [Google Scholar] [CrossRef]
- Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S. Implications of incorporating N cycling and N limitations on primary production in an individual based dynamic vegetation model. Biogeosciences 2014, 11, 2027–2054. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in china’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef]
- Shi, Y.T.; Zhang, B.; Liang, L.; Wang, S.; Zhang, H.Y.; Sun, H.L.; Han, X.F. Unfolding the effectiveness of ecological restoration programs in enhancing vegetation carbon sinks across different climate zones in China. Resour. Conserv. Recycl. 2025, 212, 107974. [Google Scholar] [CrossRef]
- Peng, C.; Apps, M.J. Contribution of China to the global carbon cycle since the last glacial maximum. Tellus B Chem. Phys. Meteorol. 1997, 49, 393–408. [Google Scholar] [CrossRef]
- Fang, J.Y.; Liu, G.H.; Xu, S.L. Carbon pool of terrestrial ecosystems in China. In Greenhouse Gas Concentration and Emission Monitoring and Related Processes; Wang, G.C., Wen, Y.P., Eds.; Environmental Science Press: Beijing, China, 1996; pp. 109–128. [Google Scholar]
- Ni, J. Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change. Clim. Change 2001, 49, 339–358. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N.P.; Wang, Q.F.; Gao, Y.; Wen, D.; Li, S.G.; Niu, S.L.; Ge, J.P. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef] [PubMed]
- Li, K.R.; Wang, S.Q.; Cao, M.K. Vegetation and soil carbon storage in China. Sci. China Ser. D Earth Sci. 2004, 47, 49–57. [Google Scholar] [CrossRef]
- Huang, M.; Ji, J.J.; Cao, M.K.; Li, K.R. Modeling study of vegetation shoot and root biomass in China. Acta Ecol. Sin. 2006, 26, 4156–4163. [Google Scholar]
- Ji, J.J.; Huang, M.; Li, K.R. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Sci. China Ser. D Earth Sci. 2008, 51, 885–898. [Google Scholar] [CrossRef]
- Xie, Z.B.; Zhu, J.G.; Liu, G.; Cadisch, G.; Hasegawa, T.; Chen, C.M.; Sun, H.F.; Tang, H.Y.; Zeng, Q. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Change Biol. 2007, 13, 1989–2007. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, W.B.; Jin, Z.; Yan, J.W.; Lü, Y.H.; Wang, S.; Fu, B.J.; Li, S.; Ji, Q.L.; Gou, F.; et al. Estimation of global grassland net ecosystem carbon exchange using a model tree ensemble approach. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005034. [Google Scholar] [CrossRef]
- Xu, L.; He, N.P.; Yu, G.R.; Wen, D.; He, H.L. Differences in pedotransfer functions of bulk density lead to high uncertainty in soil organic carbon estimation at regional scales: Evidence from Chinese terrestrial ecosystems. J. Geophys. Res. Biogeosci. 2015, 120, 1567–1575. [Google Scholar] [CrossRef]
- Wu, H.B.; Guo, Z.; Peng, C. Land use induced changes of organic carbon storage in soils of China. Glob. Change Biol. 2003, 9, 305–315. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhou, C.H.; Li, K.R.; Zhu, S.L.; Huang, F.H. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geogr. Sin. 2000, 55, 533–544. [Google Scholar]
- Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, A.B. Soil organic carbon storage in China. Pedosphere 2004, 14, 491–500. [Google Scholar]
- Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, Z.P.; Li, A.B. Organic carbon density and storage in soils of China and spatial analysis. Acta Pedo. Sin. 2004, 41, 35–43. [Google Scholar]
- Yang, Y.H.; Mohammat, A.; Feng, J.M.; Zhou, R.; Fang, J.Y. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry 2007, 84, 131–141. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.R.; He, N.P. Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. J. Geogr. Sci. 2019, 29, 49–66. [Google Scholar] [CrossRef]
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Fang, J.Y.; Yu, G.R.; Liu, L.L.; Hu, S.J.; Chapin III, F.S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef]
- Tian, H.Q.; Xu, X.F.; Lu, C.Q.; Liu, M.L.; Ren, W.; Chen, G.S.; Melillo, J.; Liu, J.Y. Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J. Geophys. Res. Biogeosci. 2011, 116, G02011. [Google Scholar] [CrossRef]
- Cao, M.K.; Tao, B.; Li, K.R.; Shao, X.M.; Dprience, S. Interannual variaration in terrestrial ecosystem carbon fluxes in China from 1981 to 1988. Acta Bot. Sin. 2003, 45, 552–560. [Google Scholar]
- He, H.L.; Wang, S.Q.; Zhang, L.; Wang, J.B.; Ren, X.L.; Zhou, L.; Piao, S.L.; Yan, H.; Ju, W.M.; Gu, F.X.; et al. Altered trends in carbon uptake in China’s terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. Nat. Sci. Rev. 2019, 6, 505–514. [Google Scholar] [CrossRef]
- Zhang, H.F.; Chen, B.Z.; van der Laan-Luijkx, I.T.; Chen, J.; Xu, G.; Yan, J.W.; Zhou, L.X.; Fukuyama, Y.; Tans, P.P.; Peters, W. Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J. Geophys. Res. Atmos. 2014, 119, 3500–3515. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.X.; Bösch, H.; O’Dell, C.W.; Tang, X.P.; Yang, D.X.; Liu, L.X.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Wang, H.W.; Chen, J.M.; Zhou, L.X.; Ju, W.M.; Ding, A.J.; Liu, L.X.; Peters, W. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China. Biogeosciences 2013, 10, 5311–5324. [Google Scholar] [CrossRef]
- Zhu, X.J.; Yu, G.R.; He, H.L.; Wang, Q.F.; Chen, Z.; Gao, Y.N.; Zhang, Y.P.; Zhang, J.H.; Yan, J.H.; Wang, H.M.; et al. Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of China: Results from upscaling network observations. Glob. Planet. Change 2014, 118, 52–61. [Google Scholar] [CrossRef]
- Yao, Y.T.; Li, Z.J.; Wang, T.; Chen, A.P.; Wang, X.H.; Du, M.Y.; Jia, G.S.; Li, Y.N.; Li, H.Q.; Luo, W.J.; et al. A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agr. For. Meteorol. 2018, 253–254, 84–93. [Google Scholar] [CrossRef]
- Yu, Z.; Ciais, P.; Piao, S.L.; Houghton, R.A.; Lu, C.Q.; Tian, H.Q.; Agathokleous, E.; Kattel, G.R.; Sitch, S.; Goll, D.; et al. Forest expansion dominates China’s land carbon sink since 1980. Nat. Commu. 2022, 13, 5374. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Li, J.H.; Cao, W.; Huang, L. Grain for green program to grassland might lead to carbon sink leakage in the Loess Plateau. Earth’s Future 2025, 13, e2024EF005261. [Google Scholar] [CrossRef]
Model | Spatial Resolution | Temporal Resolution | References | ||
---|---|---|---|---|---|
Cveg | Csoil | NBP | |||
CABLE-POP | 1° × 1° | a | m | [15] | |
CLASS-CTEM | 2.79° × 2.79° | a | m | [16] | |
CLM5.0 | 0.9° × 1.25° | a | m | [17] | |
DLEM | 0.5° × 0.5° | a | a | [18] | |
JSBACH | 1.875° × 1.875° | a | m | [19] | |
JULES-ES | 1.25° × 1.875° | a | m | [20] | |
OCN | 1° × 1° | a | m | [21] | |
ORCHIDEE | 0.5° × 0.5° | a | m | [22] | |
ORCHIDEE-CNP | 2° × 2° | a | m | [23] | |
SDGVM | 0.5° × 0.5° | a | m | [24] | |
VISIT | 0.5° × 0.5° | m | m | [25] | |
LPJ-GUESS | 0.5° × 0.5° | a | a | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Liu, J.; Chen, L.; Ying, S. Assessment of Terrestrial Carbon Sinks in China Simulated by Multiple Vegetation Models. Land 2025, 14, 1246. https://doi.org/10.3390/land14061246
Xu W, Liu J, Chen L, Ying S. Assessment of Terrestrial Carbon Sinks in China Simulated by Multiple Vegetation Models. Land. 2025; 14(6):1246. https://doi.org/10.3390/land14061246
Chicago/Turabian StyleXu, Weiyi, Jing Liu, Longgao Chen, and Suchen Ying. 2025. "Assessment of Terrestrial Carbon Sinks in China Simulated by Multiple Vegetation Models" Land 14, no. 6: 1246. https://doi.org/10.3390/land14061246
APA StyleXu, W., Liu, J., Chen, L., & Ying, S. (2025). Assessment of Terrestrial Carbon Sinks in China Simulated by Multiple Vegetation Models. Land, 14(6), 1246. https://doi.org/10.3390/land14061246