Coupling Relationship Between City Development and Ecosystem Service in the Shandong Peninsula Urban Agglomeration
Abstract
:1. Introduction
2. The Study Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Source and Processing
3. Research Methods
3.1. Indicator Selection
3.2. Ecosystem Service Assessment Model
3.2.1. Ecosystem Service Value Assessment Model
3.2.2. Material Quality Assessment Model for Ecosystem Services
3.3. Analysis Model of the Relationship Between City and Ecosystem
4. Result Analysis
4.1. Analysis of the Results of the Coupling Relationship
4.2. Evolution Characteristics of the Coupling Relationship Between Socioeconomic Development and Ecosystem Services in SPUA
4.3. Spatial Distribution Characteristics of Cities-ESV Coupling Index (I)
5. Discussion and Conclusions
5.1. Discussion
5.1.1. The Relationship Between Urban Development and Ecosystem Services
5.1.2. ES Assessment
5.1.3. Application and Advantages of Cities-ESV Coupling Index (I)
5.1.4. Limitations and Implications for Measuring the Coupling Relationship Between Urban Development and ES
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, P. Valuation of the ecosystem services: A psycho-cultural perspective. Ecol. Econ. 2008, 64, 808–819. [Google Scholar] [CrossRef]
- Huynh, L.T.M.; Gasparatos, A.; Su, J.; Lam, R.D.; Grant, E.I.; Fukushi, K. Linking the nonmaterial dimensions of human-nature relations and human well-being through cultural ecosystem services. Sci. Adv. 2022, 8, eabn8042. [Google Scholar] [CrossRef]
- Chen, L.; Sun, R.; Sun, T.; Yang, L. Eco-security pattern building in urban agglomeration: Conceptual and theoretical thinking. Acta Ecol. Sin. 2021, 41, 4251–4258. [Google Scholar]
- Xi, J. Hold High the Great Banner of Socialism with Chinese Characteristics and Strive in Unity to Build a Modern Socialist Country in All Respects: Report to the 20th National Congress of the Communist Party of China. Qianjin 2022, 6, 4–26. [Google Scholar]
- Li, C.; Zhao, J. Research on Spatiotemporal Pattern and Influencing Factors of Supply-Demand Matching in the Yangtze River Delta Urban Agglomeration. Ecol. Econ. 2022, 38, 160–169. [Google Scholar]
- Cai, W.; Tu, F. Study on Coupling and Coordination Relationship Between Urbanization and Eco - environment in Wuhan City Circle. Resour. Dev. Mark. 2019, 35, 1368–1374. [Google Scholar]
- You, G.; Wang, P.; Cao, J.; Hu, Y. Analysis of Spatial-temporal Evolution and Coupling Effects of Land Use and Ecosystem Services in a Resource-based City. J. Southwest For. Univ. (Nat. Sci.) 2025, 45, 117–127. [Google Scholar]
- Huang, J.; Na, Y.; Guo, Y. Spatiotemporal characteristics and driving mechanism of the coupling coordination degree of urbanization and ecological environment in Kazakhstan. J. Geogr. Sci. 2020, 30, 1802–1824. [Google Scholar] [CrossRef]
- Kovács, Z.; Farkas, Z.J.; Egedy, T.; Kondor, A.C.; Szabó, B.; Lennert, J.; Baka, D.; Kohán, B. Urban sprawl and land conversion in post-socialist cities: The case of metropolitan Budapest. Cities 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, K.; Xiao, G. The Economic Compensation Zoning of the Cultivated Land Protection in Shaanxi Province: From the Perspective of Food and Ecological Security. China Land. Sci. 2015, 29, 12–19. [Google Scholar]
- Tong, Y.; Pan, Y.; Zhang, M.; Xu, L. Analysis on coupling and coordination between population urbanization and land urbanization in Yunnan Province. World Reg. Stud. 2020, 29, 120–129. [Google Scholar]
- Bai, X.; Shi, P.; Liu, Y. Society: Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Zhu, X.; He, Q. Spatial interaction between urbanisation and ecosystem services: A case study in Changsha-Zhuzhou-Xiangtan urban agglomeration, China. Acta Ecol. Sin. 2019, 39, 7502–7513. [Google Scholar]
- Fang, C.; Zhou, C.; Gu, C.; Chen, L.; Li, S. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations. Acta Geogr. Sin. 2016, 71, 20. [Google Scholar] [CrossRef]
- Feng, S.; Tang, Z.; Yu, L.; Guo, C.; Tang, M.; Yang, Z. Collaborative construction of ecological network in urban agglomerations: A case study of Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2022, 42, 8223–8237. [Google Scholar]
- Huang, H.; Li, D. Evaluation of coupling and coordination relationship between urbanization and ecological environment in China’s urban agglomerations. Jiangsu Agric. Sci. 2018, 46, 5. [Google Scholar]
- Wang, S.; Fang, C.; Wang, Y. Quantitative investigation of the interactive coupling relationship between urbanization and eco-environment. Acta Ecol. Sin. 2015, 35, 11. [Google Scholar]
- Huang, H. Comparative study on coordinated development of urbanization and eco - environment of China’s urban agglomerations. Ecol. Econ. 2016, 32, 4. [Google Scholar]
- Zhang, J.; Jiao, W.; Han, B. Characteristics of coordination changes and spatial coupling relationship between urbanization and ecosystem services. Acta Ecol. Sin. 2020, 40, 12. [Google Scholar]
- Liu, Y.; Wang, S. Couping coordinative degree and interactive coercing relationship between urbanization and eco-enviroment in pearl river delta. Human. Geogr. 2015, 30, 8. [Google Scholar]
- Holt, A.R.; Mears, M.; Maltby, L.; Warren, P. Understanding spatial patterns in the production of multiple urban ecosystem services. Ecosyst. Serv. 2015, 16, 33–46. [Google Scholar] [CrossRef]
- Huang, X.; Han, L.; Zhao, Y.; Huang, X. Theoretical foundations and analytical frameworks for urban socio-ecological system. Acta Ecol. Sin. 2024, 44, 6892–6905. [Google Scholar]
- Li, H.; Dai, Q.; Hu, Z.; Gui, Y. Evaluation and Prediction of Ecosystem Service Value in Urban Agglomeration of Central Guizhou. Res. Soil. Water Conserv. 2024, 31, 248–257. [Google Scholar]
- Zhang, X.; Zhang, D.; Zhang, G.; Song, M. Spatiotemporal characteristics of ecosystem services and ecological function areas in Guanzhong Plain urban agglomeration. Arid. Land. Geogr. 2024, 47, 1587–1595. [Google Scholar]
- Zhong, J.; Gao, M.; Zhao, Y.; Peng, S.; Wang, M. Spatial variation of the cultural ecosystem services pattern and influencing factors in the coastal areas: Evidence from Ramsar Sites in China. Acta Geogr. Sin. 2024, 79, 76–96. [Google Scholar]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecture-level cities in China. J. Clean. Prod. 2017, 195, S1990388463. [Google Scholar] [CrossRef]
- Qiu, L.; Pan, Y.; Zhu, J.; Amable, G.S.; Xu, B. Integrated analysis of urbanization-triggered land use change trajectory and implications for ecological land management: A case study in Fuyang, China. Sci. Total Environ. 2019, 660, 209–217. [Google Scholar] [CrossRef]
- An, G. Construction and Application of Evaluation System for Land Ecosystem Service Value in Shandong Province. Ph.D. Thesis, Shandong Normal University, Jinan, China, 2024. [Google Scholar]
- An, G. Spatiotemporal evolution and protection zoning of ecological land in Shandong Province based on EKC & Lorenz Curve. China Land. Sci. 2018, 32, 89–96. [Google Scholar]
- Sun, R.; Zhu, Q. Distribution and Seasonal Change of Net Primary Productivity in China from April, 1992 to March, 1993. Acta Geogr. Sin. 2000, 67, 36–45. [Google Scholar]
- Liu, Y. Measurement of Carbon Storage and Ecosystem Service Value of Forest Ecosystems in Liaoning Province. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Zhou, L.; Li, W.; Wang, Y.; Bian, H.; Wang, Q.; Liu, Y.; Yuan, Z. Spatiotemporal Coupling Characteristics Between Urbanization and Ecosystem Health in Chongqing City. Bull. Soil. Water Conserv. 2023, 43, 397–408. [Google Scholar] [CrossRef]
- Yang, G.; Lv, K.; Li, F. Spatial and Temporal Correlation Analysis of Land Use Change and Ecosystem Service Value in Nanchang City Based on Grid Scale. China Land. Sci. 2022, 36, 121–130. [Google Scholar]
- Shang, J.; Wang, Z.; Li, L.; Chen, Y.; Li, P. A study on the correlation between technology innovation and the new-type urbanization in Shaanxi province. Technol. Forecast. Soc. 2018, 135, 266–273. [Google Scholar] [CrossRef]
- Yu, B. Ecological effects of new-type urbanization in China. Renew. Sustain. Energy Rev. 2021, 135, 110239. [Google Scholar] [CrossRef]
- Li, L.; Li, J. Analysis on Coupling and Coordination Between Population Urbanization and Land Urbanization in Yunnan Province. Resour. Dev. Mark. 2017, 33, 39–43. [Google Scholar]
- Xiaomin, G.; Chuanglin, F.; Xufang, M.; Dan, C. Coupling and coordination analysis of urbanization and ecosystem service value in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2022, 137, 108782. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Wang, Y.; Yuan, X. Interactive relationship and zoning management between county urbanization and ecosystem services in the Loess Plateau. Ecol. Indic. 2023, 156, 111021. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, L.; Liu, J.; Zhuang, Z.; Huang, Q.; Li, M. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China. Sci. Rep. 2017, 7, 46073. [Google Scholar] [CrossRef]
- Zheng, H.; Li, H. Spatial–temporal evolution characteristics of land use and habitat quality in Shandong Province, China. Sci. Rep. 2022, 12, 15422. [Google Scholar] [CrossRef]
- Ren, Q.; Liu, D.; Liu, Y. Spatio-temporal variation of ecosystem services and the response to urbanization: Evidence based on Shandong province of China. Ecol. Indic. 2023, 151, 13. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Mccool, D.K.; Yoder, D.C. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric. Handb. 1997, 703, 408. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide To Conservation Planning; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- An, G.; Han, Y.; Gao, N.; Ji, L.; Gao, H.; Tan, X.; Xu, Y. Spatial differentiation of ecosystem service value and equilibrium degree in Shandong Province. China Popul. Resour. Environ. 2021, 31, 9–18. [Google Scholar]
- Ge, Q.; Xu, W.; Fu, M.; Han, Y.; An, G.; Xu, Y. Ecosystem service values of gardens in the Yellow River Basin, China. J. Arid. Land. 2022, 14, 284–296. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Klooster, S.A. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Glob. Biogeochem. Cy. 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, W.; Wang, Y. Spatiotemporal Characteristics of NPP in the Three Gorges Reservoir Area and Climate Driving Mechanisms Based on an Improved CASA Model. Acta Ecol. Sin. 2021, 41, 3488–3498. [Google Scholar]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. J. Plant Ecol. 2007, 31, 12. [Google Scholar]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC Crop Growth Model. Trans. Asae 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Ge, Z.; Zhao, C.; Lu, S.; Liu, L.; Wang, J.; Pan, Y. Monitoring and Analyzing the Soil Erosion Changes in Beijing Suburb During the Latest Thirteen Years—A Case Study of Fangshan County of Beijing Suburb. Res. Soil. Water Conserv. 2006, 13, 1–6. [Google Scholar]
- Liu, B.Y.; Nearing, M.A.; Risse, L.M. Slope Length Effects on Soil Loss for Steep Slopes. Soil. Sci. Soc. Am. J. 2000, 64, 1759–1763. [Google Scholar] [CrossRef]
- Cai, C.; Ding, S.; Shi, Z.; Huang, L.; Zhang, G. Study of Applying USLE and Geographical Information System IDRISI to Predict Soil Erosion in Small Watershed. J. Soil Water Conserv. 2004, 2, 19–24. [Google Scholar]
- Fang, L.; Xu, D.; Wang, L.; Niu, Z.; Zhang, M. The study of ecosystem services and the comparison of trade-off and synergy in Yangtze River Basin and Yellow River Basin. Geogr. Res. 2021, 40, 1184–1196. [Google Scholar]
- Chuai, X.; Huang, X.; Lai, L.; Wang, W.; Peng, J.; Zhao, R. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Li, K.R.; Wang, S.Q.; Cao, M.K. Vegetation and soil carbon storage in China. Sci. China Ser. D Earth Sci. 2003, 57, 72–80. [Google Scholar] [CrossRef]
- Zhu, L.; Hu, K.; Sun, S.; Liu, Y.; Liang, J. Research on the Spatiotemporal Variation of Carbon Storage in the Coastal Zone of Liaoning Province Based on InVEST Model. Geoscience 2022, 36, 96–104. [Google Scholar]
- Dai, R.; Yu, C.; Zhang, J.; Ning, Z.; Wang, Z.; Cheng, X. Analysis on Soil Organic Carbon Storage and the Potential for Carbon Sequestration in the Blue Economic Zone of Shandong Peninsula. J. Jilin Univ. (Earth Sci. Ed.) 2014, 44, 1659–1668. [Google Scholar]
- Liu, Q.; Yang, D.; Cao, L.; Anderson, B. Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China. Land 2022, 11, 244. [Google Scholar] [CrossRef]
- Ma, T.; Li, X.; Bai, J.; Ding, S.; Zhou, F.; Cui, B. Four decades’ dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China. Sci. Total Environ. 2019, 655, 741–750. [Google Scholar] [CrossRef]
- Walters, D.; Kotze, D.C.; Rebelo, A.; Pretorius, L.; Job, N.; Lagesse, J.V.; Riddell, E.; Cowden, C. Validation of a rapid wetland ecosystem services assessment technique using the Delphi method. Ecol. Indic. 2021, 125, 107511. [Google Scholar] [CrossRef]
- Li, Z.; Hu, B.; Ren, Y. The Supply–Demand Budgets of Ecosystem Service Response to Urbanization: Insights from Urban–Rural Gradient and Major Function-Oriented Areas. Remote Sens. 2022, 14, 5670. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, L.; Wang, Y.; Gong, J.; Li, J.; Chen, Q. Characteristics of urban expansion in megacities and its impact on water-related ecosystem services: A comparative study of Chengdu and Wuhan, China. Ecol. Indic. 2024, 158, 111322. [Google Scholar] [CrossRef]
- Fan, F.; Wen, X.; Feng, Z.; Gao, Y.; Li, W. Optimizing urban ecological space based on the scenario of ecological security patterns: The case of central Wuhan, China. Appl. Geogr. 2022, 138, 102619. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Yi, S. An integrated approach to constructing ecological security patterns and identifying ecological restoration and protection areas: A case study of Jingmen, China. Ecol. Indic. 2022, 137, 108723. [Google Scholar] [CrossRef]
- An, G.Q.; Huang, H.H.; Liu, Z. Research progress on land use and ecosystem service value assessment in China. J. Univ. Jinan (Nat. Sci. Ed.) 2022, 36, 28–37. [Google Scholar]
- Xie, G.; Xiao, Y. Review of agro-ecosystem services and their values. Chin. J. Eco-Agric. 2013, 21, 645–651. [Google Scholar] [CrossRef]
- Xu, M.; Xing, L.; Wang, X. Spatial Correction and Evaluation of Ecosystem Services in China. China Land. Sci. 2018, 32, 81–88. [Google Scholar]
- Li, P.; Li, T. Spatiotemporal analysis of ecosystem services and the impact of new-type urbanization: A case study of Chengdu, China. Ecol. Indic. 2025, 171, 113191. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y. Responses of Ecosystem Services to Land Use/Cover Changes in Rapidly Urbanizing Areas: A Case Study of the Shandong Peninsula Urban Agglomeration. Sustainability 2024, 16, 6100. [Google Scholar] [CrossRef]
- Fang, Z.; Xue, S.; Zhou, Q.; Cheng, C.; Bai, Y.; Huang, Z.; Wang, J.; Wang, R.; Wang, Y.; Wu, R.; et al. Unveiling driving disparities between satisfaction and equity of ecosystem services in urbanized areas. Resour. Environ. Sustain. 2024, 18, 100176. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for spatial–temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1008–1016. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Wu, X.; Li, W.; Liu, Y.; Tran, L.P. Driving Factor Analysis of Ecosystem Service Balance for Watershed Management in the Lancang River Valley, Southwest China. Land 2021, 10, 522. [Google Scholar] [CrossRef]
Goal Layer | Sub Target Layer | Indicator Layer | Indicator Meaning | Weight | Reference | |
---|---|---|---|---|---|---|
Cities-ESV coupling index (I) | City Size | Population | Urban population size | Negative indicator, total ecosystem services per capita is positive indicator | 0.1 | [35] |
Economy | Gross city product | Negative indicator, ratio of total ESV to total economic output is positive indicator (contribution rate i) | 0.1 | [36] | ||
Volume of construction land | Total size of construction land | Negative indicator, ESV per construction land unit is positive indicator (contribution rate ii) | 0.1 | [37] | ||
Total ecosystem services | Value | Total ESV | Positive indicator | 0.2 | [38] | |
Material quantity | Includes the net vegetation primary productivity, habitat quality index, soil conservation service, carbon storage index, etc. Positive indicator | Net vegetation primary productivity | 0.05 | [39] | ||
Habitat quality index | 0.05 | [40,41,42] | ||||
Soil conservation service | 0.05 | [43,44] | ||||
Carbon storage index | 0.05 | [37,38,39,43] | ||||
Ecosystem service balance degree | Structural equilibrium degree | Ecosystem services structural equilibrium | Positive indicator | 0.2 | [29] | |
Spatial equilibrium degree | Ecosystem services spatial equilibrium degree | Positive indicator | 0.1 | [29] |
Order | City | Eva per Capita | ESV | Rate of Contribution i | Rate of Contribution ii | Total Value of Services | Net Vegetation Primary Productivity | Habitat Quality | Soil Conservation Service | Carbon Storage | Structural Equilibrium | Spatial Balance Degree | Cities-ESV Coupling Index (I) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Dongying | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.007 | 0.287 | 0.000 | 0.309 | 0.000 | 0.580 | 0.688 |
2 | Linyi | 0.068 | 0.186 | 0.423 | 0.211 | 0.761 | 1.000 | 1.000 | 1.000 | 1.000 | 0.843 | 0.579 | 0.583 |
3 | Yantai | 0.181 | 0.291 | 0.193 | 0.388 | 0.737 | 0.765 | 0.851 | 0.363 | 0.887 | 0.924 | 0.463 | 0.535 |
4 | Weifang | 0.096 | 0.174 | 0.280 | 0.134 | 0.682 | 0.873 | 0.898 | 0.577 | 0.959 | 0.849 | 0.576 | 0.513 |
5 | Jining | 0.112 | 0.442 | 0.448 | 0.414 | 0.738 | 0.560 | 0.545 | 0.160 | 0.571 | 0.158 | 0.000 | 0.397 |
6 | Weihai | 0.247 | 0.402 | 0.290 | 0.539 | 0.254 | 0.082 | 0.116 | 0.080 | 0.121 | 0.728 | 0.923 | 0.384 |
7 | Binzhou | 0.191 | 0.266 | 0.528 | 0.149 | 0.386 | 0.250 | 0.369 | 0.038 | 0.402 | 0.323 | 0.635 | 0.339 |
8 | Tai’an | 0.067 | 0.214 | 0.323 | 0.256 | 0.247 | 0.272 | 0.264 | 0.446 | 0.263 | 0.690 | 0.569 | 0.324 |
9 | Jinan | 0.043 | 0.154 | 0.000 | 0.132 | 0.328 | 0.503 | 0.465 | 0.777 | 0.449 | 0.801 | 0.301 | 0.318 |
10 | Rizhao | 0.106 | 0.211 | 0.299 | 0.241 | 0.102 | 0.051 | 0.083 | 0.353 | 0.074 | 0.868 | 0.898 | 0.311 |
11 | Qingdao | 0.067 | 0.216 | 0.003 | 0.152 | 0.462 | 0.491 | 0.444 | 0.305 | 0.470 | 0.619 | 0.121 | 0.296 |
12 | Dezhou | 0.071 | 0.107 | 0.305 | 0.126 | 0.280 | 0.613 | 0.338 | 0.001 | 0.346 | 0.191 | 0.737 | 0.274 |
13 | Heze | 0.000 | 0.001 | 0.206 | 0.002 | 0.224 | 0.721 | 0.415 | 0.001 | 0.442 | 0.179 | 0.848 | 0.247 |
14 | Zibo | 0.050 | 0.143 | 0.087 | 0.111 | 0.092 | 0.155 | 0.161 | 0.750 | 0.146 | 1.000 | 0.270 | 0.245 |
15 | Liaocheng | 0.009 | 0.000 | 0.229 | 0.000 | 0.094 | 0.435 | 0.171 | 0.002 | 0.199 | 0.307 | 1.000 | 0.214 |
16 | Zaozhuang | 0.015 | 0.106 | 0.204 | 0.090 | 0.000 | 0.000 | 0.000 | 0.257 | 0.000 | 0.733 | 0.526 | 0.180 |
Statistical Item | Gross Regional Production (CNY 100 Million) | Total Population (10 Thousand) | Total Volume of Construction Land (ha) | Esv (×108 CNY/a) |
---|---|---|---|---|
Maximum value | 72,798.17 | 10,165.00 | 3,163,840.56 | 14,373.32 |
Minimum value | 5883.80 | 8738.00 | 1,948,967.33 | 12,896.97 |
Mean value | 31,758.93 | 9448.24 | 2,376,174.09 | 13,757.99 |
Standard deviation | 22,621.07 | 441.23 | 333,985.04 | 581.43 |
Average interannual rate of change | 11.17% | 0.63% | 2.08% | −0.44% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Q.; Lu, Y.; An, G.; Tian, Z.; Fu, M.; Tan, X.; Liu, X.; Sun, Z. Coupling Relationship Between City Development and Ecosystem Service in the Shandong Peninsula Urban Agglomeration. Land 2025, 14, 1119. https://doi.org/10.3390/land14051119
Ge Q, Lu Y, An G, Tian Z, Fu M, Tan X, Liu X, Sun Z. Coupling Relationship Between City Development and Ecosystem Service in the Shandong Peninsula Urban Agglomeration. Land. 2025; 14(5):1119. https://doi.org/10.3390/land14051119
Chicago/Turabian StyleGe, Qianqian, Yahan Lu, Guoqiang An, Zhiqiang Tian, Meichen Fu, Xuquan Tan, Xinge Liu, and Zhiyuan Sun. 2025. "Coupling Relationship Between City Development and Ecosystem Service in the Shandong Peninsula Urban Agglomeration" Land 14, no. 5: 1119. https://doi.org/10.3390/land14051119
APA StyleGe, Q., Lu, Y., An, G., Tian, Z., Fu, M., Tan, X., Liu, X., & Sun, Z. (2025). Coupling Relationship Between City Development and Ecosystem Service in the Shandong Peninsula Urban Agglomeration. Land, 14(5), 1119. https://doi.org/10.3390/land14051119