Sediment and Nutrient Export After Seasonal Rainfall: Comparing Forests vs. Thinned and Degraded Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Sediment Sampling and Analysis
2.2.1. Soil Sampling and Analysis
2.2.2. Sediment Collection and Analysis
2.3. Rainfall Characteristics
2.4. Statistical Analysis
3. Results
3.1. Properties of Soils and Sediments Collected in Different Land Uses
3.2. Characteristics of Rainfall Events and Sediments Recorded in Each Campaign
3.2.1. Rainfall Events
3.2.2. Sediment Characteristics
3.3. Relationships Between Soil Particle Distribution and Nutrient Content in Soils and Sediments
3.3.1. Relationships in the Soils
3.3.2. Relationships in the Sediments
4. Discussion
4.1. Soil Properties in Forest and Afforested Areas vs. Barren Land
4.2. Sediment Production and Composition Produced Under Different Land Use
4.3. Nutrient Losses Under Different Land Use in Seasonal Campaigns
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial Variation in Determinants of Agricultural Land Abandonment in Europe. Sci. Total Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Perpiña Castillo, C.; Kavalov, B.; Diogo, V.; Jacobs-Crisioni, C.; Batista e Silva, F.; Lavalle, C. Agricultural Land Abandonment in the EU Within 2015-2030. JRC113718, European Commission 2018. Available online: https://ec.europa.eu/jrc/en/luisa (accessed on 1 July 2024).
- García-Ruiz, J.M.; Lasanta, T.; Ruiz-Flano, P.; Ortigosa, L.; White, S.; González, C.; Martí, C. Land-Use Changes and Sustainable Development in Mountain Areas: A Case Study in the Spanish Pyrenees. Landsc. Ecol. 1996, 11, 267–277. [Google Scholar] [CrossRef]
- Navarro, L.M.; Pereira, H.M. Rewilding Abandoned Landscapes in Europe. In Rewilding European Landscapes; Springer: Cham, Switzerland, 2015; pp. 3–23. [Google Scholar] [CrossRef]
- Navas, A.; Quine, T.A.; Walling, D.E.; Gaspar, L.; Quijano, L.; Lizaga, I. Relating Intensity of Soil Redistribution to Land Use Changes in Abandoned Pyrenean Fields Using Fallout Caesium-137. Land Degrad. Dev. 2017, 28, 2017–2029. [Google Scholar] [CrossRef]
- García-Llamas, P.; Geijzendorffer, I.R.; García-Nieto, A.P.; Calvo, L.; Suárez-Seoane, S.; Cramer, W. Impact of Land Cover Change on Ecosystem Service Supply in Mountain Systems: A Case Study in the Cantabrian Mountains (NW of Spain). Reg. Environ. Chang. 2019, 19, 529–542. [Google Scholar] [CrossRef]
- Lizaga, I.; Gaspar, L.; Latorre, B.; Navas, A. Variations in Transport of Suspended Sediment and Associated Elements Induced by Rainfall and Agricultural Cycle in a Mediterranean Agroforestry Catchment. J. Environ. Manag. 2020, 272, 111020. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.C.; Lizaga, I.; Gaspar, L.; Catalá, A.; Navas, A. Assessment of Nutrient Differences in Detached Soil Particles between Cropland and Revegetated Abandoned Land. Land Degrad. Dev. 2024, 35, 5029–5042. [Google Scholar] [CrossRef]
- Aide, T.M.; Clark, M.L.; Grau, H.R.; López-Carr, D.; Levy, M.A.; Redo, D.; Bonilla-Moheno, M.; Riner, G.; Andrade-Núñez, M.J.; Muñiz, M. Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar] [CrossRef]
- Khorchani, M.; Gaspar, L.; Nadal-Romero, E.; Arnaez, J.; Lasanta, T.; Navas, A. Effects of Cropland Abandonment and Afforestation on Soil Redistribution in a Small Mediterranean Mountain Catchment. Int. Soil Water Conserv. Res. 2023, 11, 339–352. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Cammeraat, E.; Pérez-Cardiel, E.; Lasanta, T. Effects of Secondary Succession and Afforestation Practices on Soil Properties after Cropland Abandonment in Humid Mediterranean Mountain Areas. Agric. Ecosyst. Environ. 2016, 228, 91–100. [Google Scholar] [CrossRef]
- Tomaz, C.; Alegria, C.; Monteiro, J.M.; Teixeira, M.C. Land Cover Change and Afforestation of Marginal and Abandoned Agricultural Land: A 10year Analysis in a Mediterranean Region. For. Ecol. Manag. 2013, 308, 40–49. [Google Scholar] [CrossRef]
- Liu, Y.; Van Nieuwenhuizen, N.; Elliott, J.; Shrestha, R.R.; Yerubandi, R. Runoff, Sediment, Organic Carbon, and Nutrient Loads from a Canadian Prairie Micro-Watershed under Climate Variability and Land Management Practices. Environ. Monit. Assess. 2023, 195, 1285. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Leys, J.; Zhang, M.; Gray, J.M. Estimating Nutrient Transport Associated with Water and Wind Erosion across New South Wales, Australia. Geoderma 2023, 430, 116345. [Google Scholar] [CrossRef]
- Mohamadi, M.A.; Kavian, A. Effects of Rainfall Patterns on Runoff and Soil Erosion in Field Plots. Int. Soil Water Conserv. Res. 2015, 3, 273–281. [Google Scholar] [CrossRef]
- Quijano, L.; Kuhn, N.J.; Navas, A. Soil Particle Size Distribution and Induced Soil Carbon Transport by Ephemeral Gully Erosion in Mediterranean Mountain Arable Land. Earth Surf. Process. Landf. 2019, 44, 2741–2751. [Google Scholar] [CrossRef]
- Gaspar, L.; Lizaga, I.; Navas, A. Elemental Mobilisation by Sheet Erosion Affected by Soil Organic Carbon and Water Fluxes along a Radiotraced Soil Catena with Two Contrasting Parent Materials. Geomorphology 2020, 370, 107387. [Google Scholar] [CrossRef]
- Quinton, J.N.; Catt, J.A.; Hess, T.M. The Selective Removal of Phosphorus from Soil: Is Event Size Important? J. Environ. Qual. 2001, 30, 538–545. [Google Scholar] [CrossRef]
- Ordóñez-Fernández, R.; Rodríguez-Lizana, A.; Espejo-Pérez, A.J.; González-Fernández, P.; Saavedra, M.M. Soil and Available Phosphorus Losses in Ecological Olive Groves. Eur. J. Agron. 2007, 27, 144–153. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Giannakopoulos, C. Projected Changes in Extreme Wet and Dry Conditions in Greece. Climate 2023, 11, 49. [Google Scholar] [CrossRef]
- Solé, J.; Del Valle, J.; Ramírez, J. Mapa Geológico de España escala 1:50.000. Mapa geológico y Memoria de la Hoja MAGNA 207 26-10 (Sos del Rey Católico); Segunda Serie (MAGNA)—Primera Edición; Instituto Geológico y Minero de España (IGME): Madrid, Spain, 1972; 16p. [Google Scholar]
- Teixel, A.; Montes, M.J.; Arenas, C.; Garrido, E.A. Mapa Geológico de España E.1:50.000. Mapa geológico y Memoria de la Hoja MAGNA nº 208 27-10 (Uncastillo); Segunda Serie. Primera Edición; Instituto Geológico y Minero de España (IGME): Madrid, Spain, 2012; 47p. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle Size Analysis. In Methods of Soil Analysis. Part I—Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy/Soil Science Society of America: Madiosn, WI, USA, 1986; pp. 383–412. [Google Scholar]
- Quijano, L.; Gaspar, L.; Navas, A. Spatial Patterns of SOC, SON, 137Cs and Soil Properties as Affected by Redistribution Processes in a Mediterranean Cultivated Field (Central Ebro Basin). Soil Tillage Res. 2016, 155, 318–328. [Google Scholar] [CrossRef]
- Navas, A.; Machín, J. Spatial distribution of heavy metals and arsenic in soils of Aragón (northeast Spain): Controlling factors and environmental implications. Appl. Geochem. 2002, 17, 961–973. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, B.; Nearing, M.A. Practical Thresholds for Separating Erosive and Non-Erosive Storms. Trans. Am. Soc. Agric. Eng. 2002, 45, 1843–1847. [Google Scholar]
- Brown, C.L.; Foster, G.R. Storm Erosivity Using Idealized Intensity Distributions. Trans. ASAE 1987, 30, 379–686. [Google Scholar] [CrossRef]
- Chai, Q.; Ma, Z.; An, Q.; Wu, G.-L.; Chang, X.; Zheng, J.; Wang, G. Does Caragana Korshinskii Plantation Increase Soil Carbon Continuously in a Water-Limited Landscape on the Loess Plateau, China? Land Degrad. Dev. 2019, 30, 1691–1698. [Google Scholar] [CrossRef]
- Dynarski, K.A.; Bossio, D.A.; Scow, K.M. Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration. Front. Environ. Sci. 2020, 8, 514701. [Google Scholar] [CrossRef]
- Qiu, L.; Wei, X.; Gao, J.; Zhang, X. Dynamics of Soil Aggregate-Associated Organic Carbon along an Afforestation Chronosequence. Plant Soil 2015, 391, 237–251. [Google Scholar] [CrossRef]
- Tang, S.; Liu, T.; Hu, R.; Xu, X.; Wu, Y.; Meng, L.; Hattori, S.; Tawaraya, K.; Cheng, W. Twelve-Year Conversion of Rice Paddy to Wetland Does Not Alter SOC Content but Decreases C Decomposition and N Mineralization in Japan. J. Environ. Manag. 2024, 354, 120319. [Google Scholar] [CrossRef] [PubMed]
- Farahnak, M.; Sato, T.; Tanaka, N.; Nainar, A.; Mohd Ghaus, I.; Kuraji, K. Impact of Thinning and Contour-Felled Logs on Overland Flow, Soil Erosion, and Litter Erosion in a Monoculture Japanese Cypress Forest Plantation. Water 2024, 16, 2874. [Google Scholar] [CrossRef]
- Ramos, M.C.; Lizaga, I.; Gaspar, L.; Catalá, A.; Navas, A. Factors Affecting Mobility/Export of Particle-Bound Stable Elements after Erosive Rainfalls in Agroforestry Mediterranean Catchments of Aragón (Spain). Geomorphology 2024, 451, 109099. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, Z.; Liu, B.; Zeng, X.; Fu, S.; Lu, B. Nitrogen Enrichment in Runoff Sediments as Affected by Soil Texture in Beijing Mountain Area. Environ. Monit. Assess. 2014, 186, 971–978. [Google Scholar] [CrossRef]
- Berretta, C.; Sansalone, J. Speciation and Transport of Phosphorus in Source Area Rainfall–Runoff. Water Air Soil Pollut. 2011, 222, 351–365. [Google Scholar] [CrossRef]
- Ramos, M.C.; Lizaga, I.; Gaspar, L.; Quijano, L.; Navas, A. Effects of Rainfall Intensity and Slope on Sediment, Nitrogen and Phosphorous Losses in Soils with Different Use and Soil Hydrological Properties. Agric. Water Manag. 2019, 226, 105789. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Yang, X. Effect of Organic Matter on Phosphorus Adsorption and Desorption in a Black Soil from Northeast China. Soil Tillage Res. 2019, 187, 85–91. [Google Scholar] [CrossRef]
- Yao, Q.-Z.; Du, J.-T.; Chen, H.-T.; Yu, Z.-G. Particle-Size Distribution and Phosphorus Forms as a Function of Hydrological Forcing in the Yellow River. Environ. Sci. Pollut. Res. 2016, 23, 3385–3398. [Google Scholar] [CrossRef]
- Yang, L.; Yang, G.; Li, H.; Yuan, S. Effects of Rainfall Intensities on Sediment Loss and Phosphorus Enrichment Ratio from Typical Land Use Type in Taihu Basin, China. Environ. Sci. Pollut. Res. 2020, 27, 12866–12873. [Google Scholar] [CrossRef]
- Deng, P.; Yi, Q.; Zhang, J.; Wang, C.; Chen, Y.; Zhang, T.; Shi, W. Phosphorous Partitioning in Sediments by Particle Size Distribution in Shallow Lakes: From Its Mechanisms and Patterns to Its Ecological Implications. Sci. Total Environ. 2022, 814, 152753. [Google Scholar] [CrossRef] [PubMed]
- Turrión, M.-B.; López, O.; Lafuente, F.; Mulas, R.; Ruipérez, C.; Puyo, A. Soil Phosphorus Forms as Quality Indicators of Soils under Different Vegetation Covers. Sci. Total Environ. 2007, 378, 195–198. [Google Scholar] [CrossRef]
- Bertol, I.; Luciano, R.V.; Bertol, C.; Bagio, B. Nutrient and Organic Carbon Losses, Enrichment Rate, and Cost of Water Erosion. Rev. Bras. Cienc. do Solo 2017, 41, e0160150. [Google Scholar] [CrossRef]
- Goulding, K.; Murrell, T.S.; Mikkelsen, R.L.; Rosolem, C.; Johnston, J.; Wang, H.; Alfaro, M.A. Outputs: Potassium Losses from Agricultural Systems. In Improving Potassium Recommendations for Agricultural Crops; Springer: Cham, Switzerland, 2020; pp. 75–97. [Google Scholar] [CrossRef]
- Durán Zuazo, V.H.; Martínez Raya, A.; Aguilar Ruiz, J. Nutrient Losses by Runoff and Sediment from the Taluses of Orchard Terraces. Water. Air. Soil Pollut. 2004, 153, 355–373. [Google Scholar] [CrossRef]
- Rocha Junior, P.R.D.; Andrade, F.V.; Mendonça, E.D.S.; Donagemma, G.K.; Fernandes, R.B.A.; Bhattharai, R.; Kalita, P.K. Soil, Water, and Nutrient Losses from Management Alternatives for Degraded Pasture in Brazilian Atlantic Rainforest Biome. Sci. Total Environ. 2017, 583, 53–63. [Google Scholar] [CrossRef]
- Xue, L.; Fu, J.-D.; Zheng, W.-G.; Zhao, H.-J.; Tan, J.-D.; Zhang, X.-P. Effect of Litterfall Cover on Runoff and Potassium Loss in Pinus Caribaea Stands. For. Res. 2010, 23, 510–514. [Google Scholar]
- Pisani, O.; Liebert, D.; Bosch, D.D.; Coffin, A.W.; Endale, D.M.; Potter, T.L.; Strickland, T.C. Element Losses from Fields in Conventional and Conservation Tillage in the Atlantic Coastal Plain, Georgia, United States. J. Soil Water Conserv. 2020, 75, 376–386. [Google Scholar] [CrossRef]
- Daniels, M.B.; Fryer, M.S.; Fernandes, S.B.; Slaton, N.A.; Sharpley, A.N.; Webb, P.; Riley, L.; Burke, J.; Berry, L.G.; Roberts, T.; et al. Potassium Losses in Runoff from Cotton Production Fields. Agron. J. 2023, 115, 1666–1677. [Google Scholar] [CrossRef]
- Tate, R.L. Fundamentals of the Sulfur, Phosphorus, and Mineral Cycles. In Soil Microbiology; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 477–510. [Google Scholar] [CrossRef]
- Kabata Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Reimann, C.; de Caritat, P. Chemical Elements in the Environment. Factsheets for the Geochemist and Environmental Scientist; Springer: Berlin/Heidelberg, Germany, 1998; pp. ix+397p. [Google Scholar]
- Zakari, S.; Liu, W.; Wu, J.; Singh, A.K.; Jiang, X.; Yang, B.; Chen, C.; Zhu, X. Decay and Erosion-Related Transport of Sulfur Compounds in Soils of Rubber Based Agroforestry. J. Environ. Manag. 2020, 274, 111200. [Google Scholar] [CrossRef] [PubMed]
Land Use | Clay (%) | Silt (%) | Sand (%) | SOC (%) | ACF (%) | SCF (%) | Ratio ACF/SOC | Ratio ACF/SCF | N (%) | C/N ratio | P (mg/kg) | K (mg/kg) | S (mg/kg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OF | ||||||||||||||
Soil | ||||||||||||||
<0.063 mm | mean | 14.24 abB | 71.90 aA | 13.85 aA | 3.00 bB | 2.25 cB | 1.24 bB | 0.639 aA | 1.82 bA | 0.30 bB | 11.62 cA | 253.2 aA | 9629 aA | 656 aA |
std | 2.19 | 3.53 | 1.78 | 0.75 | 0.37 | 0.09 | 0.02 | 0.16 | 0.04 | 0.16 | 26.8 | 1108 | 120 | |
Sediment | mean | 11.43 A | 74.20 A | 14.37 A | 1.83 A | 1.17 A | 0.66 A | 0.63 A | 1.86 A | 0.17 A | 11.0 A | 251.7 A | 11,138 B | 857 A |
(n = 36) | std | 2.58 | 4.48 | 4.94 | 0.48 | 0.32 | 0.18 | 0.09 | 0.2 | 0.03 | 0.5 | 27.5 | 1885 | 230 |
PA | ||||||||||||||
Soil | ||||||||||||||
<0.063 mm | mean | 16.60 bB | 70.10 aA | 13.30 aA | 2.60 bA | 1.69 bA | 0.91 bA | 0.649 aA | 1.86 bA | 0.25 bA | 10.34 bA | 296.0 aB | 12,236 bB | 703 aB |
std | 3.32 | 3.66 | 1.62 | 0.5 | 0.34 | 0.18 | 0.03 | 0.19 | 0.04 | 0.56 | 20 | 1184 | 58 | |
Sediment PA | mean | 11.21 A | 65.81 A | 22.99 B | 3.08 A | 2.02 A | 1.06 A | 0.665 A | 1.91 A | 0.21 A | 14.7 B | 256.8 B | 9679 A | 906 C |
(n = 36) | std | 1.32 | 4.43 | 5.07 | 0.97 | 0.67 | 0.32 | 0.023 | 0.2 | 0.04 | 0.5 | 40.2 | 1585 C | 342 |
Sediment TPA | mean | 14.26 B | 66.37 A | 19.3 bB | 2.62 A | 1.75 A | 0.87 A | 0.667 A | 2.01 A | 0.17 A | 15.4 dB | 195.0 A | 10,941 A | 4211 |
C (n = 15) | std | 1.09 | 2.7 | 3.16 | 0.46 | 0.31 | 0.17 | 0.02 | 0.24 | 0.03 | 1.3 | 20.1 | 904 | 54 |
BL | ||||||||||||||
Soil | ||||||||||||||
<0.063 mm | mean | 11.9 aA | 72.86 aA | 15.75 aA | 0.21 aB | 0.12 aB | 0.10 aB | 0.567 aB | 1.41 aB | 0.06 aA | 3.57 aB | 288.0 aA | 14,797 bB | 849 bA |
std | 1.84 | 8.89 | 8.67 | 0.13 | 0.09 | 0.05 | 0.1 | 0.16 | 0.01 | 0.16 | 16.8 | 3139 | 130 | |
Sediment | mean | 10.54 A | 70.62 A | 18.84 B | 0.007 A | 0.002 A | 0.005 A | 0.286 A | 0.50 A | 0.05 A | 1.40 A | 267.8 A | 10,568 A | 1509 B |
(n = 15) | std | 2.57 | 2.54 | 4.38 | 0.002 | 0 | 0.001 | 0.002 | 0.01 | 0.01 | 0.04 | 26.2 | 1468 | 222 |
Campaign | Total Rainfall (mm) | Number of Erosive Events | Pmax Event (mm) | Ihmax (mm/h) | Total Erosivity (MJ/ha·mm/h) | Max Event Erosivity (MJ/ha·mm/h) |
---|---|---|---|---|---|---|
1 | 230.4 | 10 | 75.6 | 13.0 | 206.0 | 107.0 |
2 | 79.0 | 4 | 36.4 | 6.2 | 35.5 | 24.1 |
3 | 69.8 | 2 | 53.8 | 3.6 | 27.3 | 15.0 |
4 | 79.2 | 2 | 51.0 | 21.8 | 313.5 | 298.8 |
5 | 52.6 | 3 | 16.8 | 14.8 | 76.9 | 67.7 |
6 | 29.0 | 1 | 21.8 | 6.0 | 31.3 | 21.4 |
7 | 90.4 | 2 | 64.2 | 11.8 | 123.0 | 97.0 |
OF | TPA | |||||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC4 | ||
Clay | 0.530 | 0.688 | −0.284 | −0.700 | 0.193 | −0.310 | 0.342 | |
Silt | −0.659 | 0.329 | −0.505 | −0.817 | 0.083 | 0.126 | 0.024 | |
Sand | 0.327 | −0.650 | 0.622 | 0.901 | −0.123 | −0.019 | −0.123 | |
SOC | 0.950 | −0.119 | −0.031 | 0.875 | 0.196 | v0.344 | −0.049 | |
ACF | 0.952 | −0.086 | −0.021 | 0.823 | 0.220 | −0.416 | −0.159 | |
SCF | 0.838 | −0.164 | −0.041 | 0.834 | −0.007 | 0.096 | 0.360 | |
N | 0.946 | 0.139 | −0.068 | 0.855 | 0.172 | −0.193 | −0.071 | |
K | 0.367 | 0.839 | 0.197 | −0.326 | 0.542 | −0.223 | 0.696 | |
P | 0.284 | 0.567 | 0.610 | 0.506 | 0.703 | 0.153 | 0.380 | |
S | −0.744 | −0.199 | 0.380 | 0.166 | 0.414 | 0.807 | −0.084 | |
TSW | −0.494 | −0.182 | 0.075 | 0.159 | −0.792 | −0.176 | 0.393 | |
Prec | 0.570 | −0.495 | −0.044 | 0.696 | −0.151 | 0.468 | 0.280 | |
R | 0.262 | −0.607 | −0.527 | 0.258 | −0.761 | 0.195 | 0.368 | |
Variance (%) | 43.33 | 21.39 | 12.08 | 44.61 | 18.17 | 11.25 | 9.99 | |
PA | BL | |||||||
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | PC4 | |
Clay | −0.663 | 0.184 | 0.481 | −0.235 | 0.108 | −0.810 | 0.353 | 0.044 |
Silt | −0.822 | 0.094 | −0.011 | 0.112 | 0.704 | −0.325 | −0.164 | −0.447 |
Sand | 0.904 | −0.132 | −0.113 | −0.010 | −0.659 | 0.577 | 0.018 | 0.378 |
SOC | 0.882 | 0.174 | −0.021 | −0.331 | 0.966 | 0.007 | 0.010 | 0.152 |
ACF | 0.840 | 0.193 | -0.088 | −0.401 | 0.948 | −0.056 | −0.070 | 0.160 |
SCF | 0.814 | −0.003 | 0.234 | 0.122 | 0.880 | 0.125 | 0.161 | 0.117 |
N | 0.865 | 0.155 | −0.055 | −0.177 | 0.854 | −0.207 | −0.051 | 0.406 |
K | −0.301 | 0.536 | 0.722 | −0.116 | 0.122 | 0.528 | 0.450 | −0.087 |
P | 0.523 | 0.704 | 0.336 | 0.210 | 0.697 | 0.429 | 0.053 | 0.312 |
S | 0.165 | 0.438 | −0.207 | 0.817 | 0.750 | 0.052 | −0.161 | 0.244 |
TSW | 0.183 | −0.806 | 0.430 | −0.015 | 0.435 | 0.303 | −0.589 | −0.384 |
Prec | 0.768 | −0.086 | 0.366 | 0.356 | 0.639 | 0.400 | 0.138 | −0.552 |
R | 0.257 | −0.755 | 0.300 | 0.306 | 0.289 | 0.070 | 0.840 | −0.205 |
Variance (%) | 45.10 | 17.95 | 10.65 | 10.15 | 46.31 | 14.46 | 11.44 | 9.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, M.C.; Gaspar, L.; Lizaga, I.; Navas, A. Sediment and Nutrient Export After Seasonal Rainfall: Comparing Forests vs. Thinned and Degraded Land. Land 2025, 14, 1040. https://doi.org/10.3390/land14051040
Ramos MC, Gaspar L, Lizaga I, Navas A. Sediment and Nutrient Export After Seasonal Rainfall: Comparing Forests vs. Thinned and Degraded Land. Land. 2025; 14(5):1040. https://doi.org/10.3390/land14051040
Chicago/Turabian StyleRamos, María Concepción, Leticia Gaspar, Iván Lizaga, and Ana Navas. 2025. "Sediment and Nutrient Export After Seasonal Rainfall: Comparing Forests vs. Thinned and Degraded Land" Land 14, no. 5: 1040. https://doi.org/10.3390/land14051040
APA StyleRamos, M. C., Gaspar, L., Lizaga, I., & Navas, A. (2025). Sediment and Nutrient Export After Seasonal Rainfall: Comparing Forests vs. Thinned and Degraded Land. Land, 14(5), 1040. https://doi.org/10.3390/land14051040