Do Small Livestock Producers Adapt to Climate Variability? An Approach to the Case of the Upper Fonce River Páramo in Santander, Colombia
Abstract
1. Introduction
2. Study Area
2.1. Location
2.2. Characteristics of Páramo
2.3. Socioeconomic Aspects
3. Methods
4. Results
4.1. Climate Characteristics
4.2. Perceptions of Producers Regarding Climate Variability Phenomena
- Impacts on animal comfort
- Impacts on the appearance of pests and diseases
4.3. Vulnerability and Adaptation Strategies
- Vulnerability
- Adaptation strategies
4.4. Policy Analysis: Conceptual Approach and Institutional Information Review
- (1)
- Direct adaptation: mitigating potential impacts of vulnerable groups (capacity-building people and systems, social protection measures, insurance to reduce potential adverse effects);
- (2)
- Balanced adaptation: preparation for emergency responses (establishment of alert systems, contingency plans, construction of shelters, stocks of food reserves, medicines, and essential materials);
- (3)
- Balanced adaptation: response to the crisis that includes the humanitarian measures necessary to meet the basic needs of the affected population;
- (4)
- Resilient adaptation: recovery, rehabilitation, and reconstruction with measures that help overcome the emergency, focused on the recovery of livelihoods and the reorganization of basic public services.
Concept | Definition | Characteristics | Type of Planning | Scale and Temporal Level | Colombian Institutional Framework |
---|---|---|---|---|---|
Direct adaptation | Adjustment of human or natural systems to new or changing environments [1,48]. | Reduce risks and control vulnerabilities | Static and reactive. Reaction when shock occurs. | Closed systems. Sectoral interventions on micro and medium-term scales. | Ley 1972 of 2019 Ley 1931 of 2018 Ley 1844 of 2017 Ley 1776 of 2016 Ley 629 of 2000 Ley 164 of 1994 |
Anarchic adaptation | Minimal system adjustments due to minimal system demands [36]. | Maintain the balance of the system | Static and caution. It reacts when a shock occurs. | Closed systems without intervention | It is not directly included in Colombian regulations |
Balanced adaptation | Gradual adjustments in daily practices made by human systems [35]. | Maintain the essence and integrity of what exists. | Static and reactive. It reacts when a shock occurs. | Open systems. | National Adaptation Plan, 2014 |
Sectoral interventions at micro and short-term scales. | Law 1931 of 2018 | ||||
Resilient adaptation | Capacity of a social or ecological system to absorb disturbances, maintaining the basic structure and modes of operation [49]. | Manage the transformation of systems by increasing absorption and adaptive capacities. | Dynamic and flexible. Adaptive planning with principles aimed at prevention | Open systems. Inclusive approach that integrates actions at the local, national, regional, and global levels, in the short, medium, and long term. | Climate resilience strategy E2050, 2021 |
Co-evolutionary adaptation | Capacity of complex systems to learn and respond to disturbances under uncertainty scenarios [50,51]. | Manage uncertainty | Dynamic and flexible | Open and multi-scale systems | Not directly included in the regulations |
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- IDEAM-UNAL. Variabilidad Climática y Cambio Climático en Colombia; IDEAM: Bogotá, Colombia, 2018.
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock Production: Recent Trends, Future Prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate Change and Livestock: Impacts, Adaptation, and Mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Silanikove, N. Effects of Heat Stress on the Welfare of Extensively Managed Domestic Ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Schauberger, G.; Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Knauder, W.; Anders, I.; Andre, K.; et al. Global Warming Impact on Confined Livestock in Buildings: Efficacy of Adaptation Measures to Reduce Heat Stress for Growing-Fattening Pigs. Clim. Change 2019, 156, 567–587. [Google Scholar] [CrossRef]
- Singh, S.V.; Naskar, S. Adaptation and Mitigation Strategies for Sustained Livestock Production under Changing Climatic Scenario. J. Agrometeorol. 2019, 21, 14–26. [Google Scholar]
- Berkhout, F.; Dow, K.; Thomas, A. Delayed, Abrupt and Unjust: An Institutionalist Perspective on Limits to Climate Change Adaptation. Clim. Risk Manag. 2024, 44, 100611. [Google Scholar] [CrossRef]
- González-M., R.; Posada, J.M.; Carmona, C.P.; Garzón, F.; Salinas, V.; Idárraga-Piedrahita, Á.; Pizano, C.; Avella, A.; López-Camacho, R.; Norden, N.; et al. Diverging Functional Strategies but High Sensitivity to an Extreme Drought in Tropical Dry Forests. Ecol. Lett. 2021, 24, 451–463. [Google Scholar] [CrossRef]
- Postigo, J.C.; Guáqueta-Solórzano, V.-E.; Castañeda, E.; Ortiz-Guerrero, C.E. Adaptive Responses and Resilience of Small Livestock Producers to Climate Variability in the Cruz Verde-Sumapaz Páramo, Colombia. Land 2024, 13, 499. [Google Scholar] [CrossRef]
- Alves, B.J.R.; Madari, B.E.; Boddey, R.M. Integrated Crop–Livestock–Forestry Systems: Prospects for a Sustainable Agricultural Intensification. Nutr. Cycl. Agroecosystems 2017, 108, 1–4. [Google Scholar] [CrossRef]
- PNGRD. Una Estrategia de Desarrollo 2015–2025; Sexto informe de seguimiento y evaluación; Unidad Nacional para la Gestión del Riesgo de Desastres: Bogotá, Colombia, 2019. Available online: https://portal.gestiondelriesgo.gov.co/Documents/PNGRD/PNGRD_Informe6_v1.pdf (accessed on 11 February 2025).
- FEDEGAN. Ganadería Colombiana Hoja de Ruta 2018–2022; FEDEGAN: Bogotá, Colombia, 2018; pp. 17–101. Available online: https://consejoderedaccion.org/webs/CdRLab_Periodismo_de_soluciones_para_cubrir_la_deforestacion/Modulo03/Hoja_de_ruta_Fedegan.pdf (accessed on 20 January 2025).
- FEDEGAN. Introducción Balance y Perspectivas del Sector Ganadero Colombiano Mercado de la Leche Producción de Leche; FEDEGAN: Bogotá, Colombia, 2023. [Google Scholar]
- FEDEGAN. Balance y Perspectivas del Sector Ganadero Colombiano 2024–2025; FEDEGAN: Bogotá, Colombia, 2024. [Google Scholar]
- Instituto de Hidrología, Meteorología y Estudios Ambientales—IDEAM. Escenarios de Cambio Climático de la Cuarta Comunicación de Colombia; IDEAM: Bogotá, Colombia, 2021.
- Ministerio de Ambiente y Desarrollo Sostenible. Política Nacional de Cambio Climático; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2017.
- Bernal Morales, R.; Hernández, M. de los Ã. V.; Acoltzi, T.M.; Vázquez, M.H.; Flores, S.O.; López, J.J. Impacto de la variabilidad climática en la agricultura de temporal en el estado de Tlaxcala, México. Agric. Soc. Desarro. 2020, 17, 713–733. [Google Scholar] [CrossRef]
- DNP; BID. Impactos Económicos del Cambio Climático en Colombia-Síntesis; DNP: Bogotá, Colombia, 2014. [Google Scholar]
- Gonzalez Diez, V.M.; Verner, D.; Corrales, M.E.; Puerta, J.M.; Mendieta Umaña, M.P.; Morales, C.; Suárea, D.; Linares, A.M.; Scholl, L.; Quintanilla, O.; et al. Climate Change at the IDB: Building Resilience and Reducing Emissions|Publicaciones; Inter-American Development Bank: Washington, DC, USA, 2014; Available online: https://publications.iadb.org/es/publications/english/viewer/Climate-Change-at-the-IDB-Building-Resilience-and-Reducing-Emissions.pdf (accessed on 30 January 2025).
- Vergara-Buitrago, P.A. Estrategias implementadas por el Sistema Nacional de Áreas Protegidas de Colombia para conservar los páramo s. Rev. Cienc. Ambient. 2020, 54, 167–176. [Google Scholar] [CrossRef]
- Díaz-Acevedo, C.J.D.; Romero-Alarcon, L.V.; Miranda-Esquivel, D.R. Páramo s Neotropicales como unidades biogeográficas. Rev. Biol. Trop. 2020, 68, 503–516. [Google Scholar] [CrossRef]
- Afanador, J. A Formal Critique of the Value of the Colombian Páramo. arXiv 2020. [Google Scholar] [CrossRef]
- Olaya-Angarita, J.A.; Díaz-Pérez, C.N.; Morales-Puentes, M.E. Composición y estructura de la transición bosque-páramo en el corredor Guantiva-La Rusia (Colombia). Rev. Biol. Trop. 2019, 67, 755–768. [Google Scholar] [CrossRef]
- Gutiérrez-Salazar, P.; Medrano-Vizcaíno, P. The effects of climate change on decomposition processes in andean paramo ecosystem–synthesis, a systematic review. Appl. Ecol. Environ. Res. 2019, 17, 4957–4970. [Google Scholar] [CrossRef]
- Osejo, A.; Amador Moncada, J.; Ungar, P.; Hernández-Manrique, O.L. Habitar el Páramo|Biodiversidad 2018. Available online: https://reporte.humboldt.org.co/biodiversidad/2018/cap4/402/ (accessed on 15 March 2025).
- Babbie, E.R. The Practice of Social Research, 13th ed.; Wadsworth Cengage Learning; Cengage AU: Southbank, Australia, 2020. [Google Scholar]
- Yin, R. Case Study Research: Design and Methods. Applied Social Research Methods Series; SAGE Publishing: Washington, DC, USA, 1994; pp. 19–116. [Google Scholar]
- Bergamini, N.; Blasiak, R.; Eyzaguirre, P.B. Indicators of Resilience in Socio-Ecological Production Landscapes (SEPLs); United Nations University Institute of Advanced Studies: Yokohama, Japan, 2013. [Google Scholar]
- Clemence, A.; Doise, W.; Lorenzi-Cioldi, F. The Quantitative Analysis of Social Representations; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Adger, N.; Arnell, N.W.; Tompkins, E.L. Successful Adaptation to Climate Change across Scales. Glob. Environ. Change 2005, 15, 77–86. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, Adaptive Capacity and Vulnerability. Glob. Environ. Change 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Lavell, A.; Oppenheimer, M.; Diop, C.; Hess, J.; Lempert, R.; Li, J.; Muir-Wood, R.; Myeong, S.; Moser, S.; Takeuchi, K.; et al. Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 25–64. [Google Scholar] [CrossRef]
- Settele, J.; Scholes; Betts, R.; Bunn, S.; Leadley, P.; Nepstad, D.; Overpeck, J.T.; Taboada, M.A. Terrestrial and Inland Water Systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Walker, B.; Carpenter, S.; Anderies, J.; Abel, N.; Cumming, G.; Janssen, M.; Lebel, L.; Norberg, J.; Peterson, G.; Pritchard, R. Resilience Management in Social-Ecological Systems: A Working Hypothesis for a Participatory Approach. Conserv. Ecol. 2002, 6, 14. [Google Scholar] [CrossRef]
- Ballesteros, J.; Isaza, C. Adaptation Measures to Climate Change as Perceived by Smallholder Farmers in the Andes. J. Ethnobiol. 2021, 41, 428–446. [Google Scholar] [CrossRef]
- Park, S.E.; Marshall, N.A.; Jakku, E.; Dowd, A.M.; Howden, S.M.; Mendham, E.; Fleming, A. Informing Adaptation Responses to Climate Change through Theories of Transformation. Glob. Environ. Change 2012, 22, 115–126. [Google Scholar] [CrossRef]
- ISDR. Living with Risk: A Global Review of Disaster Reduction Initiatives; International Strategy for Disaster Reduction, Ed.; United Nations: New York, NY, USA; Geneva, Switzerland, 2004. [Google Scholar]
- Mechler, R.; Mochizuki, J.; Hochrainer-Stigler, S. Disaster Risk Management and Fiscal Policy: Narratives, Tools, and Evidence Associated with Assessing Fiscal Risk and Building Resilience; World Bank: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Thomalla, F.; Downing, T.; Spanger-Siegfried, E.; Han, G.; Rockström, J. Reducing Hazard Vulnerability: Towards a common approach between disaster risk reduction and climate adaptation. Disasters 2006, 30, 39–48. [Google Scholar] [CrossRef] [PubMed]
- UICN. REDD-Plus: Alcance y Opciones para el Papel de los Bosques en las Estrategias de Mitigación al Cambio Climático; Unión Internacional para la Conservación de la Naturaleza (UICN): Washington, DC, USA, 2015. [Google Scholar]
- Gallopín, G.C. Linkages between Vulnerability, Resilience, and Adaptive Capacity. Glob. Environ. Change 2006, 16, 293–303. [Google Scholar] [CrossRef]
- GTP. Páramo 21: Investigaciones Biofísicas en el Páramo; Órgano de difusión del Grupo de Trabajo en Páramo s del Ecuador (GTP): Quito, Ecuador, 2006. [Google Scholar]
- Herzog, S.; Martínez, R.; Jørgensen, P.M.; Tiessen, H. Climate Change and Biodiversity in the Tropical Andes; Inter-American Institute for Global Change Research (IAI); Scientific Committee on Problems of the Environment: Delft, The Netherlands, 2011. [Google Scholar]
- Mena-Vásconez, P.; Medina, G.; Hofstede, R. Los Páramo s del Ecuador. Particularidades, Problemas y Perspectivas; USFQ PRESS: Quito, Ecuador, 2023. [Google Scholar]
- López, E.I. El Cambio Climático y la Gestión de Páramo s; Documento preparado para el Foro Nacional de los Recursos Hídricos; CAMAREN/AVSF, Agrónomos y Veterinarios: Quito, Ecuador, 2012. [Google Scholar]
- Tompkins, E.L.; Adger, W.N.; Boyd, E.; Nicholson-Cole, S.; Weatherhead, K.; Arnell, N. Observed Adaptation to Climate Change: UK Evidence of Transition to a Well-Adapting Society. Glob. Environ. Change 2010, 20, 627–635. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S.; Ludwig, D. Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Gunderson, L.H.; Holling, C.S.; Light, S.S. (Eds.) Barriers and Bridges to the Renewal of Ecosystems and Institutions; Columbia University Press: New York, NY, USA, 1996; pp. 553–587. ISBN 0-231-10102-3. [Google Scholar]
- Berkes, F.; Ross, H. Panarchy and Community Resilience: Sustainability Science and Policy Implications. Environ. Sci. Policy 2016, 61, 185–193. [Google Scholar] [CrossRef]
- Peri, P.L.; Chará, J.; Viñoles, C.; Bussoni, A.; Cubbage, F. Current Trends in Silvopastoral Systems. Agrofor. Syst. 2024, 98, 1945–1953. [Google Scholar] [CrossRef]
- Kargbo, A.; Jawo, E.; Amoutchi, A.I.; Ndow, M.; Bojang, A.; Zainabou, D.; Kumah, F.J.A.; Koua, H.K.; Kuye, R. Perceptions and Impacts of Climate Variability on Livestock Farming in The Gambia. J. Appl. Anim. Res. 2023, 51, 366–374. [Google Scholar] [CrossRef]
- Ramírez-Gómez, C.J.; García-Cuervo, A.; Rodriguez-Espinosa, H. The Adoption of Sustainable Practices in Livestock Production Systems in Tropical Andean Páramo s. Front. Sustain. Food Syst. 2025, 8, 1461713. [Google Scholar] [CrossRef]
- Cresso, M.; Clerici, N.; Sanchez, A.; Jaramillo, F. Future Climate Change Renders Unsuitable Conditions for Paramo Ecosystems in Colombia. Sustainability 2020, 12, 8373. [Google Scholar] [CrossRef]
- Valencia, J.B.; Mesa, J.; León, J.G.; Madriñán, S.; Cortés, A.J. Climate Vulnerability Assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes. Front. Ecol. Evol. 2020, 8, 565708. [Google Scholar] [CrossRef]
- Chará-Serna, A.M.; Chará, J.; Giraldo, L.P.; Castaño-Quintana, K. Effect of Silvopastoral Systems on Biodiversity and the Provision of Environmental Services in Tropical Agro-Landscapes. In Silvopastoral Systems of Meso America and Northern South America; Chará, J., Jose, S., Eds.; Springer International Publishing: Cham, Swizerland, 2023; pp. 85–104. [Google Scholar] [CrossRef]
- Birchall, S.J.; Bonnett, N. Climate Change Adaptation Policy and Practice: The Role of Agents, Institutions and Systems. Cities 2021, 108, 103001. [Google Scholar] [CrossRef]
- Suprayitno, D.; Iskandar, S.; Dahurandi, K.; Hendarto, T.; Rumambi, F.J. Public Policy in The Era of Climate Change: Adapting Strategies for Sustainable Futures. Migr. Lett. 2024, 21, 945–958. [Google Scholar]
- Ocampo, K. Retos Asociados al Uso del Suelo: El Dilema Entre Conservación y Producción en los Bosques Andinos de Robles del Corredor Ecológico Guantiva-La Rusia-Iguaque (Challenges Associated to Land Use: The Trade-Off Between Conservation and Production on the Andean Oak Forests in the Ecological Corridor Guantiva-LaRusia-Iguaque); Social Science Research Network: Rochester, NY, USA, 2018. [Google Scholar] [CrossRef]
Variables | Indicators |
---|---|
Landscape | Landscape diversity |
Slope | |
Proximity to forest and protected areas | |
Live fences and windbreaks | |
Proximity to water sources | |
Production systems | Diversity of productive systems |
Practices of conservation of forest and water | |
Drains (Channels and ditches) | |
Use of water technologies | |
Self-consumption of products generated at the farm | |
Farm infrastructure | |
Pasture rotation | |
Variety of breeds | |
Variety of grasses | |
Soil fertility | |
Rainwater harvesting practices | |
Practices to increase soil organic matter | |
Sustainable management of weeds and practices | |
Local knowledge | Seed selection of grasses resistant to dryness and humidity |
Use of breeds tolerant to dryness and humidity | |
Water conservation practices | |
Use of climatic indicators | |
Strategies for prevention of drying | |
Strategies for prevention of rain | |
Inherited technologies | |
Possibility of generacional relief | |
Institutions and social networks | Facilitation of interchange of local cooperation and knowledge |
Support from institutions to productive systems | |
Participation in organizations | |
Gender | Women involved in decision-making in the productive systems |
Women’s access to resources and employment opportunities | |
Infrastructure | Knowledge of management of productive systems |
Contribution of infrastructure of productive systems (roads, schools and services) |
Indicators | Variables | S1 | S2 | S3 | S4 | S5 | C6 | C7 | C8 | C9 | C10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Landscape | Landscape diversity | ||||||||||
Slope | |||||||||||
Proximity to forests and protected areas | |||||||||||
Live fences and windbreaks | |||||||||||
Proximity to water sources | |||||||||||
Diversity of productive systems | |||||||||||
Practices of conservation of forest and water | |||||||||||
Drains (channels and ditches) | |||||||||||
Use of water technologies | |||||||||||
Production systems | Self-consumption of products generated at the farm | ||||||||||
Farm infrastructure | |||||||||||
Pasture rotation | |||||||||||
Variety of breeds | |||||||||||
Variety of grasses | |||||||||||
Soil fertility | |||||||||||
Rainwater harvesting practices | |||||||||||
Practices to increase soil organic matter | |||||||||||
Sustanaible management of weeds and practices | |||||||||||
Seed selection of grasses resistant to dryness and humidity | |||||||||||
Use of breeds tolerant to dryness and humidity | |||||||||||
Local knowledge | Water conservation practices | ||||||||||
Use of climatic indicators | |||||||||||
Strategies for prevention of drying | |||||||||||
Strategies for prevention of rain | |||||||||||
Inherited technologies | |||||||||||
Possibility of generational relief | |||||||||||
Institutions and social networks | Facilitation of interchange of local cooperation and knowledge | ||||||||||
Support from institutions to productive systems | |||||||||||
Participation in organizations | |||||||||||
Gender | Women involved in decision-making in the productive systems | ||||||||||
Women’s access to resources and employment opportunities | |||||||||||
Infrastructure | Knowledge of management of productive systems | ||||||||||
Contribution of infrastructure of productive systems (roads, schools and services) |
Climate Variable | Strategies | Effect |
---|---|---|
Temperature increase | Planting trees and living fences to create shady spaces | Reduce the impact of heat stress and weight loss of the animal |
Purchase and transport of grass Rent of farms with pastures in higher elevations | Maintain a balance in the weight of the animal and quality in the production of milk and meat | |
Increase in the dose of salt and vitamins | Prevent fluid retention and increase nutrients in the diet to improve the quality of meat and milk | |
Greater frequency of cattle sales in critical periods of El Niño | Reduce costs generated by the maintenance of animals | |
Genetic improvement | Increase productivity and find breeds more resistant to the weather | |
Increase in the application of medicines and vitamins | Disease and fungus reduction | |
Purchase of concentrates | Improve diet and avoid weight loss | |
Periodic baths | Reduce infection by ticks and flies | |
Search for activities to diversify income | Improve income and maintain livelihoods | |
Technical assistance (private not certified service) | Improvement in knowledge aimed at increasing productivity | |
Precipitation rise | Purchase and transport of grass | Maintain the diet of the animal in the face of a shortage of pasture generated by waterlogging and trampling |
Construction of trenches and drains | Avoid creation of ponds in paddocks | |
Increase in the purchase of vitamins, salt, and molasses | Provision of dietary vitamins, minerals and energy | |
Greater frequency of cattle sales in critical periods of La Niña | Avoid financial losses | |
Increase in the purchase of supplements and concentrates | Maintain the animal’s diet and reduce weight loss | |
Construction of water points, avoiding entrance of cattle into the water source | Conserve water sources | |
Strengthening of associativity | Continuous sale of milk | |
Animal deworming | Prevention against parasites generated by contaminated water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guáqueta-Solórzano, V.-E.; Ortiz-Guerrero, C.E.; Castañeda Salazar, E. Do Small Livestock Producers Adapt to Climate Variability? An Approach to the Case of the Upper Fonce River Páramo in Santander, Colombia. Land 2025, 14, 1068. https://doi.org/10.3390/land14051068
Guáqueta-Solórzano V-E, Ortiz-Guerrero CE, Castañeda Salazar E. Do Small Livestock Producers Adapt to Climate Variability? An Approach to the Case of the Upper Fonce River Páramo in Santander, Colombia. Land. 2025; 14(5):1068. https://doi.org/10.3390/land14051068
Chicago/Turabian StyleGuáqueta-Solórzano, Victoria-Eugenia, César Enrique Ortiz-Guerrero, and Edna Castañeda Salazar. 2025. "Do Small Livestock Producers Adapt to Climate Variability? An Approach to the Case of the Upper Fonce River Páramo in Santander, Colombia" Land 14, no. 5: 1068. https://doi.org/10.3390/land14051068
APA StyleGuáqueta-Solórzano, V.-E., Ortiz-Guerrero, C. E., & Castañeda Salazar, E. (2025). Do Small Livestock Producers Adapt to Climate Variability? An Approach to the Case of the Upper Fonce River Páramo in Santander, Colombia. Land, 14(5), 1068. https://doi.org/10.3390/land14051068