Climate-Smart Agricultural Practices—Strategies to Conserve and Increase Soil Carbon in Hungary
Abstract
1. Background
2. Methodology
3. Carbon Balance in Agricultural Soils
3.1. Global Outlook
3.2. Estimating SOC Stock in Hungarian Soils Using Different Approaches
4. Climate-Smart Agricultural Practices
4.1. Cover Crops
4.2. Conservation Tillage
4.3. Fertilization
4.4. Crop Rotation
4.5. Regenerative Agriculture—A Complex Approach
4.6. Agroforestry
5. Challenges and Possible Solutions
5.1. Economic Aspects
5.2. Policy and Regulation Aspects
5.3. Human Aspects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science Basis.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 465–570. [Google Scholar]
- Sivakumar, M.V.K. Interactions between climate and desertification. Agric. For. Meteorol. 2007, 142, 143–155. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon in soils of agro-ecosystems. Food Policy 2011, 36, S33–S39. [Google Scholar] [CrossRef]
- Yoro, K.O.; Daramola, M.O. Chapter 1—CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture; Rahimpour, M.R., Farsi, M., Makarem, M.A., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 3–28. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Hearty, P.; Ruedy, R.; Kelley, M.; Masson-Delmotte, V.; Russell, G.; Tselioudis, G.; Cao, J.; Rignot, E.; et al. Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmos. Chem. Phys. 2016, 16, 3761–3812. [Google Scholar] [CrossRef]
- Frumkin, H.; Haines, A.; Rao, M. The US withdrawal from the Paris Climate Agreement: Could it trump progress on climate change and health? BMJ 2025, 388, r185. [Google Scholar] [CrossRef]
- Rastogi, M.; Singh, S.; Pathak, H. Emission of carbon dioxide from soil. Curr. Sci. 2002, 82, 510–517. [Google Scholar]
- Crowther, T.W.; Todd-Brown, K.E.O.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D.; et al. Quantifying global soil carbon losses in response to warming. Nature 2016, 540, 104–108. [Google Scholar] [CrossRef]
- Bastida, F.; Eldridge, D.J.; García, C.; Kenny Png, G.; Bardgett, R.D.; Delgado-Baquerizo, M. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 2021, 15, 2081–2091. [Google Scholar] [CrossRef]
- Prout, J.M.; Shepherd, K.D.; McGrath, S.P.; Kirk, G.J.D.; Haefele, S.M. What is a good level of soil organic matter? An index based on organic carbon to clay ratio. Eur. J. Soil Sci. 2021, 72, 2493–2503. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Gerke, J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Ma, Y.; Woolf, D.; Fan, M.; Qiao, L.; Li, R.; Lehmann, J. Global crop production increase by soil organic carbon. Nat. Geosci. 2023, 16, 1159–1165. [Google Scholar] [CrossRef]
- Paglia, E.; Parker, C. The Intergovernmental Panel on Climate Change: Guardian of Climate Science. In Guardians of Public Value: How Public Organisations Become and Remain Institutions; Boin, A., Fahy, L.A., ‘t Hart, P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 295–321. [Google Scholar] [CrossRef]
- Cicin-Sain, B. Earth summit implementation: Progress since Rio. Mar. Policy 1996, 20, 123–143. [Google Scholar] [CrossRef]
- Paris Agreement to the United Nations Framework Convention on Climate Change; United Nations Framework Convention on Climate Change (UNFCCC): Paris, France, 2015.
- Horowitz, C.A. Paris Agreement. Int. Leg. Mater. 2016, 55, 740–755. [Google Scholar] [CrossRef]
- The European Green Deal; European Comission: Brussels, Belgium, 2019.
- A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Comission: Brussels, Belgium, 2020.
- Fetting, C. The European Green Deal; ESDN Report: Vienna, Austria, 2020; p. 22. [Google Scholar]
- ‘Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality; European Comission: Brussels, Belgium, 2021.
- Schlacke, S.; Wentzien, H.; Thierjung, E.-M.; Köster, M. Implementing the EU Climate Law via the ‘Fit for 55’ package. Oxf. Open Energy 2022, 1, oiab002. [Google Scholar] [CrossRef]
- Batjes, N.H. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil. Biol. Fertil. Soils 1998, 27, 230–235. [Google Scholar] [CrossRef]
- Erekalo, K.T.; Pedersen, S.M.; Christensen, T.; Denver, S.; Gemtou, M.; Fountas, S.; Isakhanyan, G. Review on the contribution of farming practices and technologies towards climate-smart agricultural outcomes in a European context. Smart Agric. Technol. 2024, 7, 1–13. [Google Scholar] [CrossRef]
- Szabó, P.; Bartholy, J.; Pongrácz, R. Seasonal temperature and precipitation record breakings in Hungary in a warming world. GEM Int. J. Geomath. 2023, 15, 2. [Google Scholar] [CrossRef]
- Kuti, R.; Nagy, Á. Weather Extremities, Challenges and Risks in Hungary. Acad. Appl. Res. Mil. Public Manag. Sci. 2015, 14, 299–305. [Google Scholar] [CrossRef]
- Celestina, C.; Hunt, J.R.; Sale, P.W.G.; Franks, A.E. Attribution of crop yield responses to application of organic amendments: A critical review. Soil Tillage Res. 2019, 186, 135–145. [Google Scholar] [CrossRef]
- Batjes, N.H. Management Options for Reducing CO2-Concentrations in the Atmosphere by Increasing Carbon Sequestration in the Soil; International Soil Reference and Information Centre: Wageningen, The Netherlands, 1999. [Google Scholar]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Even, R.J.; Francesca Cotrufo, M. The ability of soils to aggregate, more than the state of aggregation, promotes protected soil organic matter formation. Geoderma 2024, 442, 116760. [Google Scholar] [CrossRef]
- Fulton-Smith, S.; Even, R.; Cotrufo, M.F. Depth impacts on the aggregate-mediated mechanisms of root carbon stabilization in soil: Trade-off between MAOM and POM pathways. Geoderma 2024, 452, 117078. [Google Scholar] [CrossRef]
- Awale, R.; Emeson, M.A.; Machado, S. Soil Organic Carbon Pools as Early Indicators for Soil Organic Matter Stock Changes under Different Tillage Practices in Inland Pacific Northwest. Front. Ecol. Evol. 2017, 5. [Google Scholar] [CrossRef]
- Lal, R. Intensive Agriculture and the Soil Carbon Pool. J. Crop Improv. 2013, 27, 735–751. [Google Scholar] [CrossRef]
- Szatmári, G.; Pásztor, L.; Takács, K.; Mészáros, J.; Benő, A.; Laborczi, A. Space-time modelling of soil organic carbon stock change at multiple scales: Case study from Hungary. Geoderma 2024, 451, 117067. [Google Scholar] [CrossRef]
- MSZ-08-0452-80; A Talaj Szerves Széntartalmának Mennyiségi Meghatározása Contiflo Műszersoron. [Determination of Soil Organic Carbon]. Mezőgazdasági és Élelmezésügyi Minisztérium: Budapest, Hungary, 1980. (In Hungarian)
- Tanács, E.; Márta, B.; Róbert, L.; Róbert, P.; Ottó, P.; Tibor, S.; László, P.; Annamária, L.; Gábor, S.; Zsolt, M.; et al. Compiling a high-resolution country-level ecosystem map to support environmental policy: Methodological challenges and solutions from Hungary. Geocarto Int. 2022, 37, 8746–8769. [Google Scholar] [CrossRef]
- Antal, J.; Buzás, I.; Debreceni, B.; Nagy, M.; Sipos, S.; Sváb, J. A Műtrágyázás Irányelvei és Üzemi Számítási Módszer (Fertilisation Guidelines and Operational Calculation Method—In Hungarian); Buzás, I., Fekete, A., Csengeri, P., Kovács, Á., Eds.; MÉM Növényvédelmi és Agrokémiai Központ: Budapest, Hungary, 1979. [Google Scholar]
- Pásztor, L.; Laborczi, A.; Bakacsi, Z.; Szabó, J.; Illés, G. Compilation of a national soil-type map for Hungary by sequential classification methods. Geoderma 2018, 311, 93–108. [Google Scholar] [CrossRef]
- Pásztor, L.; Laborczi, A.; Takács, K.; Illés, G.; Szabó, J.; Szatmári, G. Progress in the elaboration of GSM conform DSM products and their functional utilization in Hungary. Geoderma Reg. 2020, 21, e00269. [Google Scholar] [CrossRef]
- Johannes, A.; Matter, A.; Schulin, R.; Weisskopf, P.; Baveye, P.C.; Boivin, P. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma 2017, 302, 14–21. [Google Scholar] [CrossRef]
- Szatmári, G.; Laborczi, A.; Mészáros, J.; Takács, K.; Benő, A.; Koós, S.; Bakacsi, Z.; Pásztor, L. Gridded, temporally referenced spatial information on soil organic carbon for Hungary. Sci. Data 2024, 11, 1312. [Google Scholar] [CrossRef]
- Laborczi, A.; Szatmári, G.; Kaposi, A.D.; Pásztor, L. Comparison of soil texture maps synthetized from standard depth layers with directly compiled products. Geoderma 2019, 352, 360–372. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. A simple soil organic carbon level metric beyond the organic carbon-to-clay ratio. Soil Use Manag. 2023, 39, 1057–1067. [Google Scholar] [CrossRef]
- Sauzet, O.; Johannes, A.; Deluz, C.; Dupla, X.; Matter, A.; Baveye, P.C.; Boivin, P. The organic carbon-to-clay ratio as an indicator of soil structure vulnerability, a metric focused on the condition of soil structure. Soil Use Manag. 2024, 40, e13060. [Google Scholar] [CrossRef]
- Rabot, E.; Saby, N.P.A.; Martin, M.P.; Barré, P.; Chenu, C.; Cousin, I.; Arrouays, D.; Angers, D.; Bispo, A. Relevance of the organic carbon to clay ratio as a national soil health indicator. Geoderma 2024, 443, 116829. [Google Scholar] [CrossRef]
- Mäkipää, R.; Menichetti, L.; Martínez-García, E.; Törmänen, T.; Lehtonen, A. Is the organic carbon-to-clay ratio a reliable indicator of soil health? Geoderma 2024, 444, 116862. [Google Scholar] [CrossRef]
- Wang, X.; Jing, Z.-H.; He, C.; Liu, Q.-Y.; Qi, J.-Y.; Zhao, X.; Xiao, X.-P.; Zhang, H.-L. Temporal variation of SOC storage and crop yield and its relationship—A fourteen year field trial about tillage practices in a double paddy cropping system, China. Sci. Total Environ. 2021, 759, 143494. [Google Scholar] [CrossRef]
- Corbeels, M.; Marchão, R.L.; Neto, M.S.; Ferreira, E.G.; Madari, B.E.; Scopel, E.; Brito, O.R. Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil. Sci. Rep. 2016, 6, 21450. [Google Scholar] [CrossRef]
- Magdoff, F.; Weil, R.R. Soil Organic Matter Management Strategies. In Soil Organic Matter in Sustainable Agriculture; Magdoff, F., Weil, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Maraseni, T.; An-Vo, D.-A.; Mushtaq, S.; Reardon-Smith, K. Carbon smart agriculture: An integrated regional approach offers significant potential to increase profit and resource use efficiency, and reduce emissions. J. Clean. Prod. 2021, 282, 124555. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Rivière, C.; Béthinger, A.; Bergez, J.-E. The Effects of Cover Crops on Multiple Environmental Sustainability Indicators—A Review. Agronomy 2022, 12, 2011. [Google Scholar] [CrossRef]
- Gentsch, N.; Riechers, F.L.; Boy, J.; Schweneker, D.; Feuerstein, U.; Heuermann, D.; Guggenberger, G. Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions. SOIL 2024, 10, 139–150. [Google Scholar] [CrossRef]
- Mendis, S.S.; Udawatta, R.P.; Anderson, S.H.; Nelson, K.A.; Cordsiemon, R.L. Effects of cover crops on soil moisture dynamics of a corn cropping system. Soil Secur. 2022, 8, 100072. [Google Scholar] [CrossRef]
- Crystal-Ornelas, R.; Thapa, R.; Tully, K.L. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agric. Ecosyst. Environ. 2021, 312, 107356. [Google Scholar] [CrossRef]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Mangalassery, S.; Mooney, S.J.; Sparkes, D.L.; Fraser, W.T.; Sjögersten, S. Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. Eur. J. Soil Biol. 2015, 68, 9–17. [Google Scholar] [CrossRef]
- He, C.; Niu, J.-R.; Xu, C.-T.; Han, S.-W.; Bai, W.; Song, Q.-L.; Dang, Y.P.; Zhang, H.-L. Effect of conservation tillage on crop yield and soil organic carbon in Northeast China: A meta-analysis. Soil Use Manag. 2022, 38, 1146–1161. [Google Scholar] [CrossRef]
- Du, Z.; Angers, D.A.; Ren, T.; Zhang, Q.; Li, G. The effect of no-till on organic C storage in Chinese soils should not be overemphasized: A meta-analysis. Agric. Ecosyst. Environ. 2017, 236, 1–11. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, X.; Hou, H.; Ji, J.; Liu, X.; Lv, Z. Multifaceted Ability of Organic Fertilizers to Improve Crop Productivity and Abiotic Stress Tolerance: Review and Perspectives. Agronomy 2024, 14, 1141. [Google Scholar] [CrossRef]
- Sainju, U.; Ghimire, R.; Pradhan, G. Nitrogen Fertilization I: Impact on Crop, Soil, and Environment. In Nitrogen Fixation; Rigobelo, E., Serra, A.P., Eds.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Adugna, G. A review on impact of compost on soil properties, water use and crop productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, J.; Du, T.; Ju, X.; Gan, Y.; Li, S.; Xia, L.; Shen, Y.; Pacenka, S.; Steenhuis, T.S.; et al. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun. 2024, 15, 198. [Google Scholar] [CrossRef] [PubMed]
- Kabato, W.; Getnet, G.T.; Sinore, T.; Nemeth, A.; Molnár, Z. Towards Climate-Smart Agriculture: Strategies for Sustainable Agricultural Production, Food Security, and Greenhouse Gas Reduction. Agronomy 2025, 15, 565. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, X.; Ding, W.; Song, X.; Li, S.; Wu, X. Positive effects of crop rotation on soil aggregation and associated organic carbon are mainly controlled by climate and initial soil carbon content: A meta-analysis. Agric. Ecosyst. Environ. 2023, 355, 108600. [Google Scholar] [CrossRef]
- Blair, N.; Crocker, G.J. Crop rotation effects on soil carbon and physical fertility of two Australian soils. Aust. J. Soil Res. 2000, 38. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Sher, A.; Li, H.; Ullah, A.; Hamid, Y.; Nasir, B.; Zhang, J. Importance of regenerative agriculture: Climate, soil health, biodiversity and its socioecological impact. Discov. Sustain. 2024, 5, 462. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Dudek, M.; Rosa, A. Regenerative Agriculture as a Sustainable System of Food Production: Concepts, Conditions, Perceptions and Initial Implementations in Poland, Czechia and Slovakia. Sustainability 2023, 15, 15721. [Google Scholar] [CrossRef]
- Kala, C.P. Agroforestry in a changing climate: Challenges, opportunities and solutions. Ecol. Front. 2025, 45, 269–276. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef]
- Albrecht, A.; Kandji, S.T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 2003, 99, 15–27. [Google Scholar] [CrossRef]
- Ramachandran Nair, P.K.; Mohan Kumar, B.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Lenka, N.K.; Dass, A.; Sudhishri, S.; Patnaik, U.S. Soil carbon sequestration and erosion control potential of hedgerows and grass filter strips in sloping agricultural lands of eastern India. Agric. Ecosyst. Environ. 2012, 158, 31–40. [Google Scholar] [CrossRef]
- Peng, Y.; Rieke, E.L.; Chahal, I.; Norris, C.E.; Janovicek, K.; Mitchell, J.P.; Roozeboom, K.L.; Hayden, Z.D.; Strock, J.S.; Machado, S.; et al. Maximizing soil organic carbon stocks under cover cropping: Insights from long-term agricultural experiments in North America. Agric. Ecosyst. Environ. 2023, 356, 108599. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover Crops for Sustainable Cropping Systems: A Review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Snapp, S.S.; Swinton, S.M.; Labarta, R.; Mutch, D.; Black, J.R.; Leep, R.; Nyiraneza, J.; O’Neil, K. Evaluating Cover Crops for Benefits, Costs and Performance within Cropping System Niches. Agron. J. 2005, 97, 322–332. [Google Scholar] [CrossRef]
- Gruver, L.S.; Weil, R.R.; Zasada, I.A.; Sardanelli, S.; Momen, B. Brassicaceous and rye cover crops altered free-living soil nematode community composition. Appl. Soil Ecol. 2010, 45, 1–12. [Google Scholar] [CrossRef]
- Acharya, P.; Ghimire, R.; Cho, Y.; Thapa, V.R.; Sainju, U.M. Soil profile carbon, nitrogen, and crop yields affected by cover crops in semiarid regions. Nutr. Cycl. Agroecosyst. 2022, 122, 191–203. [Google Scholar] [CrossRef]
- Beehler, J.; Fry, J.; Negassa, W.; Kravchenko, A. Impact of cover crop on soil carbon accrual in topographically diverse terrain. J. Soil Water Conserv. 2017, 72, 272–279. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strateg. Glob. Change 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Hu, Q.; Thomas, B.W.; Powlson, D.; Hu, Y.; Zhang, Y.; Jun, X.; Shi, X.; Zhang, Y. Soil organic carbon fractions in response to soil, environmental and agronomic factors under cover cropping systems: A global meta-analysis. Agric. Ecosyst. Environ. 2023, 355, 108591. [Google Scholar] [CrossRef]
- Pinto, P.; Fernández Long, M.E.; Piñeiro, G. Including cover crops during fallow periods for increasing ecosystem services: Is it possible in croplands of Southern South America? Agric. Ecosyst. Environ. 2017, 248, 48–57. [Google Scholar] [CrossRef]
- Available online: https://farmdocdaily.illinois.edu/2024/02/cover-crops-and-covered-cropland-2022-us-census-of-agriculture.html (accessed on 13 May 2025).
- Available online: https://www.ers.usda.gov/data-products/charts-of-note/chart-detail?chartId=108950 (accessed on 13 May 2025).
- Rose, T.J.; Parvin, S.; Han, E.; Condon, J.; Flohr, B.M.; Schefe, C.; Rose, M.T.; Kirkegaard, J.A. Prospects for summer cover crops in southern Australian semi-arid cropping systems. Agric. Syst. 2022, 200, 103415. [Google Scholar] [CrossRef]
- Smit, E.H.; Strauss, J.A.; Swanepoel, P.A. Utilisation of cover crops: Implications for conservation agriculture systems in a mediterranean climate region of South Africa. Plant Soil 2021, 462, 207–218. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_soil_cover (accessed on 15 May 2025).
- Hungarian Central Statistical Office (ksh.hu) (Budapest, Hungary). Soil Cover Methods in Hungary—Data Set Compiled in Table Format upon Individual Request. Private communication, 2025. [Google Scholar]
- Bíróné Kircsi, A. 2020 nyarának időjárása (Climatic Overview of Summer 2024—In Hungarian). Légkör 2020, 65, 161–163. [Google Scholar]
- Szolnoki-Tótiván, B. 2021 nyarának időjárása (Climatic Overview of Summer 2021—In Hungarian). Légkör 2021, 66, 39–41. [Google Scholar]
- Szolnoki-Tótiván, B. 2022 nyarának időjárása (Climatic Overview of Summer 2022—In Hungarian). Légkör 2022, 67, 169–173. [Google Scholar]
- Erdődiné Molnár, Z.; Kovács, A.V. A 2023-as nyár időjárása agrometeorológiai szempontból (Weather Conditions of Summer 2023 from an Agrometeorological Perspective—In Hungarian). Légkör 2023, 68, 230–232. [Google Scholar]
- Erdődiné Molnár, Z.; Kovács, A.V. 2024-as év Agrometeorológiai Áttekintése. 2024. Available online: https://www.met.hu/ismeret-tar/erdekessegek_tanulmanyok/index.php?id=3512 (accessed on 18 March 2025).
- Paszternákné Marton, A.; Szentes, O. 2023 nyarának időjárása (Climatic Overview of Summer 2023—In Hungarian). Légkör 2023, 68, 224–229. [Google Scholar]
- Marton, A.; Szolnoki-Tótiván, B. 2024 nyarának időjárása (Climatic Overview of Summer 2024—In Hungarian). Légkör 2024, 69, 262–267. [Google Scholar]
- Al-Kaisi, M.M.; Yin, X. Tillage and Crop Residue Effects on Soil Carbon and Carbon Dioxide Emission in Corn–Soybean Rotations. J. Environ. Qual. 2005, 34, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Ussiri, D.A.N.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Getahun, G.T.; Munkholm, L.J.; Schjønning, P. The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management. Geoderma 2016, 264, 94–102. [Google Scholar] [CrossRef]
- Hungarian Central Statistical Office (ksh.hu) (Budapest, Hungary). Soil Tillage Methods in Hungary—Data Set Compiled in Table Format upon Individual Request. Private Communication, 2025. [Google Scholar]
- Gelybó, G.; Barcza, Z.; Dencső, M.; Potyó, I.; Kása, I.; Horel, Á.; Pokovai, K.; Birkás, M.; Kern, A.; Hollós, R.; et al. Effect of tillage and crop type on soil respiration in a long-term field experiment on chernozem soil under temperate climate. Soil Tillage Res. 2022, 216, 105239. [Google Scholar] [CrossRef]
- Fontaine, S.; Bardoux, G.; Abbadie, L.; Mariotti, A. Carbon input to soil may decrease soil carbon content. Ecol. Lett. 2004, 7, 314–320. [Google Scholar] [CrossRef]
- Grave, R.A.; Nicoloso, R.d.S.; Cassol, P.C.; da Silva, M.L.B.; Mezzari, M.P.; Aita, C.; Wuaden, C.R. Determining the effects of tillage and nitrogen sources on soil N2O emission. Soil Tillage Res. 2018, 175, 1–12. [Google Scholar] [CrossRef]
- Dambreville, C.; Morvan, T.; Germon, J.-C. N2O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany. Agric. Ecosyst. Environ. 2008, 123, 201–210. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Ravankar, H.N.; Mishra, B.; Saha, M.N.; Singh, Y.V.; Sahi, D.K.; Sarap, P.A. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Res. 2005, 93, 264–280. [Google Scholar] [CrossRef]
- Ball, B.C.; Scott, A.; Parker, J.P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res. 1999, 53, 29–39. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Kruse, M.L.; Sawyer, J.E. Effect of Nitrogen Fertilizer Application on Growing Season Soil Carbon Dioxide Emission in a Corn–Soybean Rotation. J. Environ. Qual. 2008, 37, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.M.; Al-Kaisi, M.M. Crop rotation and nitrogen fertilization effect on soil CO2 emissions in central Iowa. Appl. Soil Ecol. 2008, 39, 264–270. [Google Scholar] [CrossRef]
- Xiao, Y.; Che, Y.; Zhang, F.; Li, Y.; Liu, M. Effects of Biochar, N Fertilizer, and Crop Residues on Greenhouse Gas Emissions from Acidic Soils. CLEAN—Soil Air Water 2018, 46, 1700346. [Google Scholar] [CrossRef]
- Alvarez, R. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manag. 2005, 21, 38–52. [Google Scholar] [CrossRef]
- Körschens, M.; Erhard, A.; Martin, A.; Dietmar, B.; Michael, B.; Lothar, B.-S.; Reiner, B.; Zoran, Č.; Frank, E.; Friedhelm, H.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2013, 59, 1017–1040. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Poffenbarger, H.J.; Barker, D.W.; Helmers, M.J.; Miguez, F.E.; Olk, D.C.; Sawyer, J.E.; Six, J.; Castellano, M.J. Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized. PLoS ONE 2017, 12, e0172293. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, W.; Xu, M.; Kuzyakov, Y.; Zhang, X.; Wang, J.; Di, J.; Murphy, D.V. Manure and Mineral Fertilizer Effects on Crop Yield and Soil Carbon Sequestration: A Meta-Analysis and Modeling Across China. Glob. Biogeochem. Cycles 2018, 32, 1659–1672. [Google Scholar] [CrossRef]
- Lu, X. Fertilizer Types Affect Soil Organic Carbon Content and Crop Production: A Meta-analysis. Agric. Res. 2020, 9, 94–101. [Google Scholar] [CrossRef]
- Guo, Z.; Han, J.; Li, J.; Xu, Y.; Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 2019, 14, e0211163. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Z.; Li, F.; Zhang, J. Effects of Organic and Inorganic Fertilization on Soil Organic Carbon and Enzymatic Activities. Agronomy 2022, 12, 3125. [Google Scholar] [CrossRef]
- Dencső, M.; Bakacsi, Z.; Fodor, N.; Horel, Á.; Magyar, M.; Tóth, E. Fertilizer management modifies soil CO2, N2O, and CH4 emissions in a Chernozem soil. Agric. Ecosyst. Environ. 2025, 385, 109580. [Google Scholar] [CrossRef]
- Emmerling, C.; Udelhoven, T.; Schneider, R. Long-lasting impact of biowaste-compost application in agriculture on soil-quality parameters in three different crop-rotation systems. J. Plant Nutr. Soil Sci. 2010, 173, 391–398. [Google Scholar] [CrossRef]
- Baiano, S.; Morra, L. Changes in Soil Organic Carbon After Five Years of Biowaste Compost Application in a Mediterranean Vegetable Cropping System. Pedosphere 2017, 27, 328–337. [Google Scholar] [CrossRef]
- Guo, L.; Wu, G.; Li, Y.; Li, C.; Liu, W.; Meng, J.; Liu, H.; Yu, X.; Jiang, G. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat–maize rotation system in Eastern China. Soil Tillage Res. 2016, 156, 140–147. [Google Scholar] [CrossRef]
- Reimer, M.; Kopp, C.; Hartmann, T.; Zimmermann, H.; Ruser, R.; Schulz, R.; Müller, T.; Möller, K. Assessing long term effects of compost fertilization on soil fertility and nitrogen mineralization rate. J. Plant Nutr. Soil Sci. 2023, 186, 217–233. [Google Scholar] [CrossRef]
- Morra, L.; Bilotto, M.; Baldantoni, D.; Alfani, A.; Baiano, S. A seven-year experiment in a vegetable crops sequence: Effects of replacing mineral fertilizers with Biowaste compost on crop productivity, soil organic carbon and nitrates concentrations. Sci. Hortic. 2021, 290, 110534. [Google Scholar] [CrossRef]
- Paetsch, L.; Mueller, C.W.; Rumpel, C.; Houot, S.; Kögel-Knabner, I. Urban waste composts enhance OC and N stocks after long-term amendment but do not alter organic matter composition. Agric. Ecosyst. Environ. 2016, 223, 211–222. [Google Scholar] [CrossRef]
- Available online: https://www.ksh.hu/stadat_files/mez/hu/mez0040.html (accessed on 9 January 2025).
- Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_livestock_patterns#Livestock_density_at_EU_level_in_2020 (accessed on 6 March 2025).
- King, A.E.; Blesh, J. Crop rotations for increased soil carbon: Perenniality as a guiding principle. Ecol. Appl. 2018, 28, 249–261. [Google Scholar] [CrossRef]
- Li, G.; Yu, C.; Shen, P.; Hou, Y.; Ren, Z.; Li, N.; Liao, Y.; Li, T.; Wen, X. Crop diversification promotes soil aggregation and carbon accumulation in global agroecosystems: A meta-analysis. J. Environ. Manag. 2024, 350, 119661. [Google Scholar] [CrossRef] [PubMed]
- Cha-un, N.; Chidthaisong, A.; Yagi, K.; Sudo, S.; Towprayoon, S. Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agric. Ecosyst. Environ. 2017, 237, 109–120. [Google Scholar] [CrossRef]
- Wu, Q.; Lawley, Y.; Congreves, K.A. Soil health indicator responses to three years of cover crop and crop rotation in a northern semi-arid region, the Canadian prairies. Agric. Ecosyst. Environ. 2024, 359, 108755. [Google Scholar] [CrossRef]
- Barbera, V.; Poma, I.; Gristina, L.; Novara, A.; Egli, M. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. Land Degrad. Dev. 2012, 23, 82–91. [Google Scholar] [CrossRef]
- Jagadamma, S.; Lal, R.; Hoeft, R.G.; Nafziger, E.D.; Adee, E.A. Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois. Soil Tillage Res. 2007, 95, 348–356. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; López, M.V.; Arrúe, J.L.; Moret, D.; Paustian, K. Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: Testing the Century model. Agric. Ecosyst. Environ. 2009, 134, 211–217. [Google Scholar] [CrossRef]
- Hungarian Central Statistical Office (ksh.hu) (Budapest, Hungary). Crop Rotation in Hungary—Data Set Compiled in Table Format upon Individual Request. Private communication, 2025. [Google Scholar]
- De Luca, G.; Balogh, J.; Pintér, K.; Fóti, S.; Bouteldja, M.; Malek, I.; Nagy, Z. Soil carbon balance in Hungarian crop rotation systems. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 19–30 April 2021; p. EGU21-10977. [Google Scholar]
- Lal, R. Farming systems to return land for nature: It’s all about soil health and re-carbonization of the terrestrial biosphere. Farming Syst. 2023, 1, 100002. [Google Scholar] [CrossRef]
- Li, Y.; Chang, S.X.; Tian, L.; Zhang, Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 2018, 121, 50–58. [Google Scholar] [CrossRef]
- REGINA National Report Hungary. Available online: https://regina-ra.eu/images/REGINA_NatRip_HUN.pdf (accessed on 10 April 2025).
- Sinclair, F.L. AGROFORESTRY. In Encyclopedia of Forest Sciences; Burley, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 27–32. [Google Scholar] [CrossRef]
- Golicz, K.; Bellingrath-Kimura, S.; Breuer, L.; Wartenberg, A.C. Carbon accounting in European agroforestry systems—Key research gaps and data needs. Curr. Res. Environ. Sustain. 2022, 4, 100134. [Google Scholar] [CrossRef]
- Drexler, S.; Gensior, A.; Don, A. Carbon sequestration in hedgerow biomass and soil in the temperate climate zone. Reg. Environ. Change 2021, 21, 74. [Google Scholar] [CrossRef]
- Biffi, S.; Chapman, P.J.; Grayson, R.P.; Ziv, G. Soil carbon sequestration potential of planting hedgerows in agricultural landscapes. J. Environ. Manag. 2022, 307, 114484. [Google Scholar] [CrossRef] [PubMed]
- Axe, M.S.; Grange, I.D.; Conway, J.S. Carbon storage in hedge biomass—A case study of actively managed hedges in England. Agric. Ecosyst. Environ. 2017, 250, 81–88. [Google Scholar] [CrossRef]
- Hombegowda, H.C.; Adhikary, P.P.; Jakhar, P.; Madhu, M.; Barman, D. Hedge row intercropping impact on run-off, soil erosion, carbon sequestration and millet yield. Nutr. Cycl. Agroecosyst. 2020, 116, 103–116. [Google Scholar] [CrossRef]
- Lesaint, L.; Viaud, V.; Menasseri-Aubry, S. Influence of soil properties and land use on organic carbon storage in agricultural soils near hedges. Soil Use Manag. 2023, 39, 1140–1154. [Google Scholar] [CrossRef]
- Hitinayake, H.M.G.S.B.; Priyadarshana, G.V.U.; Waidyarathna, D.M.K. Living Fences, a Widespread Agroforestry Practice in Sri Lanka: Two Cases from Dry and Intermediate Zones. Int. J. Environ. Agric. Biotechnol. 2018, 3, 701–709. [Google Scholar] [CrossRef]
- Policy Insight. Agroforestry Opportunities; EU CAP Network: Saint-Josse-ten-Noode, Belgium, 2022. [Google Scholar]
- Kay, S.; Rega, C.; Moreno, G.; den Herder, M.; Palma, J.H.N.; Borek, R.; Crous-Duran, J.; Freese, D.; Giannitsopoulos, M.; Graves, A.; et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- 8NC5BRH. Eight National Communication and Fifth Biennial Report of Hungary. 2023. Available online: https://unfccc.int/sites/default/files/resource/Hungary_NC8-BR5_fin_upload.pdf (accessed on 9 April 2025).
- Agroforestry in the European Union. European Parliamentary Research Service. European Union. 2020. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/651982/EPRS_BRI(2020)651982_EN.pdf (accessed on 10 April 2025).
- Honfy, V.; Pödör, Z.; Keserű, Z.; Rásó, J.; Ábri, T.; Borovics, A. The Effect of Tree Spacing on Yields of Alley Cropping Systems—A Case Study from Hungary. Plants 2023, 12, 595. [Google Scholar] [CrossRef]
- Király, É.; Keserű, Z.; Molnár, T.; Szabó, O.; Borovics, A. Carbon Sequestration in the Aboveground Living Biomass of Windbreaks—Climate Change Mitigation by Means of Agroforestry in Hungary. Forests 2024, 15, 63. [Google Scholar] [CrossRef]
- Király, É.; Bidló, A.; Keserű, Z.; Borovics, A. Climate Benefit Assessment of Doubling the Extent of Windbreak Plantations in Hungary. Earth 2024, 5, 654–669. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Chahal, I.; Vyn, R.J.; Mayers, D.; Van Eerd, L.L. Cumulative impact of cover crops on soil carbon sequestration and profitability in a temperate humid climate. Sci. Rep. 2020, 10, 13381. [Google Scholar] [CrossRef] [PubMed]
- Krstić, Đ.; Vujić, S.; Jaćimović, G.; D’Ottavio, P.; Radanović, Z.; Erić, P.; Ćupina, B. The Effect of Cover Crops on Soil Water Balance in Rain-Fed Conditions. Atmosphere 2018, 9, 492. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative Agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Wang, S.; Zhu, X.; Vereecken, H.; Brüggemann, N. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta-analysis. Glob. Change Biol. 2017, 23, 4068–4083. [Google Scholar] [CrossRef]
- van Groenigen, J.W.; van Kessel, C.; Hungate, B.A.; Oenema, O.; Powlson, D.S.; van Groenigen, K.J. Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environ. Sci. Technol. 2017, 51, 4738–4739. [Google Scholar] [CrossRef]
- Tirgariseraji, M.; Nejadhashemi, A.P.; Sabouhi Sabouni, M.; Jafari, Y.; Persson, T.; Mirzabaev, A.; Nikouei, A.; Moller, K.; Shahnoushi Foroushani, N. Assessing the impact of nitrogen regulatory policies on fertilizer use and food production elasticity. J. Clean. Prod. 2025, 499, 145218. [Google Scholar] [CrossRef]
- Matassa, S.; Boeckx, P.; Boere, J.; Erisman, J.W.; Guo, M.; Manzo, R.; Meerburg, F.; Papirio, S.; Pikaar, I.; Rabaey, K.; et al. How can we possibly resolve the planet’s nitrogen dilemma? Microb. Biotechnol. 2023, 16, 15–27. [Google Scholar] [CrossRef]
- Jordon, M.W.; Willis, K.J.; Bürkner, P.-C.; Haddaway, N.R.; Smith, P.; Petrokofsky, G. Temperate Regenerative Agriculture practices increase soil carbon but not crop yield—A meta-analysis. Environ. Res. Lett. 2022, 17, 093001. [Google Scholar] [CrossRef]
- Pimentel, D.; Marklein, A.; Toth, M.A.; Karpoff, M.N.; Paul, G.S.; McCormack, R.; Kyriazis, J.; Krueger, T. Food Versus Biofuels: Environmental and Economic Costs. Hum. Ecol. 2009, 37, 1–12. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Martin, G.; Durand, J.-L.; Duru, M.; Gastal, F.; Julier, B.; Litrico, I.; Louarn, G.; Médiène, S.; Moreau, D.; Valentin-Morison, M.; et al. Role of ley pastures in tomorrow’s cropping systems. A review. Agron. Sustain. Dev. 2020, 40, 17. [Google Scholar] [CrossRef]
- Ferguson, R.S.; Lovell, S.T. Permaculture for agroecology: Design, movement, practice, and worldview. A review. Agron. Sustain. Dev. 2014, 34, 251–274. [Google Scholar] [CrossRef]
- Stavi, I.; Bel, G.; Zaady, E. Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agron. Sustain. Dev. 2016, 36, 32. [Google Scholar] [CrossRef]
- Smith, P.; Soussana, J.-F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef]
- Chaplot, V.; Smith, P. Cover crops do not increase soil organic carbon stocks as much as has been claimed: What is the way forward? Glob. Change Biol. 2023, 29, 6163–6169. [Google Scholar] [CrossRef]
- Taylor, C.M.; Pollard, S.J.T.; Rocks, S.A.; Angus, A.J. Better by design: Business preferences for environmental regulatory reform. Sci. Total Environ. 2015, 512-513, 287–295. [Google Scholar] [CrossRef]
- Taylor, C.M.; Gallagher, E.A.; Pollard, S.J.T.; Rocks, S.A.; Smith, H.M.; Leinster, P.; Angus, A.J. Environmental regulation in transition: Policy officials’ views of regulatory instruments and their mapping to environmental risks. Sci. Total Environ. 2019, 646, 811–820. [Google Scholar] [CrossRef]
- CAP (2021) Regulation (EU) 2021/2115 of the European Parliament and of the Council of 2 December 2021. Off. J. Eur. Union 2021, 64, L 435.
- Barreiro Hurle, J.; Bogonos, M.; Himics, M.; Hristov, J.; Perez Dominguez, I.; Sahoo, A.; Salputra, G.; Weiss, F.; Baldoni, E.; Elleby, C. Modelling Environmental and Climate Ambition in the Agricultural Sector with the CAPRI Model; EUR 30317 EN; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Henning, C.; Witzke, P. Economic and Environmental impacts of the Green Deal on the Agricultural Economy: A Simulation Study of the Impact of the F2F-Strategy on Production, Trade, Welfare and the Environment based on the CAPRI-Model. 2021. Available online: https://vakbladvoedingsindustrie.nl/storage/app/media/Rapporten/RAPPORTEN%202021/VOE-2021-OKT-KIEL.pdf (accessed on 20 February 2025).
- Münch, A.; Badouix, M.; Gorny, H.; Messinger, I.; Schuh, B. Research for AGRI Committee—Comparative Analysis of the CAP Strategic Plans and Their Effective Contribution to the Achievement of the EU Objectives; European Parliament: Brussels, Belgium, 2023. [Google Scholar]
- Directorate-General for Agriculture and Rural Development (European Commission); Chartier, O.; Folkeson Lillo, C.; Valli, C.; Jongeneel, R.; Selten, M.; van Asseldonk, M.; Avis, K.; Rouillard, J.; Underwood, E.; et al. Mapping and Analysis of CAP Strategic Plans—Assessment of Joint Efforts for 2023–2027—Executive Summary; Publications Office of the European Union: Luxemburg, 2023. [Google Scholar]
- Bartkowski, B.; Schüßler, C.; Müller, B. Typologies of European farmers: Approaches, methods and research gaps. Reg. Environ. Change 2022, 22, 43. [Google Scholar] [CrossRef]
- Pagliacci, F.; Defrancesco, E.; Mozzato, D.; Bortolini, L.; Pezzuolo, A.; Pirotti, F.; Pisani, E.; Gatto, P. Drivers of farmers’ adoption and continuation of climate-smart agricultural practices. A study from northeastern Italy. Sci. Total Environ. 2020, 710, 136345. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Barillas, M.; Klerkx, L.; Poortvliet, P.M. What determines the acceptance of Climate Smart Technologies? The influence of farmers’ behavioral drivers in connection with the policy environment. Agric. Syst. 2024, 213, 103803. [Google Scholar] [CrossRef]
- Biró, K.; Szalmáné Csete, M. A klímaorientált okos mezőgazdaság regionális vonatkozásai/Regional Aspects of Climate-smart Agriculture. In 35/20/15—Az Oktatásért és a Nemzetközi Kutatási Együttműködésért: 35 éves a BME Környezetgazdaságtan és Fenntartható Fejlődés Tanszék/35/20/15—For Education and International Research Cooperation: The BME Department of Environmental Economics and Sustainability Is 35 Years Old; Szabó, M., Csigéné Nagypál, N., Eds.; Budapest University of Technology and Economics, Faculty of Economic and Social Sciences, Department of Environmental Economics and Sustainability: Budapest, Hungary, 2024. [Google Scholar]
- Gaál, M.; Becsákné Tornay, E. Hungarian farmers’ perceptions of environmental problems and their attitudes to collect relevant data. J. Rural. Stud. 2024, 106, 103224. [Google Scholar] [CrossRef]
- Lennert, J.; Kovács, K.; Koós, B.; Swain, N.; Bálint, C.; Hamza, E.; Király, G.; Rácz, K.; Váradi, M.M.; Kovács, A.D. Climate Change, Pressures, and Adaptation Capacities of Farmers: Empirical Evidence from Hungary. Horticulturae 2024, 10, 56. [Google Scholar] [CrossRef]
- Biró, K.; Szalmáné Csete, M.; Németh, B. Climate-Smart Agriculture: Sleeping Beauty of the Hungarian Agribusiness. Sustainability 2021, 13, 10269. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Research and Innovation, European Innovation Scoreboard (EIS) 2024—Executive summary, Publications Office of the European Union. 2024. Available online: https://data.europa.eu/doi/10.2777/90424 (accessed on 25 February 2025).
- Available online: https://i2connect-h2020.eu/hu/resources/akis-country-reports/ (accessed on 17 May 2025).
Growing Area Quality Classes | Characteristics of Soils | Characteristics of Crop Production, Cultivable Crops |
---|---|---|
Chernozems | deep humus-rich layer, excellent water and air management, good nutrient supply | the most demanding plant species |
Brown forest soils | good nutrient supply, water, and air management | demanding plant species |
Meadows and alluvial soils | good nutrient stock but poor nutrient availability, high water holding capacity, poor drainage, heavy textured soils | limited crop choice, significant year effect |
Sandy soils | light texture, low colloid content, unfavourable water management, low water holding capacity | low yields, variable yield security |
Salt-affected soils | unfavourable chemical and physical properties, extreme water management, high nutrient stock, but low nutrient availability | limited number of cultivable crop species, high yield variability |
Shallow soils | shallow topsoil, low water retention, limited nutrient availability | plant species with low water requirements and short growing season |
Growing Area Quality Classes | Area | Min | Max | Range | Mean | Sum | |
---|---|---|---|---|---|---|---|
ha | t ha−1 | Mt | |||||
1992 | Chernozems | 1,371,200 | 14.31 | 101.93 | 87.62 | 57.95 | 79.46 |
Brown forest soils | 823,700 | 9.74 | 107.43 | 97.69 | 43.20 | 35.58 | |
Meadows and alluvial soils | 1,612,000 | 12.86 | 117.05 | 104.18 | 57.23 | 92.25 | |
Sandy soils | 391,100 | 11.07 | 95.02 | 83.95 | 35.77 | 13.99 | |
Salt-affected soils | 477,700 | 14.40 | 104.43 | 90.03 | 61.11 | 29.19 | |
Shallow soils | 108,400 | 22.39 | 81.95 | 59.55 | 45.89 | 4.98 | |
2016 | Chernozems | 1,371,200 | 15.64 | 90.84 | 75.20 | 55.11 | 75.57 |
Brown forest soils | 823,700 | 16.55 | 114.00 | 97.45 | 43.96 | 36.21 | |
Meadows and alluvial soils | 1,612,000 | 14.61 | 108.16 | 93.55 | 55.70 | 89.78 | |
Sandy soils | 391,100 | 9.92 | 92.15 | 82.23 | 35.38 | 13.84 | |
Salt-affected soils | 477,700 | 14.59 | 90.74 | 76.14 | 58.98 | 28.18 | |
Shallow soils | 108,400 | 23.35 | 79.20 | 55.84 | 45.17 | 4.90 | |
Change 1992–2016 | Chernozems | 1,371,200 | −43.61 | 37.64 | 81.25 | −2.84 | −3.89 |
Brown forest soils | 823,700 | −24.52 | 46.27 | 70.79 | 0.76 | 0.63 | |
Meadows and alluvial soils | 1,612,000 | −42.80 | 25.45 | 68.24 | −1.53 | −2.47 | |
Sandy soils | 391,100 | −25.65 | 17.52 | 43.17 | −0.39 | −0.15 | |
Salt-affected soils | 477,700 | −26.40 | 24.05 | 50.45 | −2.13 | −1.02 | |
Shallow soils | 108,400 | −32.35 | 26.49 | 58.84 | −0.72 | −0.08 |
Growing Area Quality Classes | Area | Min | Max | Range | Mean |
---|---|---|---|---|---|
ha | SOC: Clay Ratio | ||||
Chernozems | 137,1200 | 0.02 | 0.65 | 0.63 | 0.07 |
Brown forest soils | 823,700 | 0.02 | 0.60 | 0.59 | 0.05 |
Meadows and alluvial soils | 1,612,000 | 0.02 | 0.79 | 0.77 | 0.06 |
Sandy soils | 391,100 | 0.01 | 1.06 | 1.05 | 0.13 |
Salt-affected soils | 477,700 | 0.02 | 0.97 | 0.96 | 0.07 |
Shallow soils | 108,400 | 0.02 | 0.51 | 0.49 | 0.05 |
Climate-Smart Agricultural (CSA) Practice | Advantages | Disadvantages |
---|---|---|
Cover crops [51,52,53,54,55] | enhance productivity and biodiversity; primary carbon source; improve soil structure; reduce erosion; soil moisture conservation; and weed control | no immediate effect on SOC sequestration; dependent on local climate and soil; timing of sowing is critical; germination and growing can be difficult; cost; requires personnel; water use; pests; nutrient fixation |
Conservation tillage [56,57,58,59,60,61] | increase SOC; reduce erosion; soil moisture conservation; improve soil structure; fuel and time saving; improve biodiversity | the effect varies on climate, crop, and soil; SOC sequestration in deep layers is limited; weed control; pests; machinery costs; soil compaction; initial yield reduction; lack of experience |
Fertilization [62,63,64,65] | increase SOC (organic); C and N supply; improve yield and biomass; indirect nutrient supply; improve soil structure and soil life (organic); long-lasting effect (organic); waste management (organic); cost (organic) | GHG emission; limited SOC sequestration (mineral); availability (organic); spoil soil structure (mineral); N-leaching, eutrophication (mineral); applicability, transport (organic); cost (mineral) |
Crop rotation [66,67,68,69,70] | improve soil structure; enhance nutrient supply; increase biomass; increase SOC; reduce GHG emission; better pest and weed control; crop security; | SOC sequestration is limited, carbon loss in poorly diversified crop rotations; expertise demanding; machinery costs; profitability; contaminations |
Regenerative agriculture [71,72,73] | increase SOM; improve soil structure; reduce erosion; increase soil water-holding capacity; reduce GHG emission; nutrient management; pest control; increase biodiversity | plant protection; slow return on investment (high initial costs); know-how; machinery; climate dependent efficiency; pest control can be difficult; labour intensive; legislative burdens |
Agroforestry [74,75,76,77,78] | SOC sequestration; increase biomass; improve soil physical and chemical properties; improve yield; mitigate wind erosion; habitat for wildlife; mitigate GHG emission; enhance biodiversity; improve microclimate | slow return on investment (high initial costs); complex management needs; legislative burdens; pests; labour intensive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, E.; Magyar, M.; Cseresnyés, I.; Dencső, M.; Laborczi, A.; Szatmári, G.; Koós, S. Climate-Smart Agricultural Practices—Strategies to Conserve and Increase Soil Carbon in Hungary. Land 2025, 14, 1206. https://doi.org/10.3390/land14061206
Tóth E, Magyar M, Cseresnyés I, Dencső M, Laborczi A, Szatmári G, Koós S. Climate-Smart Agricultural Practices—Strategies to Conserve and Increase Soil Carbon in Hungary. Land. 2025; 14(6):1206. https://doi.org/10.3390/land14061206
Chicago/Turabian StyleTóth, Eszter, Marianna Magyar, Imre Cseresnyés, Márton Dencső, Annamária Laborczi, Gábor Szatmári, and Sándor Koós. 2025. "Climate-Smart Agricultural Practices—Strategies to Conserve and Increase Soil Carbon in Hungary" Land 14, no. 6: 1206. https://doi.org/10.3390/land14061206
APA StyleTóth, E., Magyar, M., Cseresnyés, I., Dencső, M., Laborczi, A., Szatmári, G., & Koós, S. (2025). Climate-Smart Agricultural Practices—Strategies to Conserve and Increase Soil Carbon in Hungary. Land, 14(6), 1206. https://doi.org/10.3390/land14061206