Do Small Livestock Producers Adapt to Climate Variability? An Approach to the Case of the Upper Fonce River Páramo in Santander, Colombia
Abstract
:1. Introduction
2. Study Area
2.1. Location
2.2. Characteristics of Páramo
2.3. Socioeconomic Aspects
3. Methods
4. Results
4.1. Climate Characteristics
4.2. Perceptions of Producers Regarding Climate Variability Phenomena
- Impacts on animal comfort
- Impacts on the appearance of pests and diseases
4.3. Vulnerability and Adaptation Strategies
- Vulnerability
- Adaptation strategies
4.4. Policy Analysis: Conceptual Approach and Institutional Information Review
- (1)
- Direct adaptation: mitigating potential impacts of vulnerable groups (capacity-building people and systems, social protection measures, insurance to reduce potential adverse effects);
- (2)
- Balanced adaptation: preparation for emergency responses (establishment of alert systems, contingency plans, construction of shelters, stocks of food reserves, medicines, and essential materials);
- (3)
- Balanced adaptation: response to the crisis that includes the humanitarian measures necessary to meet the basic needs of the affected population;
- (4)
- Resilient adaptation: recovery, rehabilitation, and reconstruction with measures that help overcome the emergency, focused on the recovery of livelihoods and the reorganization of basic public services.
Concept | Definition | Characteristics | Type of Planning | Scale and Temporal Level | Colombian Institutional Framework |
---|---|---|---|---|---|
Direct adaptation | Adjustment of human or natural systems to new or changing environments [1,48]. | Reduce risks and control vulnerabilities | Static and reactive. Reaction when shock occurs. | Closed systems. Sectoral interventions on micro and medium-term scales. | Ley 1972 of 2019 Ley 1931 of 2018 Ley 1844 of 2017 Ley 1776 of 2016 Ley 629 of 2000 Ley 164 of 1994 |
Anarchic adaptation | Minimal system adjustments due to minimal system demands [36]. | Maintain the balance of the system | Static and caution. It reacts when a shock occurs. | Closed systems without intervention | It is not directly included in Colombian regulations |
Balanced adaptation | Gradual adjustments in daily practices made by human systems [35]. | Maintain the essence and integrity of what exists. | Static and reactive. It reacts when a shock occurs. | Open systems. | National Adaptation Plan, 2014 |
Sectoral interventions at micro and short-term scales. | Law 1931 of 2018 | ||||
Resilient adaptation | Capacity of a social or ecological system to absorb disturbances, maintaining the basic structure and modes of operation [49]. | Manage the transformation of systems by increasing absorption and adaptive capacities. | Dynamic and flexible. Adaptive planning with principles aimed at prevention | Open systems. Inclusive approach that integrates actions at the local, national, regional, and global levels, in the short, medium, and long term. | Climate resilience strategy E2050, 2021 |
Co-evolutionary adaptation | Capacity of complex systems to learn and respond to disturbances under uncertainty scenarios [50,51]. | Manage uncertainty | Dynamic and flexible | Open and multi-scale systems | Not directly included in the regulations |
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- IDEAM-UNAL. Variabilidad Climática y Cambio Climático en Colombia; IDEAM: Bogotá, Colombia, 2018.
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock Production: Recent Trends, Future Prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate Change and Livestock: Impacts, Adaptation, and Mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Silanikove, N. Effects of Heat Stress on the Welfare of Extensively Managed Domestic Ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Schauberger, G.; Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Knauder, W.; Anders, I.; Andre, K.; et al. Global Warming Impact on Confined Livestock in Buildings: Efficacy of Adaptation Measures to Reduce Heat Stress for Growing-Fattening Pigs. Clim. Change 2019, 156, 567–587. [Google Scholar] [CrossRef]
- Singh, S.V.; Naskar, S. Adaptation and Mitigation Strategies for Sustained Livestock Production under Changing Climatic Scenario. J. Agrometeorol. 2019, 21, 14–26. [Google Scholar]
- Berkhout, F.; Dow, K.; Thomas, A. Delayed, Abrupt and Unjust: An Institutionalist Perspective on Limits to Climate Change Adaptation. Clim. Risk Manag. 2024, 44, 100611. [Google Scholar] [CrossRef]
- González-M., R.; Posada, J.M.; Carmona, C.P.; Garzón, F.; Salinas, V.; Idárraga-Piedrahita, Á.; Pizano, C.; Avella, A.; López-Camacho, R.; Norden, N.; et al. Diverging Functional Strategies but High Sensitivity to an Extreme Drought in Tropical Dry Forests. Ecol. Lett. 2021, 24, 451–463. [Google Scholar] [CrossRef]
- Postigo, J.C.; Guáqueta-Solórzano, V.-E.; Castañeda, E.; Ortiz-Guerrero, C.E. Adaptive Responses and Resilience of Small Livestock Producers to Climate Variability in the Cruz Verde-Sumapaz Páramo, Colombia. Land 2024, 13, 499. [Google Scholar] [CrossRef]
- Alves, B.J.R.; Madari, B.E.; Boddey, R.M. Integrated Crop–Livestock–Forestry Systems: Prospects for a Sustainable Agricultural Intensification. Nutr. Cycl. Agroecosystems 2017, 108, 1–4. [Google Scholar] [CrossRef]
- PNGRD. Una Estrategia de Desarrollo 2015–2025; Sexto informe de seguimiento y evaluación; Unidad Nacional para la Gestión del Riesgo de Desastres: Bogotá, Colombia, 2019. Available online: https://portal.gestiondelriesgo.gov.co/Documents/PNGRD/PNGRD_Informe6_v1.pdf (accessed on 11 February 2025).
- FEDEGAN. Ganadería Colombiana Hoja de Ruta 2018–2022; FEDEGAN: Bogotá, Colombia, 2018; pp. 17–101. Available online: https://consejoderedaccion.org/webs/CdRLab_Periodismo_de_soluciones_para_cubrir_la_deforestacion/Modulo03/Hoja_de_ruta_Fedegan.pdf (accessed on 20 January 2025).
- FEDEGAN. Introducción Balance y Perspectivas del Sector Ganadero Colombiano Mercado de la Leche Producción de Leche; FEDEGAN: Bogotá, Colombia, 2023. [Google Scholar]
- FEDEGAN. Balance y Perspectivas del Sector Ganadero Colombiano 2024–2025; FEDEGAN: Bogotá, Colombia, 2024. [Google Scholar]
- Instituto de Hidrología, Meteorología y Estudios Ambientales—IDEAM. Escenarios de Cambio Climático de la Cuarta Comunicación de Colombia; IDEAM: Bogotá, Colombia, 2021.
- Ministerio de Ambiente y Desarrollo Sostenible. Política Nacional de Cambio Climático; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2017.
- Bernal Morales, R.; Hernández, M. de los Ã. V.; Acoltzi, T.M.; Vázquez, M.H.; Flores, S.O.; López, J.J. Impacto de la variabilidad climática en la agricultura de temporal en el estado de Tlaxcala, México. Agric. Soc. Desarro. 2020, 17, 713–733. [Google Scholar] [CrossRef]
- DNP; BID. Impactos Económicos del Cambio Climático en Colombia-Síntesis; DNP: Bogotá, Colombia, 2014. [Google Scholar]
- Gonzalez Diez, V.M.; Verner, D.; Corrales, M.E.; Puerta, J.M.; Mendieta Umaña, M.P.; Morales, C.; Suárea, D.; Linares, A.M.; Scholl, L.; Quintanilla, O.; et al. Climate Change at the IDB: Building Resilience and Reducing Emissions|Publicaciones; Inter-American Development Bank: Washington, DC, USA, 2014; Available online: https://publications.iadb.org/es/publications/english/viewer/Climate-Change-at-the-IDB-Building-Resilience-and-Reducing-Emissions.pdf (accessed on 30 January 2025).
- Vergara-Buitrago, P.A. Estrategias implementadas por el Sistema Nacional de Áreas Protegidas de Colombia para conservar los páramo s. Rev. Cienc. Ambient. 2020, 54, 167–176. [Google Scholar] [CrossRef]
- Díaz-Acevedo, C.J.D.; Romero-Alarcon, L.V.; Miranda-Esquivel, D.R. Páramo s Neotropicales como unidades biogeográficas. Rev. Biol. Trop. 2020, 68, 503–516. [Google Scholar] [CrossRef]
- Afanador, J. A Formal Critique of the Value of the Colombian Páramo. arXiv 2020. [Google Scholar] [CrossRef]
- Olaya-Angarita, J.A.; Díaz-Pérez, C.N.; Morales-Puentes, M.E. Composición y estructura de la transición bosque-páramo en el corredor Guantiva-La Rusia (Colombia). Rev. Biol. Trop. 2019, 67, 755–768. [Google Scholar] [CrossRef]
- Gutiérrez-Salazar, P.; Medrano-Vizcaíno, P. The effects of climate change on decomposition processes in andean paramo ecosystem–synthesis, a systematic review. Appl. Ecol. Environ. Res. 2019, 17, 4957–4970. [Google Scholar] [CrossRef]
- Osejo, A.; Amador Moncada, J.; Ungar, P.; Hernández-Manrique, O.L. Habitar el Páramo|Biodiversidad 2018. Available online: https://reporte.humboldt.org.co/biodiversidad/2018/cap4/402/ (accessed on 15 March 2025).
- Babbie, E.R. The Practice of Social Research, 13th ed.; Wadsworth Cengage Learning; Cengage AU: Southbank, Australia, 2020. [Google Scholar]
- Yin, R. Case Study Research: Design and Methods. Applied Social Research Methods Series; SAGE Publishing: Washington, DC, USA, 1994; pp. 19–116. [Google Scholar]
- Bergamini, N.; Blasiak, R.; Eyzaguirre, P.B. Indicators of Resilience in Socio-Ecological Production Landscapes (SEPLs); United Nations University Institute of Advanced Studies: Yokohama, Japan, 2013. [Google Scholar]
- Clemence, A.; Doise, W.; Lorenzi-Cioldi, F. The Quantitative Analysis of Social Representations; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Adger, N.; Arnell, N.W.; Tompkins, E.L. Successful Adaptation to Climate Change across Scales. Glob. Environ. Change 2005, 15, 77–86. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, Adaptive Capacity and Vulnerability. Glob. Environ. Change 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Lavell, A.; Oppenheimer, M.; Diop, C.; Hess, J.; Lempert, R.; Li, J.; Muir-Wood, R.; Myeong, S.; Moser, S.; Takeuchi, K.; et al. Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 25–64. [Google Scholar] [CrossRef]
- Settele, J.; Scholes; Betts, R.; Bunn, S.; Leadley, P.; Nepstad, D.; Overpeck, J.T.; Taboada, M.A. Terrestrial and Inland Water Systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Walker, B.; Carpenter, S.; Anderies, J.; Abel, N.; Cumming, G.; Janssen, M.; Lebel, L.; Norberg, J.; Peterson, G.; Pritchard, R. Resilience Management in Social-Ecological Systems: A Working Hypothesis for a Participatory Approach. Conserv. Ecol. 2002, 6, 14. [Google Scholar] [CrossRef]
- Ballesteros, J.; Isaza, C. Adaptation Measures to Climate Change as Perceived by Smallholder Farmers in the Andes. J. Ethnobiol. 2021, 41, 428–446. [Google Scholar] [CrossRef]
- Park, S.E.; Marshall, N.A.; Jakku, E.; Dowd, A.M.; Howden, S.M.; Mendham, E.; Fleming, A. Informing Adaptation Responses to Climate Change through Theories of Transformation. Glob. Environ. Change 2012, 22, 115–126. [Google Scholar] [CrossRef]
- ISDR. Living with Risk: A Global Review of Disaster Reduction Initiatives; International Strategy for Disaster Reduction, Ed.; United Nations: New York, NY, USA; Geneva, Switzerland, 2004. [Google Scholar]
- Mechler, R.; Mochizuki, J.; Hochrainer-Stigler, S. Disaster Risk Management and Fiscal Policy: Narratives, Tools, and Evidence Associated with Assessing Fiscal Risk and Building Resilience; World Bank: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Thomalla, F.; Downing, T.; Spanger-Siegfried, E.; Han, G.; Rockström, J. Reducing Hazard Vulnerability: Towards a common approach between disaster risk reduction and climate adaptation. Disasters 2006, 30, 39–48. [Google Scholar] [CrossRef] [PubMed]
- UICN. REDD-Plus: Alcance y Opciones para el Papel de los Bosques en las Estrategias de Mitigación al Cambio Climático; Unión Internacional para la Conservación de la Naturaleza (UICN): Washington, DC, USA, 2015. [Google Scholar]
- Gallopín, G.C. Linkages between Vulnerability, Resilience, and Adaptive Capacity. Glob. Environ. Change 2006, 16, 293–303. [Google Scholar] [CrossRef]
- GTP. Páramo 21: Investigaciones Biofísicas en el Páramo; Órgano de difusión del Grupo de Trabajo en Páramo s del Ecuador (GTP): Quito, Ecuador, 2006. [Google Scholar]
- Herzog, S.; Martínez, R.; Jørgensen, P.M.; Tiessen, H. Climate Change and Biodiversity in the Tropical Andes; Inter-American Institute for Global Change Research (IAI); Scientific Committee on Problems of the Environment: Delft, The Netherlands, 2011. [Google Scholar]
- Mena-Vásconez, P.; Medina, G.; Hofstede, R. Los Páramo s del Ecuador. Particularidades, Problemas y Perspectivas; USFQ PRESS: Quito, Ecuador, 2023. [Google Scholar]
- López, E.I. El Cambio Climático y la Gestión de Páramo s; Documento preparado para el Foro Nacional de los Recursos Hídricos; CAMAREN/AVSF, Agrónomos y Veterinarios: Quito, Ecuador, 2012. [Google Scholar]
- Tompkins, E.L.; Adger, W.N.; Boyd, E.; Nicholson-Cole, S.; Weatherhead, K.; Arnell, N. Observed Adaptation to Climate Change: UK Evidence of Transition to a Well-Adapting Society. Glob. Environ. Change 2010, 20, 627–635. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S.; Ludwig, D. Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Gunderson, L.H.; Holling, C.S.; Light, S.S. (Eds.) Barriers and Bridges to the Renewal of Ecosystems and Institutions; Columbia University Press: New York, NY, USA, 1996; pp. 553–587. ISBN 0-231-10102-3. [Google Scholar]
- Berkes, F.; Ross, H. Panarchy and Community Resilience: Sustainability Science and Policy Implications. Environ. Sci. Policy 2016, 61, 185–193. [Google Scholar] [CrossRef]
- Peri, P.L.; Chará, J.; Viñoles, C.; Bussoni, A.; Cubbage, F. Current Trends in Silvopastoral Systems. Agrofor. Syst. 2024, 98, 1945–1953. [Google Scholar] [CrossRef]
- Kargbo, A.; Jawo, E.; Amoutchi, A.I.; Ndow, M.; Bojang, A.; Zainabou, D.; Kumah, F.J.A.; Koua, H.K.; Kuye, R. Perceptions and Impacts of Climate Variability on Livestock Farming in The Gambia. J. Appl. Anim. Res. 2023, 51, 366–374. [Google Scholar] [CrossRef]
- Ramírez-Gómez, C.J.; García-Cuervo, A.; Rodriguez-Espinosa, H. The Adoption of Sustainable Practices in Livestock Production Systems in Tropical Andean Páramo s. Front. Sustain. Food Syst. 2025, 8, 1461713. [Google Scholar] [CrossRef]
- Cresso, M.; Clerici, N.; Sanchez, A.; Jaramillo, F. Future Climate Change Renders Unsuitable Conditions for Paramo Ecosystems in Colombia. Sustainability 2020, 12, 8373. [Google Scholar] [CrossRef]
- Valencia, J.B.; Mesa, J.; León, J.G.; Madriñán, S.; Cortés, A.J. Climate Vulnerability Assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes. Front. Ecol. Evol. 2020, 8, 565708. [Google Scholar] [CrossRef]
- Chará-Serna, A.M.; Chará, J.; Giraldo, L.P.; Castaño-Quintana, K. Effect of Silvopastoral Systems on Biodiversity and the Provision of Environmental Services in Tropical Agro-Landscapes. In Silvopastoral Systems of Meso America and Northern South America; Chará, J., Jose, S., Eds.; Springer International Publishing: Cham, Swizerland, 2023; pp. 85–104. [Google Scholar] [CrossRef]
- Birchall, S.J.; Bonnett, N. Climate Change Adaptation Policy and Practice: The Role of Agents, Institutions and Systems. Cities 2021, 108, 103001. [Google Scholar] [CrossRef]
- Suprayitno, D.; Iskandar, S.; Dahurandi, K.; Hendarto, T.; Rumambi, F.J. Public Policy in The Era of Climate Change: Adapting Strategies for Sustainable Futures. Migr. Lett. 2024, 21, 945–958. [Google Scholar]
- Ocampo, K. Retos Asociados al Uso del Suelo: El Dilema Entre Conservación y Producción en los Bosques Andinos de Robles del Corredor Ecológico Guantiva-La Rusia-Iguaque (Challenges Associated to Land Use: The Trade-Off Between Conservation and Production on the Andean Oak Forests in the Ecological Corridor Guantiva-LaRusia-Iguaque); Social Science Research Network: Rochester, NY, USA, 2018. [Google Scholar] [CrossRef]
Variables | Indicators |
---|---|
Landscape | Landscape diversity |
Slope | |
Proximity to forest and protected areas | |
Live fences and windbreaks | |
Proximity to water sources | |
Production systems | Diversity of productive systems |
Practices of conservation of forest and water | |
Drains (Channels and ditches) | |
Use of water technologies | |
Self-consumption of products generated at the farm | |
Farm infrastructure | |
Pasture rotation | |
Variety of breeds | |
Variety of grasses | |
Soil fertility | |
Rainwater harvesting practices | |
Practices to increase soil organic matter | |
Sustainable management of weeds and practices | |
Local knowledge | Seed selection of grasses resistant to dryness and humidity |
Use of breeds tolerant to dryness and humidity | |
Water conservation practices | |
Use of climatic indicators | |
Strategies for prevention of drying | |
Strategies for prevention of rain | |
Inherited technologies | |
Possibility of generacional relief | |
Institutions and social networks | Facilitation of interchange of local cooperation and knowledge |
Support from institutions to productive systems | |
Participation in organizations | |
Gender | Women involved in decision-making in the productive systems |
Women’s access to resources and employment opportunities | |
Infrastructure | Knowledge of management of productive systems |
Contribution of infrastructure of productive systems (roads, schools and services) |
Indicators | Variables | S1 | S2 | S3 | S4 | S5 | C6 | C7 | C8 | C9 | C10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Landscape | Landscape diversity | ||||||||||
Slope | |||||||||||
Proximity to forests and protected areas | |||||||||||
Live fences and windbreaks | |||||||||||
Proximity to water sources | |||||||||||
Diversity of productive systems | |||||||||||
Practices of conservation of forest and water | |||||||||||
Drains (channels and ditches) | |||||||||||
Use of water technologies | |||||||||||
Production systems | Self-consumption of products generated at the farm | ||||||||||
Farm infrastructure | |||||||||||
Pasture rotation | |||||||||||
Variety of breeds | |||||||||||
Variety of grasses | |||||||||||
Soil fertility | |||||||||||
Rainwater harvesting practices | |||||||||||
Practices to increase soil organic matter | |||||||||||
Sustanaible management of weeds and practices | |||||||||||
Seed selection of grasses resistant to dryness and humidity | |||||||||||
Use of breeds tolerant to dryness and humidity | |||||||||||
Local knowledge | Water conservation practices | ||||||||||
Use of climatic indicators | |||||||||||
Strategies for prevention of drying | |||||||||||
Strategies for prevention of rain | |||||||||||
Inherited technologies | |||||||||||
Possibility of generational relief | |||||||||||
Institutions and social networks | Facilitation of interchange of local cooperation and knowledge | ||||||||||
Support from institutions to productive systems | |||||||||||
Participation in organizations | |||||||||||
Gender | Women involved in decision-making in the productive systems | ||||||||||
Women’s access to resources and employment opportunities | |||||||||||
Infrastructure | Knowledge of management of productive systems | ||||||||||
Contribution of infrastructure of productive systems (roads, schools and services) |
Climate Variable | Strategies | Effect |
---|---|---|
Temperature increase | Planting trees and living fences to create shady spaces | Reduce the impact of heat stress and weight loss of the animal |
Purchase and transport of grass Rent of farms with pastures in higher elevations | Maintain a balance in the weight of the animal and quality in the production of milk and meat | |
Increase in the dose of salt and vitamins | Prevent fluid retention and increase nutrients in the diet to improve the quality of meat and milk | |
Greater frequency of cattle sales in critical periods of El Niño | Reduce costs generated by the maintenance of animals | |
Genetic improvement | Increase productivity and find breeds more resistant to the weather | |
Increase in the application of medicines and vitamins | Disease and fungus reduction | |
Purchase of concentrates | Improve diet and avoid weight loss | |
Periodic baths | Reduce infection by ticks and flies | |
Search for activities to diversify income | Improve income and maintain livelihoods | |
Technical assistance (private not certified service) | Improvement in knowledge aimed at increasing productivity | |
Precipitation rise | Purchase and transport of grass | Maintain the diet of the animal in the face of a shortage of pasture generated by waterlogging and trampling |
Construction of trenches and drains | Avoid creation of ponds in paddocks | |
Increase in the purchase of vitamins, salt, and molasses | Provision of dietary vitamins, minerals and energy | |
Greater frequency of cattle sales in critical periods of La Niña | Avoid financial losses | |
Increase in the purchase of supplements and concentrates | Maintain the animal’s diet and reduce weight loss | |
Construction of water points, avoiding entrance of cattle into the water source | Conserve water sources | |
Strengthening of associativity | Continuous sale of milk | |
Animal deworming | Prevention against parasites generated by contaminated water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guáqueta-Solórzano, V.-E.; Ortiz-Guerrero, C.E.; Castañeda Salazar, E. Do Small Livestock Producers Adapt to Climate Variability? An Approach to the Case of the Upper Fonce River Páramo in Santander, Colombia. Land 2025, 14, 1068. https://doi.org/10.3390/land14051068
Guáqueta-Solórzano V-E, Ortiz-Guerrero CE, Castañeda Salazar E. Do Small Livestock Producers Adapt to Climate Variability? An Approach to the Case of the Upper Fonce River Páramo in Santander, Colombia. Land. 2025; 14(5):1068. https://doi.org/10.3390/land14051068
Chicago/Turabian StyleGuáqueta-Solórzano, Victoria-Eugenia, César Enrique Ortiz-Guerrero, and Edna Castañeda Salazar. 2025. "Do Small Livestock Producers Adapt to Climate Variability? An Approach to the Case of the Upper Fonce River Páramo in Santander, Colombia" Land 14, no. 5: 1068. https://doi.org/10.3390/land14051068
APA StyleGuáqueta-Solórzano, V.-E., Ortiz-Guerrero, C. E., & Castañeda Salazar, E. (2025). Do Small Livestock Producers Adapt to Climate Variability? An Approach to the Case of the Upper Fonce River Páramo in Santander, Colombia. Land, 14(5), 1068. https://doi.org/10.3390/land14051068