Dynamics of Contiguous Destitute Areas in China from 2000 to 2020 and the Risk of Returning to Poverty
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Data Sources
2.3. Overview of Methodology
2.4. Identifying the Change Type of Counties in CDAs
2.5. Measuring the Change Intensity and Ratio of Counties in CDAs
- (1)
- Average change intensity
- (2)
- Average change ratio of regional DN
2.6. Assessing the Risk of Returning to Poverty in CDAs
3. Results
3.1. Three Types of Spatiotemporal Distribution in CDAs
3.2. Stage Characteristics of Space–Time Development of CDAs
3.3. Change Intensity and Ratio of Counties in CDAs
3.4. Poverty Return Risk Assessment in Counties
4. Discussion
4.1. Spatiotemporal Characteristics of CDA Development and the Risk of Relapse into Poverty
4.2. A New Way to Measure the Development of Poverty Areas by Continuous Lighting Data
4.3. Responses to Sustainable Development in CDAs
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Zhou, Y.; Liu, J.L. Regional Differentiation Characteristics of Rural Poverty and Targeted Poverty Alleviation Strategy in China. Bull. Chin. Acad. Sci. 2016, 31, 269–278. [Google Scholar]
- Liu, Y.; Liu, J.; Zhou, Y. Spatio-Temporal Patterns of Rural Poverty in China and Targeted Poverty Alleviation Strategies. J. Rural. Stud. 2017, 52, 66–75. [Google Scholar] [CrossRef]
- Conceição, P. Human Development Report. In 2019: Beyond Income, beyond Averages, Beyond Today: Inequalities in Human Development in the 21st Century; United Nations Development Programme: New York, NY, USA, 2019. [Google Scholar]
- Yan, X.Y.; Qi, X.H. The Measurement Method and Evolution Mechanism of Poverty Dynamics. Acta Geogr. Sin. 2021, 76, 2425–2438. [Google Scholar]
- Zhu, X.; Peng, C. The Chinese Road: A Brilliant Chapter in the Cause of Human Anti-Poverty. In 40 Years of China’s War on Poverty; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–60. [Google Scholar]
- Pumariega, A.J.; Gogineni, R.R.; Benton, T. Poverty, Homelessness, Hunger in Children, and Adolescents: Psychosocial Perspectives. World Soc. Psychiatry 2022, 4, 54. [Google Scholar] [CrossRef]
- Ren, Q.; He, C.; Huang, Q. The Poverty Dynamics in the Agro-Pastoral Transitional Zone in Northern China: A Multiscale Perspective Based on the Poverty Gap Index. Resour. Sci. 2018, 40, 404–416. [Google Scholar]
- Rodgers, J.R.; Rodgers, J.L. Poverty Intensity in Australia. Aust. Econ. Rev. 2000, 33, 235–244. [Google Scholar] [CrossRef]
- Orshansky, M. Children of the Poor. Soc. Secur. Bull. 1963, 26, 3. [Google Scholar]
- Zhang, Y.; Wan, G. The Impact of Growth and Inequality on Rural Poverty in China. J. Comp. Econ. 2006, 34, 694–712. [Google Scholar] [CrossRef]
- Bane, M.J.; Ellwood, D.T. Slipping into and out of Poverty: The Dynamics of Spells. J. Hum. Resour. 1986, 21, 1–23. [Google Scholar] [CrossRef]
- Jalan, J.; Ravallion, M. Transient Poverty in Postreform Rural China. J. Comp. Econ. 1998, 26, 338–357. [Google Scholar] [CrossRef]
- Johnson, D.S.; Levy, H.; Matsudaira, J.; Wolfe, B.L.; Ziliak, J.P. Measuring Poverty: Advances to the Supplemental Poverty Measure. ANNALS Am. Acad. Political Soc. Sci. 2024, 711, 20–37. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, H.; Gu, W.; Zhang, J. Multidimensional Poverty and Types of Impoverished Counties in Gansu Province of China. Econ. Political Stud. 2022, 10, 105–125. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Chi, Y.; Zhao, W.; Hu, Z.; Duan, F. Village-Level Multidimensional Poverty Measurement in China: Where and How. J. Geogr. Sci. 2018, 28, 1444–1466. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Teng, F.; Li, S.; Lin, Y.; Cai, H. China’s Poverty Assessment and Analysis under the Framework of the UN SDGs Based on Multisource Remote Sensing Data. Geo Spat. Inf. Sci. 2022, 27, 111–131. [Google Scholar]
- Li, G.; Chang, L.; Liu, X.; Su, S.; Cai, Z.; Huang, X.; Li, B. Monitoring the Spatiotemporal Dynamics of Poor Counties in China: Implications for Global Sustainable Development Goals. J. Clean. Prod. 2019, 227, 392–404. [Google Scholar] [CrossRef]
- Fan, Z.; Bai, X.; Zhao, N. Explicating the Responses of NDVI and GDP to the Poverty Alleviation Policy in Poverty Areas of China in the 21st Century. PLoS ONE 2022, 17, e0271983. [Google Scholar] [CrossRef]
- Hu, S.; Ge, Y.; Liu, M.; Ren, Z.; Zhang, X. Village-Level Poverty Identification Using Machine Learning, High-Resolution Images, and Geospatial Data. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102694. [Google Scholar] [CrossRef]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining Satellite Imagery and Machine Learning to Predict Poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. A Harmonized Global Nighttime Light Dataset 1992–2018. Sci. Data 2020, 7, 168. [Google Scholar] [CrossRef]
- Ebener, S.; Murray, C.; Tandon, A.; Elvidge, C.C. From Wealth to Health: Modelling the Distribution of Income per Capita at the Sub-National Level Using Night-Time Light Imagery. Int. J. Health Geogr. 2005, 4, 5. [Google Scholar] [CrossRef]
- Xu, J.; Song, J.; Li, B.; Liu, D.; Cao, X. Combining Night Time Lights in Prediction of Poverty Incidence at the County Level. Appl. Geogr. 2021, 135, 102552. [Google Scholar] [CrossRef]
- Li, C.; Yang, W.; Tang, Q.; Tang, X.; Lei, J.; Wu, M.; Qiu, S. Detection of Multidimensional Poverty Using Luojia 1-01 Nighttime Light Imagery. J. Indian Soc. Remote Sens. 2020, 48, 963–977. [Google Scholar] [CrossRef]
- Su, Y.; Li, J.; Wang, D.; Yue, J.; Yan, X. Spatio-Temporal Synergy between Urban Built-Up Areas and Poverty Transformation in Tibet. Sustainability 2022, 14, 8773. [Google Scholar] [CrossRef]
- Yin, J.; Qiu, Y.; Zhang, B. Identification of Poverty Areas by Remote Sensing and Machine Learning: A Case Study in Guizhou, Southwest China. ISPRS Int. J. Geo Inf. 2020, 10, 11. [Google Scholar] [CrossRef]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1217–1229. [Google Scholar] [CrossRef]
- Pan, J.; Hu, Y. Spatial Identification of Multi-Dimensional Poverty in Rural China: A Perspective of Nighttime-Light Remote Sensing Data. J. Indian Soc. Remote Sens. 2018, 46, 1093–1111. [Google Scholar] [CrossRef]
- Liu, T.; Yu, L.; Chen, X.; Li, X.; Du, Z.; Yan, Y.; Peng, D.; Gong, P. Utilizing Nighttime Light Datasets to Uncover the Spatial Patterns of County-Level Relative Poverty-Returning Risk in China and Its Alleviating Factors. J. Clean. Prod. 2024, 448, 141682. [Google Scholar] [CrossRef]
- Andreano, M.S.; Benedetti, R.; Piersimoni, F.; Savio, G. Mapping Poverty of Latin American and Caribbean Countries from Heaven Through Night-Light Satellite Images. Soc. Indic. Res. 2021, 156, 533–562. [Google Scholar] [CrossRef]
- Chen, W.; Feng, D.; Chu, X. Study of Poverty Alleviation Effects for Chinese Fourteen Contiguous Destitute Areas Based on Entropy Method. Int. J. Econ. Financ. 2015, 7, 89–98. [Google Scholar] [CrossRef]
- Hu, Y.; Yao, J. Illuminating Economic Growth. J. Econom. 2022, 228, 359–378. [Google Scholar] [CrossRef]
- Keola, S.; Andersson, M.; Hall, O. Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time Series (2000–2018) of Global NPP-VIIRS-like Nighttime Light Data from a Cross-Sensor Calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Wang, Y.; Huang, Q.; He, C. Quantifying Spatiotemporal Patterns of Shrinking Cities in Urbanizing China: A Novel Approach Based on Time-Series Nighttime Light Data. Cities 2021, 118, 103346. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 Km× 1 Km Gridded Revised Real Gross Domestic Product and Electricity Consumption during 1992–2019 Based on Calibrated Nighttime Light Data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Wu, K.; You, K.; Ren, H.; Gan, L. The Impact of Industrial Agglomeration on Ecological Efficiency: An Empirical Analysis Based on 244 Chinese Cities. Environ. Impact Assess. Rev. 2022, 96, 106841. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Hsu, F.-C.; Baugh, K.E.; Ghosh, T. National Trends in Satellite-Observed Lighting. Glob. Urban Monit. Assess. Through Earth Obs. 2014, 23, 97–118. [Google Scholar]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring Economic Growth from Outer Space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef]
- Hollander, J.B.; Németh, J. The Bounds of Smart Decline: A Foundational Theory for Planning Shrinking Cities. Hous. Policy Debate 2011, 21, 349–367. [Google Scholar] [CrossRef]
- Wu, K.; Li, Y. Research Progress of Urban Land Use and Its Ecosystem Services in the Context of Urban Shrinkage. J. Nat. Resour. 2019, 34, 1121. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial Analysis of Global Urban Extent from DMSP-OLS Night Lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Cao, S.S.; Wang, Y.H.; Duan, F.Z.; Zhao, W.J.; Wang, Z.H.; Fang, N. Coupling between Ecological Vulnerability and Economic Poverty in Contiguous Destitute Areas, China: Empirical Analysis of 714 Poverty-Stricken Counties. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2016, 27, 2614–2622. [Google Scholar]
- Tian, Y.; Wang, Z.; Zhao, J.; Jiang, X.; Guo, R. A Geographical Analysis of the Poverty Causes in China’s Contiguous Destitute Areas. Sustainability 2018, 10, 1895. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, M. How Effective Will China’s Four Trillion Yuan Stimulus Plan Be? Univ. Nottm. China Policy Inst. Brief. Ser. 2009, 49, 28–37. [Google Scholar]
- Huang, Z.; Du, X.; Castillo, C.S.Z. How Does Urbanization Affect Farmland Protection? Evidence from China. Resour. Conserv. Recycl. 2019, 145, 139–147. [Google Scholar] [CrossRef]
- Glawe, L.; Wagner, H. China in the Middle-Income Trap? China Econ. Rev. 2020, 60, 101264. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in Using Multitemporal Night-Time Lights Satellite Imagery to Detect, Estimate, and Monitor Socioeconomic Dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Shen, Y. The Impact of Economic Growth and Inequality on Rural Poverty in China. J. Quant. Tech. Econ. 2012, 29, 19–34. [Google Scholar]
- Segers, T.; Devisch, O.; Herssens, J.; Vanrie, J. Conceptualizing Demographic Shrinkage in a Growing Region–Creating Opportunities for Spatial Practice. Landsc. Urban Plan. 2020, 195, 103711. [Google Scholar] [CrossRef]
- Feng, Q.; Zhou, Z.; Zhu, C.; Luo, W.; Zhang, L. Quantifying the Ecological Effectiveness of Poverty Alleviation Relocation in Karst Areas. Remote Sens. 2022, 14, 5920. [Google Scholar] [CrossRef]
- Ming, L.E.I.; Yuan, X.; Yao, X. Synthesize Dual Goals: A Study on China’s Ecological Poverty Alleviation System. J. Integr. Agric. 2021, 20, 1042–1059. [Google Scholar] [CrossRef]
- Zou, W.; Zhang, F.; Zhuang, Z.; Song, H. Transport Infrastructure, Growth, and Poverty Alleviation: Empirical Analysis of China. Ann. Econ. Financ. 2008, 9, 345–371. [Google Scholar]
- Cepparulo, A.; Cuestas, J.C.; Intartaglia, M. Financial Development, Institutions, and Poverty Alleviation: An Empirical Analysis. Appl. Econ. 2017, 49, 3611–3622. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Cao, S.; Zhang, A. Preferences in Farmland Eco-Compensation Methods: A Case Study of Wuhan, China. Land 2021, 10, 1159. [Google Scholar] [CrossRef]
- Liu, P.; Qian, T.; Huang, X.; Dong, X. The Connotation, Realization Path and Measurement Method of Common Prosperity for All. Manag. World 2021, 37, 117–129. [Google Scholar]
CDAs | Province | Shrinking Counties (n) | Stable Counties (n) | Expanding Counties (n) | Shrinkage Proportion | Stability Proportion | Expansion Proportion | |||
---|---|---|---|---|---|---|---|---|---|---|
Of the Area (%) | Of the CDAs (%) | Of the Area (%) | Of the CDAs (%) | Of the Area (%) | Of the CDAs (%) | |||||
I | Heilongjiang | 5 | 6 | 0 | 0 | 45 | 2.84 | 54.55 | 1.74 | |
Jilin | 5 | 0 | 0 | 100 | 2.84 | 0 | 0 | |||
Inner Mongolia | 2 | 4 | 0 | 0 | 33 | 1.14 | 66.67 | 1.16 | ||
II | Hebei | 4 | 15 | 0 | 0 | 21 | 2.27 | 78.95 | 4.35 | |
Inner Mongolia | 1 | 2 | 0 | 0 | 33 | 0.57 | 66.67 | 0.58 | ||
Shanxi | 5 | 2 | 0 | 0 | 71 | 2.84 | 28.57 | 0.58 | ||
III | Shanxi | 2 | 7 | 4 | 15 | 18.2 | 54 | 3.98 | 30.77 | 1.16 |
Shaanxi | 1 | 6 | 0 | 0 | 14 | 0.57 | 85.71 | 1.74 | ||
IV | Gansu | 18 | 32 | 0 | 0 | 36 | 10.2 | 64 | 9.27 | |
Ningxia | 1 | 6 | 0 | 0 | 14 | 0.57 | 85.71 | 1.74 | ||
Qinghai | 2 | 5 | 0 | 0 | 29 | 1.14 | 71.43 | 1.45 | ||
Shaanxi | 2 | 4 | 0 | 0 | 33 | 1.14 | 66.67 | 1.16 | ||
V | Gansu | 2 | 1 | 6 | 22 | 18.2 | 11 | 0.57 | 66.67 | 1.74 |
Henan | 2 | 8 | 0 | 0 | 20 | 1.14 | 80 | 2.32 | ||
Hubei | 2 | 4 | 3 | 22 | 18.2 | 44 | 2.27 | 33.33 | 0.87 | |
Shaanxi | 13 | 17 | 0 | 0 | 43 | 7.39 | 56.67 | 4.93 | ||
Sichuan | 1 | 6 | 10 | 5.9 | 9.09 | 35 | 3.41 | 58.82 | 2.9 | |
Chongqing | 2 | 3 | 0 | 0 | 40 | 1.14 | 60 | 0.87 | ||
VI | Anhui | 1 | 10 | 0 | 0 | 9.1 | 0.57 | 90.91 | 2.9 | |
Henan | 1 | 15 | 0 | 0 | 6.3 | 0.57 | 93.75 | 4.35 | ||
Hubei | 3 | 5 | 0 | 0 | 38 | 1.7 | 62.5 | 1.45 | ||
VII | Guizhou | 5 | 10 | 0 | 0 | 33 | 2.84 | 66.67 | 2.9 | |
Hubei | 1 | 5 | 5 | 9.1 | 9.09 | 45 | 2.84 | 45.45 | 1.45 | |
Hunan | 1 | 12 | 24 | 2.7 | 9.09 | 32 | 6.82 | 64.86 | 6.95 | |
Chongqing | 2 | 5 | 0 | 0 | 29 | 1.14 | 71.43 | 1.45 | ||
VIII | Guizhou | 10 | 0 | 0 | 0 | 0 | 100 | 2.9 | ||
Sichuan | 5 | 8 | 0 | 0 | 38 | 2.84 | 61.54 | 2.32 | ||
Yunnan | 5 | 10 | 0 | 0 | 33 | 2.84 | 66.67 | 2.9 | ||
IX | Yunnan | 20 | 35 | 0 | 0 | 36 | 11.4 | 63.64 | 10.1 | |
X | Guangxi | 1 | 11 | 23 | 2.9 | 9.09 | 31 | 6.25 | 65.71 | 6.66 |
Guizhou | 1 | 16 | 25 | 2.4 | 9.09 | 38 | 9.09 | 59.52 | 7.24 | |
Yunnan | 3 | 9 | 0 | 0 | 25 | 1.7 | 75 | 2.61 | ||
XI | Hunan | 3 | 3 | 0 | 0 | 50 | 1.7 | 50 | 0.87 | |
Jiangxi | 3 | 15 | 0 | 0 | 17 | 1.7 | 83.33 | 4.35 | ||
Total | 11 | 176 | 345 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, G.; Wu, J.; Zhang, M.; Wu, C.; He, T. Dynamics of Contiguous Destitute Areas in China from 2000 to 2020 and the Risk of Returning to Poverty. Land 2025, 14, 751. https://doi.org/10.3390/land14040751
Zhai G, Wu J, Zhang M, Wu C, He T. Dynamics of Contiguous Destitute Areas in China from 2000 to 2020 and the Risk of Returning to Poverty. Land. 2025; 14(4):751. https://doi.org/10.3390/land14040751
Chicago/Turabian StyleZhai, Ge, Jiang Wu, Maoxin Zhang, Cifang Wu, and Tingting He. 2025. "Dynamics of Contiguous Destitute Areas in China from 2000 to 2020 and the Risk of Returning to Poverty" Land 14, no. 4: 751. https://doi.org/10.3390/land14040751
APA StyleZhai, G., Wu, J., Zhang, M., Wu, C., & He, T. (2025). Dynamics of Contiguous Destitute Areas in China from 2000 to 2020 and the Risk of Returning to Poverty. Land, 14(4), 751. https://doi.org/10.3390/land14040751