The Impact of Urban Shrinkage on Carbon Emission Intensity and Its Spatial Spillover Effects
Abstract
:1. Introduction
2. Theoretical Analysis and Exploration
2.1. The Direct Impact of Urban Shrinkage on Carbon Emission Intensity
2.2. The Mechanism Analysis of the Impact of Urban Shrinkage on Carbon Emission Intensity
2.3. The Spatial Spillover Effects of Urban Contraction on Carbon Emission Intensity
3. Materials and Methods
3.1. Variable Selection
- (1)
- Dependent Variable: carbon dioxide emission intensity (CI)
- (2)
- Core Explanatory Variable: urban shrinkage (SK)
- (3)
- Mediating Variables: level of human capital (Hc); upgrading of industrial structure (UIS)
- (4)
- Control Variables
3.2. Entropy Method
- (1)
- Standardized treatment
- (2)
- Calculate the weight of the jth indicator value of the ith evaluation unit:
- (3)
- Calculate the information entropy of the indicator:
- (4)
- Calculate information redundancy:
- (5)
- Determination of indicator weights:
- (6)
- Calculate the composite development index for the ith city:
- (7)
- Calculate the level of contraction of the city:
3.3. Model Setting
3.4. Data Source and Descriptive
4. Results and Discussion
4.1. Analysis of the Results of Carbon Emission Intensity Measurement in Shrinking Cities and Growing Cities
4.2. Benchmark Regression
4.3. Robustness Tests
4.3.1. Replacing Core Explanatory Variables
4.3.2. Shortening the Time Window
4.3.3. Core Explanatory Variables Lagged
4.3.4. Instrumental Variable
4.4. Impact Mechanism Test
4.5. Heterogeneity Analysis
4.5.1. Analysis of Regional Differences
4.5.2. Analysis of Urban Type Differences
Variable | Eastern Region | Central Region | Western Region | Resource-Based City | Non-Resource-Based City |
---|---|---|---|---|---|
CI (1) | CI (2) | CI (3) | CI (4) | CI (5) | |
SK | 1.227 * | 4.982 *** | 7.175 *** | 9.660 *** | 2.626 *** |
(1.76) | (3.40) | (4.24) | (4.54) | (4.32) | |
Ln Econ | −2.588 *** | −2.523 *** | −2.015 *** | −1.793 *** | −3.267 *** |
(−8.03) | (−8.04) | (−5.34) | (−5.98) | (−12.83) | |
Ln People | −5.193 *** | −2.367 *** | −5.765 *** | −6.070 *** | −3.254 *** |
(−14.64) | (−5.50) | (−8.64) | (−12.18) | (−11.50) | |
Urban | −1.034 | 0.561 ** | −1.182 | −3.727 *** | 0.585 ** |
(−1.21) | (2.03) | (−0.31) | (−2.58) | (2.47) | |
Indus | −0.065 *** | −0.101 *** | −0.088 *** | −0.094 *** | −0.058 *** |
(−4.54) | (−6.59) | (−4.90) | (−5.82) | (−5.60) | |
Govern | 0.629 | 5.122 *** | 5.000 *** | 10.728 *** | 2.805 *** |
(0.43) | (8.19) | (2.88) | (9.13) | (5.19) | |
Consumption | 4.697 *** | 4.151 *** | 4.586 *** | 2.228 *** | 5.301 *** |
(7.65) | (6.28) | (5.99) | (2.68) | (15.95) | |
Ln Labor | −0.667 ** | −1.729 *** | −0.797 *** | −1.766 *** | −0.843 *** |
(−2.35) | (−5.71) | (−2.83) | (−5.70) | (−4.82) | |
_cons | 70.668 *** | 69.441 *** | 63.970 *** | 85.439 *** | 68.206 *** |
(14.59) | (13.87) | (10.18) | (15.90) | (18.18) | |
Time fixed effect | Yes | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes | Yes |
N | 960 | 1000 | 820 | 1130 | 1650 |
R2 | 0.925 | 0.983 | 0.949 | 0.975 | 0.953 |
4.6. Additional Analysis
4.6.1. Model Selection
4.6.2. Spatial Durbin Regression Results
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Recommendations
5.3. Limitations and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, P.; Yue, S.; Chen, H. Carbon emission efficiency of China’s industry sectors: From the perspective of embodied carbon emissions. J. Clean Prod. 2021, 283, 124655. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Hubacek, K.; Zheng, B.; Davis, S.J.; Jia, L.; Liu, J.; Liu, Z.; Fromer, N.; Mi, Z. City-level climate change mitigation in China. Sci. Adv. 2018, 4, eaaq0390. [Google Scholar] [CrossRef]
- Wiechmann, T. Errors expected—Aligning urban strategy with demographic uncertainty in shrinking cities. Int. Plan. Stud. 2008, 13, 431–446. [Google Scholar] [CrossRef]
- Wiechmann, T.; Pallagst, K.M. Urban shrinkage in Germany and the USA: A comparison of transformation patterns and local strategies. Int. J. Urban Reg. Res. 2012, 36, 261–280. [Google Scholar] [CrossRef]
- Yang, Z.; Dunford, M. City shrinkage in China: Scalar processes of urban and hukou population losses. Reg. Stud. 2018, 52, 1111–1121. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Kong, X.; Zhang, F. Prefecture-level city shrinkage on the regional dimension in China: Spatiotemporal change and internal relations. Sust. Cities Soc. 2019, 47, 101490. [Google Scholar] [CrossRef]
- Li, H.; Mykhnenko, V. Urban shrinkage with Chinese characteristics. Geogr. J. 2018, 184, 398–412. [Google Scholar] [CrossRef]
- Hu, X.; Yang, C. Building a role model for rust belt cities? Fuxin’s economic revitalization in question. Cities 2018, 72, 245–251. [Google Scholar] [CrossRef]
- He, S.Y.; Lee, J.; Zhou, T.; Wu, D. Shrinking cities and resource-based economy: The economic restructuring in China’s mining cities. Cities 2017, 60, 75–83. [Google Scholar] [CrossRef]
- Fernandez, B.; Hartt, M. Growing shrinking cities. Reg. Stud. 2022, 56, 1308–1319. [Google Scholar] [CrossRef]
- Murdoch III, J. Specialized vs. diversified: The role of neighborhood economies in shrinking cities. Cities 2018, 75, 30–37. [Google Scholar] [CrossRef]
- Saraiva, M.; Roebeling, P.; Sousa, S.; Teotónio, C.; Palla, A.; Gnecco, I. Dimensions of shrinkage: Evaluating the socio-economic consequences of population decline in two medium-sized cities in Europe, using the SULD decision support tool. Env. Plan. B-Urban Anal. City Sci. 2017, 44, 1122–1144. [Google Scholar] [CrossRef]
- Rink, D.; Couch, C.; Haase, A.; Krzysztofik, R.; Nadolu, B.; Rumpel, P. The governance of urban shrinkage in cities of post-socialist Europe: Policies, strategies and actors. Urban Res. Pract. 2014, 7, 258–277. [Google Scholar] [CrossRef]
- Peng, W.; Fan, Z.; Duan, J.; Gao, W.; Wang, R.; Liu, N.; Li, Y.; Hua, S. Assessment of interactions between influencing factors on city shrinkage based on geographical detector: A case study in Kitakyushu, Japan. Cities 2022, 131, 103958. [Google Scholar] [CrossRef]
- Großmann, K.; Bontje, M.; Haase, A.; Mykhnenko, V. Shrinking cities: Notes for the further research agenda. Cities 2013, 35, 221–225. [Google Scholar] [CrossRef]
- Martinez-Fernandez, C.; Audirac, I.; Fol, S.; Cunningham-Sabot, E. Shrinking cities: Urban challenges of globalization. Int. J. Urban Reg. Res. 2012, 36, 213–225. [Google Scholar] [CrossRef]
- You, H.; Yang, J.; Xue, B.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Spatial evolution of population change in Northeast China during 1992–2018. Sci. Total Environ. 2021, 776, 146023. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, T. Urban shrinkage and eco-efficiency: The mediating effects of industry, innovation and land-use. Environ. Impact Assess. Rev. 2023, 98, 106921. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Wang, Y.; Huang, Q.; He, C. Quantifying spatiotemporal patterns of shrinking cities in urbanizing China: A novel approach based on time-series nighttime light data. Cities 2021, 118, 103346. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Zhou, X.; Chen, W. Are shrinking populations stifling urban resilience? Evidence from 111 resource-based cities in China. Cities 2023, 141, 104458. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Yao, X.; Li, S.; Liu, Y. Intercity population migration conditioned by city industry structures. Ann. Am. Assoc. Geogr. 2022, 112, 1441–1460. [Google Scholar] [CrossRef]
- Bernt, M. The limits of shrinkage: Conceptual pitfalls and alternatives in the discussion of urban population loss. Int. J. Urban Reg. Res. 2016, 40, 441–450. [Google Scholar] [CrossRef]
- Jarzebski, M.P.; Elmqvist, T.; Gasparatos, A.; Fukushi, K.; Eckersten, S.; Haase, D.; Goodness, J.; Khoshkar, S.; Saito, O.; Takeuchi, K. Ageing and population shrinking: Implications for sustainability in the urban century. Npj Urban Sustain. 2021, 1, 17. [Google Scholar] [CrossRef]
- Du, M.; Antunes, J.; Wanke, P.; Chen, Z. Ecological efficiency assessment under the construction of low-carbon city: A perspective of green technology innovation. J. Environ. Plan. Manag. 2022, 65, 1727–1752. [Google Scholar] [CrossRef]
- Tong, X.; Guo, S.; Duan, H.; Duan, Z.; Gao, C.; Chen, W. Carbon-emission characteristics and influencing factors in growing and shrinking cities: Evidence from 280 Chinese cities. Int. J. Environ. Res. Public Health 2022, 19, 2120. [Google Scholar] [CrossRef]
- Xiao, H.; Duan, Z.; Zhou, Y.; Zhang, N.; Shan, Y.; Lin, X.; Liu, G. CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta. Appl. Energy 2019, 251, 113384. [Google Scholar] [CrossRef]
- Yang, S.; Yang, X.; Gao, X.; Zhang, J. Spatial and temporal distribution characteristics of carbon emissions and their drivers in shrinking cities in China: Empirical evidence based on the NPP/VIIRS nighttime lighting index. J. Environ. Manag. 2022, 322, 116082. [Google Scholar] [CrossRef]
- He, X.; Gao, W.; Guan, D.; Zhou, L. Nonlinear mechanisms of CO2 emissions in growing and shrinking cities: An empirical study on integrated effects of aging and industrial structure in Japan. J. Clean Prod. 2024, 462, 142665. [Google Scholar] [CrossRef]
- Meng, X.; Long, Y. Shrinking cities in China: Evidence from the latest two population censuses 2010–2020. Environ. Plan. A Econ. Space 2022, 54, 449–453. [Google Scholar] [CrossRef]
- Liu, Y.J.; Yang, M.R.; Cui, J.H. Urbanization, economic agglomeration and economic growth. Heliyon 2024, 10, e23772. [Google Scholar] [CrossRef]
- Haase, A.; Bernt, M.; Großmann, K.; Mykhnenko, V.; Rink, D. Varieties of shrinkage in European cities. Eur. Urban Reg. Stud. 2016, 23, 86–102. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, Y.; Yang, T. The impact of transportation infrastructure and industrial agglomeration on energy efficiency: Evidence from China’s industrial sectors. J. Clean Prod. 2020, 244, 118708. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, J. The role of population agglomeration played in China’s carbon intensity: A city-level analysis. Energy Econ. 2022, 114, 106276. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Z.; Zhang, H. Does industrial agglomeration promote the increase of energy efficiency in China? J. Clean Prod. 2017, 164, 30–37. [Google Scholar] [CrossRef]
- Zhong, X.F.; Lu, Y.; Zhong, Z.Q. Did regional coordinated development policy mitigate carbon emissions? Evidence from the Beijing-Tianjin-Hebei region in China. Environ. Sci. Pollut. Res. 2023, 30, 108992–109006. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z. Does transportation infrastructure accelerate factor outflow from shrinking cities? An evidence from China. Transp. Policy 2023, 134, 180–190. [Google Scholar] [CrossRef]
- Wang, N.; Yu, H.; Shu, Y.; Chen, Z.; Li, T. Can green patents reduce carbon emission intensity?—An empirical analysis based on China’s experience. Front. Environ. Sci. 2022, 10, 1084977. [Google Scholar] [CrossRef]
- Cong, J.; Liu, X.; Zhao, X. Boundary definition of urban carbon emission accounting and its measurement method. China Popul. Resour. Environ. 2014, 24, 19–26. [Google Scholar]
- Luo, Y.; Fang, S.; Wu, H.; Zhou, X.; He, Z.; Gao, L. Spatial and temporal evolution of habitat quality and its shrinkage effect in shrinking cities: Evidence from Northeast China. Ecol. Indic. 2024, 161, 111919. [Google Scholar] [CrossRef]
- Heim LaFrombois, M.E.; Park, Y.; Yurcaba, D. How US shrinking cities plan for change: Comparing population projections and planning strategies in depopulating US cities. J. Plan. Educ. Res. 2023, 43, 81–93. [Google Scholar] [CrossRef]
- He, X.; Guan, D.; Zhou, L.; Zhang, Y.; Gao, W.; Sun, L.; Huang, D.; Li, Z.; Cao, J.; Su, X. Quantifying spatiotemporal patterns and influencing factors of urban shrinkage in China within a multidimensional framework: A case study of the Yangtze River Economic Belt. Sust. Cities Soc. 2023, 91, 104452. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Zhang, X.; Gu, R. Spatial-temporal evolution pattern of multidimensional urban shrinkage in China and its impact on urban form. Appl. Geogr. 2023, 159, 103062. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S.; Song, Y. Understanding urban shrinkage in China: Developing a multi-dimensional conceptual model and conducting empirical examination from 2000 to 2010. Habitat Int. 2020, 104, 102256. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zheng, R.; Wang, J.; Cheng, Y. Impact of human capital on the green economy: Empirical evidence from 30 Chinese provinces. Environ. Sci. Pollut. Res. 2023, 30, 12785–12797. [Google Scholar] [CrossRef]
- Song, M.; Tao, W.; Shen, Z. Improving high-quality development with environmental regulation and industrial structure in China. J. Clean Prod. 2022, 366, 132997. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, P. The impact of green finance on the intensity and efficiency of carbon emissions: The moderating effect of the digital economy. Front. Environ. Sci. 2024, 12, 1362932. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, H. The Effect of FDI Agglomeration on carbon emission intensity: Evidence from city-level data in China. Sustainability 2023, 15, 1716. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y.; Zhong, S. Does green innovation suppress carbon emission intensity? New evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 86722–86743. [Google Scholar] [CrossRef]
- Chang, H.; Ding, Q.; Zhao, W.; Hou, N.; Liu, W. The digital economy, industrial structure upgrading, and carbon emission intensity—Empirical evidence from China’s provinces. Energy Strateg. Rev. 2023, 50, 101218. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, C. Does urban sprawl lead to carbon emission growth?—Empirical evidence based on the perspective of local land transfer in China. J. Clean Prod. 2024, 455, 142319. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Qiang, W.; Wu, K.; Wang, X. Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions. Appl. Energy 2020, 261, 114409. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Zheng, H.; Li, M.; Tan, T. How urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 260, 110061. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Zhou, W.; Zhao, T.; Zhang, L. Impact of urbanization and industrial structure on carbon emissions: Evidence from Huaihe River Eco-Economic Zone. Land 2021, 10, 1130. [Google Scholar] [CrossRef]
- Ahmad, M.; Zhao, Z.-Y.; Li, H. Revealing stylized empirical interactions among construction sector, urbanization, energy consumption, economic growth and CO2 emissions in China. Sci. Total Environ. 2019, 657, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, J.; Jiang, B.; Guo, T. Government intervention, structural transformation, and carbon emissions: Evidence from China. Int. J. Environ. Res. Public Health 2023, 20, 1343. [Google Scholar] [CrossRef]
- Li, Q.; Su, Y.; Wang, Y. Study on the Carbon Emission Reduction Effect of China’s Commercial Circulation Industry. Sustainability 2024, 16, 6163. [Google Scholar] [CrossRef]
- Lv, X.; Wu, Z.; Sui, Y. Understanding the dynamics of urban shrinkage and the impact on innovation in China: A comprehensive analysis. J. Knowl. Econ. 2024, 2024, 1–34. [Google Scholar] [CrossRef]
- Elliott, R.J.; Zhou, Y. Environmental regulation induced foreign direct investment. Environ. Resour. Econ. 2013, 55, 141–158. [Google Scholar] [CrossRef]
- Zhou, M.; Shao, W.; Jiang, K.; Huang, L. How does economic agglomeration affect carbon emissions at the county level in Liaoning China? Ecol. Indic. 2024, 158, 111507. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.; Qian, X. Driving factors of urban shrinkage: Examining the role of local industrial diversity. Cities 2020, 99, 102646. [Google Scholar] [CrossRef]
- Chen, J.; Kinoshita, T.; Li, H.; Luo, S.; Su, D.; Yang, X.; Hu, Y. Toward green equity: An extensive study on urban form and green space equity for shrinking cities. Sust. Cities Soc. 2023, 90, 104395. [Google Scholar] [CrossRef]
Target Level | Standardized Layer | Indicator Layer | Interpretation of Indicators (Unit) |
---|---|---|---|
Demographic | Size of population | Population in urban areas | Urban population (ten thousand people) |
Population density | Population density in urban areas | Population density in urban areas (persons/km2) | |
Population structure | # Adolescent dependency ratio | Number of students enrolled in primary and secondary schools/Number of employees in the unit at the end of the year (%) | |
Economics | Economic level | GDP per capita | GDP per capita (CNY) |
Fiscal revenue per capita | Income from the general budget of the local treasury/total population (CNY) | ||
Economic growth | GDP growth rate | The rate of GDP growth (%) | |
Economic structure | # Employment structure | Number of employees in secondary industry/Number of employees in units at the end of the year (%) | |
Industrial structure | Value added of tertiary industry/Value added of secondary industry (%) | ||
Societies | Infrastructure | Transportation | Road area per capita (square meters) |
Social service | Gas penetration rate (%) | ||
Water penetration rate (%) | |||
Social environment | Environment | Greening coverage of built-up areas (%) | |
Living environment | Urban residential land area/Total population (square meters) | ||
Urban space | Urban built-up area (square kilometers) |
Variable | Mean | Std | Min | Max | Obs |
---|---|---|---|---|---|
CI | 7.626 | 10.254 | 0.166 | 147.015 | 2780 |
SK | −0.054 | 0.133 | −1.351 | 0.172 | 2780 |
Hc | 0.052 | 0.058 | 2.50 × 10−7 | 1.086 | 2780 |
UIS | 1.084 | 0.573 | 0.130 | 5.350 | 2780 |
Ln Econ | 11.006 | 0.551 | 8.327 | 15.675 | 2780 |
Ln People | 4.683 | 0.738 | 2.715 | 6.920 | 2780 |
Urban | 0.090 | 0.167 | 0.001 | 7.222 | 2780 |
Indus | 45.247 | 11.689 | 9.490 | 87.960 | 2780 |
Govern | 0.184 | 0.121 | 0.010 | 2.702 | 2780 |
Consumption | 0.463 | 0.186 | 0.000 | 4.841 | 2780 |
Ln Labor | 12.140 | 0.977 | 7.712 | 16.208 | 2780 |
Variable | CI | CI |
---|---|---|
SK | 4.446 *** (5.58) | 4.020 *** (6.13) |
Ln Econ | −2.586 *** (−13.23) | |
Ln People | −4.024 *** (−15.25) | |
Urban | 0.455 * (1.65) | |
Indus | −0.069 *** (−7.51) | |
Govern | 5.038 *** (9.25) | |
Consumption | 4.428 *** (12.79) | |
Ln Labor | −1.159 *** (−7.01) | |
_cons | 3.310 *** (4.19) | 70.306 *** (22.26) |
Time fixed effect | Yes | Yes |
Individual fixed effect | Yes | Yes |
N | 2780 | 2780 |
R2 | 0.949 | 0.967 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
IV | −0.002 *** (−4.68) | ||||
SK | 2.668 *** (4.27) | 7.171 *** (2.61) | 27.867 ** (2.22) | ||
L. SK | 4.710 *** (8.12) | ||||
Control variable | Yes | Yes | Yes | Yes | Yes |
_cons | 57.939 *** (16.05) | 52.369 *** (14.94) | 67.201 *** (24.18) | 0.121 * (1.69) | 76.266 *** (8.46) |
Time fixed effect | Yes | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes | Yes |
N | 2780 | 1946 | 2502 | 2780 | 2780 |
R2 | 0.967 | 0.980 | 0.452 | 0.095 | 0.398 |
F-statistics value | 21.922 |
Explanatory Variable | Hc | CI | UIS | CI | CI |
---|---|---|---|---|---|
Hc | −12.972 *** (−8.85) | −13.038 *** (−8.90) | |||
UIS | −0.510 *** (−2.63) | −0.537 *** (−2.81) | |||
SK | −0.020 ** (−2.26) | 3.761 *** (5.82) | −0.127 * (−1.87) | 3.955 *** (6.03) | 3.692 *** (5.71) |
Ln Econ | 0.004 * (1.66) | −2.529 *** (−13.13) | −0.043 ** (−2.12) | −2.608 *** (−13.35) | −2.552 *** (−13.26) |
Ln People | −0.045 *** (−12.74) | −4.611 *** (−17.20) | −0.071 *** (−2.60) | −4.060 *** (−15.39) | −4.652 *** (−17.35) |
Urban | 0.002 (0.45) | 0.477 * (1.76) | 0.026 (0.91) | 0.469 * (1.70) | 0.491 * (1.81) |
Indus | −0.000 (−0.82) | −0.070 *** (−7.77) | −0.023 *** (−24.27) | −0.080 *** (−7.92) | −0.082 *** (−8.23) |
Govern | −0.002 (−0.23) | 5.016 *** (9.35) | 0.085 (1.50) | 5.081 *** (9.33) | 5.062 *** (9.44) |
Consumption | 0.008 * (1.69) | 4.530 *** (13.28) | −0.029 (−0.81) | 4.413 *** (12.76) | 4.515 *** (13.25) |
Ln Labor | 0.006 *** (2.86) | −1.076 *** (−6.59) | 0.006 (0.38) | −1.156 *** (−6.99) | −1.073 *** (−6.58) |
cons | 0.231 *** (5.43) | 73.301 *** (23.43) | 2.661 *** (8.14) | 71.662 *** (22.42) | 74.744 *** (23.61) |
Time fixed effect | Yes | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes | Yes |
N | 2780 | 2780 | 2780 | 2780 | 2780 |
R2 | 0.810 | 0.968 | 0.887 | 0.967 | 0.968 |
Year | Moran’s | |
---|---|---|
w1 | w2 | |
2012 | 0.156 *** (5.947) | 0.024 *** (6.005) |
2013 | 0.158 *** (5.889) | 0.028 *** (6.781) |
2014 | 0.143 *** (5.506) | 0.033 *** (8.070) |
2015 | 0.148 *** (5.491) | 0.037 *** (8.641) |
2016 | 0.150 *** (5.576) | 0.041 *** (9.442) |
2017 | 0.152 *** (5.594) | 0.047 *** (10.653) |
2018 | 0.137 *** (5.257) | 0.045 *** (10.602) |
2019 | 0.142 *** (5.463) | 0.064 *** (14.718) |
2020 | 0.129 *** (4.906) | 0.066 *** (15.144) |
2021 | 0.127 *** (4.866) | 0.072 *** (16.357) |
Test | w1 | w2 | ||
---|---|---|---|---|
Statistic | p-Value | Statistic | p-Value | |
LM (error) | 19.165 | 0.000 | 32.073 | 0.000 |
Robust-LM (error) | 26.258 | 0.000 | 6.866 | 0.009 |
LM (lag) | 2.524 | 0.112 | 34.330 | 0.000 |
Robust-LM (lag) | 9.617 | 0.002 | 9.123 | 0.003 |
LR test (sar-sdm) | 23.960 | 0.002 | 17.250 | 0.028 |
LR test (sem-sdm) | 22.690 | 0.004 | 34.270 | 0.000 |
Wald test (sar-sdm) | 24.140 | 0.002 | 17.030 | 0.030 |
Wald test (sem-sdm) | 22.700 | 0.004 | 33.280 | 0.000 |
Hausman | −16.710 | - | −2.700 | - |
LR both ind test | 14.650 | 0.145 | 8.750 | 0.556 |
LR both time test | 7326.710 | 0.000 | 7285.360 | 0.000 |
Variable | w1 | w2 |
---|---|---|
SK | 3.342 *** (4.92) | 3.811 *** (6.11) |
Wx | −4.020 *** (−4.96) | −5.220 *** (−6.16) |
Control variable | Yes | Yes |
Spatial autoregression coefficient rho | 0.288 *** (8.10) | 0.621 *** (6.58) |
Spatial lag coefficient δ | 3.346 *** (37.06) | 3.369 *** (37.21) |
Direct effect | 3.240 *** (4.80) | 3.808 *** (5.97) |
Indirect effect | −4.154 *** (−4.70) | −7.617 *** (−4.03) |
Aggregate effect | −0.915 * (−1.65) | −3.809 ** (−2.10) |
R2 | 0.413 | 0.424 |
N | 2780 | 2780 |
Individual fixed effect | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Nie, X. The Impact of Urban Shrinkage on Carbon Emission Intensity and Its Spatial Spillover Effects. Land 2025, 14, 975. https://doi.org/10.3390/land14050975
Zhao X, Nie X. The Impact of Urban Shrinkage on Carbon Emission Intensity and Its Spatial Spillover Effects. Land. 2025; 14(5):975. https://doi.org/10.3390/land14050975
Chicago/Turabian StyleZhao, Xiaochun, and Xiaodan Nie. 2025. "The Impact of Urban Shrinkage on Carbon Emission Intensity and Its Spatial Spillover Effects" Land 14, no. 5: 975. https://doi.org/10.3390/land14050975
APA StyleZhao, X., & Nie, X. (2025). The Impact of Urban Shrinkage on Carbon Emission Intensity and Its Spatial Spillover Effects. Land, 14(5), 975. https://doi.org/10.3390/land14050975