Influence of Avocado Plantations as Driver of Land Use and Land Cover Change in Chile’s Aconcagua Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and LULC Classification Processing
2.2.1. Data Sources and Preprocessing
2.2.2. Supervised Classification and Validation
2.3. LULC Change Detection and Transitions
2.4. Change Analysis of Avocado and Native Vegetation Lands
2.5. Local Landscape Patterns
2.6. Landscape Metrics
- -
- Scenario 1 (S1): “avocado decrease”. Replacement of the avocado land above 550 m by native vegetation.
- -
- Scenario 2 (S2): “avocado expansion”. A 200 m buffer around existing avocado patches was applied.
- -
- Scenario 3 (S3): “ecological restoration”. Complete replacement of avocado plantations by native vegetation throughout the basin.
3. Results
3.1. Spatiotemporal Change Analysis
3.1.1. Net Area Change of LULC
3.1.2. LULC Transition and Change Map
3.2. Change Analysis of Avocado Plantations and Native Vegetation
3.3. Local Landscape Patterns and Metrics Under Land Sustainability Practices
4. Discussion
4.1. Assessment of Change Analysis of LULC and Avocado Plantations
4.2. Implications of Changes in Avocado Plantations on Landscape Transformation: Sustainable Land Management Practices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Schulz, J.J.; Cayuela, L.; Echeverria, C.; Salas, J.; Rey Benayas, J.M. Monitoring Land Cover Change of the Dryland Forest Landscape of Central Chile (1975-2008). Appl. Geogr. 2010, 30, 436–447. [Google Scholar] [CrossRef]
- CIREN. Centro de Información de Recursos Naturales. Catastro Frutícola 2008. Región de Valparaíso; CIREN: Santiago, Chile, 2008; Available online: https://bibliotecadigital.ciren.cl/items/deeda92d-495c-4bb1-b380-a3a08ec6adbb/ (accessed on 7 July 2024).
- CIREN. Centro de Información de Recursos Naturales. Catastro Frutícola 2023. Región de Valparaíso; CIREN: Santiago, Chile, 2023; Available online: https://bibliotecadigital.ciren.cl/items/c7fdd7a6-0c40-4b77-bb9a-3ed733cfe2fa (accessed on 7 July 2024).
- Youlton, C.; Espejo, P.; Biggs, J.; Norambuena, M.; Cisternas, M.; Neaman, A.; Salgado, E. Quantification and Control of Runoff and Soil Erosion on Avocado Orchards on Ridges along Steep-Hillslopes. Cienc. Investig. Agrar. 2010, 37, 113–123. [Google Scholar] [CrossRef]
- Magrach, A.; Sanz, M.J. Environmental and Social Consequences of the Increase in the Demand for ‘Superfoods’ World-Wide. People Nat. 2020, 2, 267–278. [Google Scholar] [CrossRef]
- Berasaluce, M.; Díaz-Siefer, P.; Rodríguez-Díaz, P.; Mena-Carrasco, M.; Ibarra, J.T.; Celis-Diez, J.L.; Mondaca, P. Social-Environmental Conflicts in Chile: Is There Any Potential for an Ecological Constitution? Sustainability 2021, 13, 12701. [Google Scholar] [CrossRef]
- Lavín, U.; Martinez-Harms, M.J.; Celis-Diez, J.L.; Francois, J.P.; Aguirre, Y.; Martínez-Harms, J. Modelling Pollination Maps in Agroecosystems of a Chilean Biodiversity Hotspot. Ecosyst. People 2024, 20, 2358471. [Google Scholar] [CrossRef]
- Latorre-Cárdenas, M.C.; González-Rodríguez, A.; Godínez-Gómez, O.; Arima, E.Y.; Young, K.R.; Denvir, A.; García-Oliva, F.; Ghilardi, A. Estimating Fragmentation and Connectivity Patterns of the Temperate Forest in an Avocado-Dominated Landscape to Propose Conservation Strategies. Land 2023, 12, 631. [Google Scholar] [CrossRef]
- Pérez-Solache, A.; Vaca-Sánchez, M.S.; Maldonado-López, Y.; De Faria, M.L.; Borges, M.A.Z.; Fagundes, M.; Oyama, K.; Méndez-Solórzano, M.I.; Aguilar-Peralta, J.S.; Hernández-Guzmán, R.; et al. Changes in Land Use of Temperate Forests Associated to Avocado Production in Mexico: Impacts on Soil Properties, Plant Traits and Insect-Plant Interactions. Agric. Syst. 2023, 204, 103556. [Google Scholar] [CrossRef]
- CAZALAC. Centro del Agua para Zonas Áridas y Semiáridas de América Latina y el Caribe. Estado Del Arte Ambiental de Plantaciones de Persea Americana Mill En Chile. 2020. Available online: https://www.cazalac.org/wp-content/uploads/2023/06/Cazalac_Estudio_12-09.pdf (accessed on 5 January 2025).
- Redagrícola. Sustentabilidad del palto en Chile. Available online: https://redagricola.com/sustentabilidad-del-palto-en-chile/ (accessed on 4 January 2025).
- Muhammad, R.; Zhang, W.; Abbas, Z.; Guo, F.; Gwiazdzinski, L. Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China. Land 2022, 11, 419. [Google Scholar] [CrossRef]
- Feng, S.; Li, W.; Xu, J.; Liang, T.; Ma, X.; Wang, W.; Yu, H. Land Use/Land Cover Mapping Based on GEE for the Monitoring of Changes in Ecosystem Types in the Upper Yellow River Basin over the Tibetan Plateau. Remote Sens. 2022, 14, 5361. [Google Scholar] [CrossRef]
- Salazar, A.A.; Arellano, E.C.; Muñoz-sáez, A.; Miranda, M.D.; da Silva, F.O.; Zielonka, N.B.; Crowther, L.P.; Silva-ferreira, V.; Oliveira-reboucas, P.; Dicks, L.V. Restoration and Conservation of Priority Areas of Caatinga’s Semi-arid Forest Remnants Can Support Connectivity within an Agricultural Landscape. Land 2021, 10, 550. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Kazemi Garajeh, M.; Lakes, T.; Blaschke, T. Machine Learning Data-Driven Approaches for Land Use/Cover Mapping and Trend Analysis Using Google Earth Engine. J. Environ. Plan. Manag. 2023, 66, 665–697. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Nasim, W.; Mumtaz, F.; Abdo, H.G.; Mostafazadeh, R.; Fahad, S. Assessment of Future Prediction of Urban Growth and Climate Change in District Multan, Pakistan Using CA-Markov Method. Urban Clim. 2024, 53, 101766. [Google Scholar] [CrossRef]
- Qacami, M.; Khattabi, A.; Lahssini, S.; Rifai, N.; Meliho, M. Land-Cover/Land-Use Change Dynamics Modeling Based on Land Change Modeler. Ann. Reg. Sci. 2023, 70, 237–258. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [Google Scholar] [CrossRef]
- Kadri, N.; Jebari, S.; Augusseau, X.; Mahdhi, N.; Lestrelin, G.; Berndtsson, R. Analysis of Four Decades of Land Use and Land Cover Change in Semiarid Tunisia Using Google Earth Engine. Remote Sens. 2023, 15, 3257. [Google Scholar] [CrossRef]
- Lasaponara, R.; Abate, N.; Fattore, C.; Aromando, A.; Cardettini, G.; Di Fonzo, M. On the Use of Sentinel-2 NDVI Time Series and Google Earth Engine to Detect Land-Use/Land-Cover Changes in Fire-Affected Areas. Remote Sens. 2022, 14, 4723. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Duran-Llacer, I.; Munizaga, J.; Arumí, J.L.; Ruybal, C.; Aguayo, M.; Sáez-Carrillo, K.; Arriagada, L.; Rojas, O. Lessons to Be Learned: Groundwater Depletion in Chile’s Ligua and Petorca Watersheds through an Interdisciplinary Approach. Water 2020, 12, 2446. [Google Scholar] [CrossRef]
- del Pozo, A.; Catenacci-Aguilera, G.; Acosta-Gallo, B. Consequences of Land Use Changes on Native Forest and Agricultural Areas in Central-Southern Chile during the Last Fifty Years. Land 2024, 13, 610. [Google Scholar] [CrossRef]
- Martin-Gallego, P.; Marston, C.G.; Altamirano, A.; Pauchard, A.; Aplin, P. Mapping Alien and Native Forest Dynamics in Chile Using Earth Observation Time Series Analysis. For. Ecol. Manag. 2024, 560, 121847. [Google Scholar] [CrossRef]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native Forest Loss in the Chilean Biodiversity Hotspot: Revealing the Evidence. Reg. Environ. Change 2017, 17, 285–297. [Google Scholar] [CrossRef]
- Martínez-Retureta, R.; Aguayo, M.; Abreu, N.J.; Urrutia, R.; Echeverría, C.; Lagos, O.; Rodríguez-López, L.; Duran-Llacer, I.; Barra, R.O. Influence of Climate and Land Cover/Use Change on Water Balance: An Approach to Individual and Combined Effects. Water 2022, 14, 2304. [Google Scholar] [CrossRef]
- Martínez-Retureta, R.; Aguayo, M.; Abreu, N.J.; Stehr, A.; Duran-Llacer, I.; Rodríguez-López, L.; Sauvage, S.; Sánchez-Pérez, J.M. Estimation of the Climate Change Impact on the Hydrological Balance in Basins of South-Central Chile. Water 2021, 13, 794. [Google Scholar] [CrossRef]
- Bellisario, A.; Janke, J. Assessing the Impacts of a Multi-Year Drought on Water Resources and Agriculture in the Aconcagua River Basin of Chile. Investig. Geográficas 2024, 67, 72–94. [Google Scholar] [CrossRef]
- Panez-Pinto, A.; Mansilla-Quiñones, P.; Moreira-Muñoz, A. Agua, Tierra y Fractura Sociometabólica Del Agronegocio. Bitacora 2018, 28, 153–160. [Google Scholar] [CrossRef]
- Roose, I.; Panez, A. Social Innovations as A Response to Dispossession: Community Water Management in View of Socio-Metabolic Rift in Chile. Water 2020, 12, 566. [Google Scholar] [CrossRef]
- Benavidez-Silva, C.; Jensen, M.; Pliscoff, P. Future Scenarios for Land Use in Chile: Identifying Drivers of Change and Impacts over Protected Area System. Land 2021, 10, 408. [Google Scholar] [CrossRef]
- Jiang, C.; Du, X.; Cai, J.; Li, H.; Chen, Q. Study on the Evolution and Prediction of Land Use and Landscape Patterns in the Jianmen Shu Road Heritage Area. Land 2024, 13, 2165. [Google Scholar] [CrossRef]
- Hernández, A.; Miranda, M.; Arellano, E.C.; Saura, S.; Ovalle, C. Landscape Dynamics and Their Effect on the Functional Connectivityof a Mediterranean Landscape in Chile. Ecol. Indic. 2015, 48, 198–206. [Google Scholar] [CrossRef]
- CONAF. Corporación Forestal Nacional. Actualización Del Catastro De Los Recursos Vegetacionales De La Región De Valparaíso Año 2019; CONAF: Santiago, Chile, 2019. [Google Scholar]
- MapBiomas. Colección 1 [2024] de la Serie Anual de Mapas de Cobertura y Uso del Suelo de Chile. Available online: https://chile.mapbiomas.org/ (accessed on 12 August 2024).
- Galleguillos, M.; Ceballos-Comisso, A.; Gimeno, F.; Zambrano-Bigiarini, M. CLDynamicLandCover [Dataset]. Zenodo 2024. [Google Scholar] [CrossRef]
- Boisier, J.P.; Alvarez-garreton, C.; Marinao, R.; Galleguillos, M. Increasing Water Stress in Chile Evidenced by Novel Datasets of Water Availability, Land Use and Water Use. EGUsphere 2024, 1–50. [Google Scholar] [CrossRef]
- Taucare, M.; Viguier, B.; Figueroa, R.; Daniele, L. The Alarming State of Central Chile’s Groundwater Resources: A Paradigmatic Case of a Lasting Overexploitation. Sci. Total Environ. 2024, 906, 167723. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.J.; Winter, J.M.; Spera, S.A.; Chipman, J.W.; Osterberg, E.C. Water, Agriculture, and Climate Dynamics in Central Chile’s Aconcagua River Basin. Phys. Geogr. 2021, 42, 395–415. [Google Scholar] [CrossRef]
- Aliaga-Alvarado, M.; Gómez-Escalonilla, V.; Martínez-Santos, P. Identification of Non-Conventional Groundwater Resources by Means of Machine Learning in the Aconcagua Basin, Chile. J. Hydrol. Reg. Stud. 2023, 49, 101502. [Google Scholar] [CrossRef]
- DGA. Dirección General de Aguas. Proyecto Actualización de La Modelación Hidrogeológica Integrada Del Aconcagua No 446. Dirección General de Aguas División de Estudios y Planificación, Realizado Por Wsp Consulting Chile. S.I.T. No 446. 2019. Available online: https://repositoriodirplan.mop.gob.cl/biblioteca/items/390cf4e5-f5e8-462c-9123-6c70782ca2b7/full (accessed on 7 July 2024).
- Köppen, W. Klassifikation Der Klimate Nach Temperatur, Niederschlag Und Jahreslauf. Petermanns Geogr. Mitt. 1918, 64, 193–203. [Google Scholar]
- Duran-Llacer, I.; Zambrano, F.; Rodríguez-López, L.; Martínez-Retureta, R.; Arumí, J.L. Analysis of Drought in Agriculture and Natural Vegetation Areas in Central Chile. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 3643–3646. [Google Scholar] [CrossRef]
- Crespo, S.A.; Lavergne, C.; Fernandoy, F.; Muñoz, A.A.; Cara, L.; Olfos-Vargas, S. Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments. Water 2020, 12, 2630. [Google Scholar] [CrossRef]
- DGA. Dirección General de Aguas. Plan Estratégico de Gestión Hídrica En La Cuenca de Aconcagua. Dirección General de Aguas, División de Estudios y Planificación, Realizado Por UTP Hídrica-Eridanus. S.I.T. No 464. 2020. Available online: https://repositoriodirplan.mop.gob.cl/biblioteca/items/1bb23582-1c34-4d30-940b-7c04b38b6753/full (accessed on 11 July 2024).
- Janke, J.R.; Ng, S.; Bellisario, A. An Inventory and Estimate of Water Stored in Firn Fields, Glaciers, Debris-Covered Glaciers, and Rock Glaciers in the Aconcagua River Basin, Chile. Geomorphology 2017, 296, 142–152. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Yu, L.; Wang, X.; Chen, Y.; Bai, Y.; Hernández, H.J.; Galleguillos, M.; Estades, C.; Biging, G.S.; et al. Detailed Dynamic Land Cover Mapping of Chile: Accuracy Improvement by Integrating Multi-Temporal Data. Remote Sens. Environ. 2016, 183, 170–185. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Scheel, J.; Eering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resources Technology Satellite Symposium, Washington, DC, USA, 10–14 December 1973; 1976; Volume 1, pp. 48–62. [Google Scholar]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- NASA-JPL. NASADEM: NASA NASADEM Digital Elevation 30m. NASADEM Merged DEM Global 1 arc second V001. DAAC de procesos terrestres del EOSDIS de la NASA. Available online. Available online: https://lpdaac.usgs.gov/products/nasadem_hgtv001/ (accessed on 12 August 2024).
- Breiman, L. RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Accuracy Assessment: A User’s Perspective. Remote Sens. Br. 1986, 52, 397–399. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Nowosad, J. Motif: An Open-Source R Tool for Pattern-Based Spatial Analysis. Landsc. Ecol. 2021, 36, 29–43. [Google Scholar] [CrossRef]
- Nowosad, J. Motif: An Open-Source R Tool for Pattern-Based Spatial Analysis, version 0.6.4; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An Open-Source R Tool to Calculate Landscape Metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef]
- Oficina de Estudios y Políticas Agrarias. ODEPA. Agricultura Chilena: Reflexiones y Desafíos Al 2030; ODEPA: Santiago, Chile, 2017. [Google Scholar]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of Climate and Land Use Change on Hydrological Response in Gumara Watershed, Ethiopia. Ecohydrol. Hydrobiol. 2021, 21, 315–332. [Google Scholar] [CrossRef]
- Leubert, F.; Pliscoff, P. Sinopsis Bioclimática y Vegetacional de Chile, 2nd ed.; Universitaria: Santiago, Chile, 2018. [Google Scholar]
- Zambrano, F.; Vrieling, A.; Meza, F.; Duran-Llacer, I.; Fernández, F.; Venegas-González, A.; Raab, N.; Craven, D. Shifts in Water Supply and Demand Drive Land Cover Change across Chile. Eartharxiv Repos. 2025. [Google Scholar] [CrossRef]
- Garreaud, R.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; Lequesne, C.; Mcphee, J.; Zambrano-5 Bigiarini, M. The 2010-2015 Mega Drought in Central Chile: Impacts on Regional Hydroclimate and Vegetation. Hydrol. Earth Syst. Sci. Discuss 2017, 21, 6307–6327. [Google Scholar] [CrossRef]
- Aldunce, P.; Haverbeck, F.; Sapiains, R.; Quilaqueo, A.; Castro, C.P. Public Perception of Drought and Extreme Rainfall Impacts in a Changing Climate: Aconcagua Valley and Chañaral, Chile. Sustainability 2024, 16, 7916. [Google Scholar] [CrossRef]
- Moreno-Ortega, G.; Pliego, C.; Sarmiento, D.; Barceló, A.; Martínez-Ferri, E. Yield and Fruit Quality of Avocado Trees under Different Regimes of Water Supply in the Subtropical Coast of Spain. Agric. Water Manag. 2019, 221, 192–201. [Google Scholar] [CrossRef]
- Bolados García, P.; Henríquez Olguín, F.; Ceruti Mahn, C.; Sánchez Cuevas, A. La Eco-Geo-Política Del Agua: Una Propuesta Desde Los Territorios En Las Luchas Por La Recuperación Del Agua En La Provincia de Petorca (Zona Central de Chile). Rupturas 2018, 8, 167–199. [Google Scholar]
- Panez-Pinto, A.; Faúndez-Vergara, R.; Mansilla-Quiñones, C. Politización de La Crisis Hídrica En Chile: Análisis Del Conflicto Por El Agua En La Provincia de Petorca. Agua Territ. 2017, 10, 131–148. [Google Scholar] [CrossRef]
- Álamos, N.; Alvarez-Garreton, C.; Muñoz, A.; González-Reyes, Á. The Influence of Human Activities on Streamflow Reductions during the Megadrought in Central Chile. Hydrol. Earth Syst. Sci. 2024, 28, 2483–2503. [Google Scholar] [CrossRef]
- Prieto, M.; Calderón-Seguel, M.; Fragkou, M.C.; Fuster, R. The (Not-so-Free) Chilean Water Model. The Case of the Antofagasta Region, Atacama Desert, Chile. Extr. Ind. Soc. 2022, 11, 101081. [Google Scholar] [CrossRef]
- Suarez, A. Critical Overview of the Expansion of Hass Avocado Plantations in Salamina, Northern Caldas, Colombia. J. Land Use Sci. 2024, 19, 230–238. [Google Scholar] [CrossRef]
- Denvir, A.; García-Oliva, F.; Arima, E.Y.; Latorre-Cárdenas, M.C.; González-Rodríguez, A.; Young, K.R.; De La Cruz, L.I.L. Sustainability Implications of Carbon Dynamics on the Avocado Frontier. Agric. Ecosyst. Environ. 2024, 359, 108746. [Google Scholar] [CrossRef]
- Torres, A. Manual Del Cultivo Del Palto; Boletín IN.; Torres, A., INIA, Eds.; INIA: Santiago, Chile, 2017. [Google Scholar]
- Díaz-Siefer, P.; Fontúrbel, F.E.; Berasaluce, M.; Huenchuleo, C.; Lal, R.; Mondaca, P.; Juan, L. Celis-Diez. The Market–Society–Policy Nexus in Sustainable Agriculture. Environ. Dev. Sustain. 2022, 26, 29981–30000. [Google Scholar] [CrossRef]
- Ramírez, M.I.; Špirić, J.; Orozco-Meléndez, F.; Merlo-Reyes, A. Sustainability of the Community Model of Avocado Production in the Monarch Butterfly Biosphere Reserve, Michoacán, México. GeoJournal 2024, 89, 189. [Google Scholar] [CrossRef]
- Duran-Llacer, I.; Rodríguez-López, L.; Arumí, J.L.; Martínez-Retureta, R.; Urrutia, R. Ecosistemas Dependientes de Las Aguas Subterráneas En Ambientes Semiáridos; SERIE COMU.; CRHIAM, Ed.; CHRIAM: Concepción, Chile, 2024. [Google Scholar]
- Abd-Elaty, I.; Ramadan, E.M.; Elbagory, I.A.; Nosair, A.M.; Kuriqi, A.; Garrote, L.; Ahmed, A.A. Optimizing Irrigation Systems for Water Efficiency and Groundwater Sustainability in the Coastal Nile Delta. Agric. Water Manag. 2024, 304, 109064. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X. Precision Agriculture and Water Conservation Strategies for Sustainable Crop Production in Arid Regions. Plants 2024, 13, 3184. [Google Scholar] [CrossRef]
- Edvan, R.L.; Mota, R.R.M.; Dias-Silva, T.P.; do Nascimento, R.R.; de Sousa, S.V.; da Silva, A.L.; de Araújo, M.J.; Araújo, J.S. Resilience of Cactus Pear Genotypes in a Tropical Semi-Arid Region Subject to Climatic Cultivation Restriction. Sci. Rep. 2020, 10, 10040. [Google Scholar] [CrossRef]
- Loukili, E.H.; Merzouki, M.; Taibi, M.; Elbouzidi, A.; Hammouti, B.; Kumar Yadav, K.; Khalid, M.; Addi, M.; Ramdani, M.; Kumar, P.; et al. Phytochemical, Biological, and Nutritional Properties of the Prickly Pear, Opuntia Dillenii: A Review. Saudi Pharm. J. 2024, 32, 102167. [Google Scholar] [CrossRef]
Name | Description | Images | |
---|---|---|---|
Water | Natural water bodies such as rivers and wetlands and artificial ones such as reservoirs | ||
Fruit Farm Land | Fruit trees orchards such as grapes, peaches, walnut, lemon, orange, mandarins and among others, except avocado land | ||
Shrublands | Bush areas are typically characterized by sclerophyllous vegetation | ||
Other Agricultural Land | Agricultural land dominated by vegetables, prairie crop rotation and alfalfa | ||
Avocado Land | Avocado plantations including mature and young trees | ||
Exotic Plantation | Forest plantations, dominated by the Pinus and Eucalyptus species | ||
Bare Soil | Soils with scarce or no vegetation including rocky areas, dunes and river beds | ||
Urban | Urban infrastructure, including cities, towns, factories and roads | ||
Dense Vegetation | Natural vegetation, mainly dense sclerophyllous and riparian vegetation |
Avocado Land | Native Vegetation | |||||||
---|---|---|---|---|---|---|---|---|
Landscape Indices | 2003 | 2013 | 2023 | % Change (2003–2023) | 2003 | 2013 | 2023 | % Change (2003–2023) |
Number of patches | 2297 | 7262 | 4823 | 109.90 | 9273 | 11231 | 10756 | 15.90 |
Largest Patch Index (%) | 0.02 | 0.14 | 0.23 | 1050.0 | 51.30 | 43.50 | 41.68 | −18.70 |
Mean patch area (ha) | 1.60 | 2.60 | 3.70 | 131.20 | 42.90 | 29.90 | 30.10 | −29.80 |
Mean Euclidean nearest neighbor distance (m) | 113.0 | 122.90 | 130.20 | 15.20 | 222.50 | 151.20 | 183.5 | −17.50 |
Avocado Land | Native Vegetation | |||||
---|---|---|---|---|---|---|
Landscape Indices | S1 | S2 | S3 | S1 | S2 | S3 |
Number of patches | 3996 | 475 | - | 10890 | 7817 | 10896 |
Largest Patch Index (%) | 0.07 | 8.03 | - | 42.30 | 37.70 | 44.04 |
Mean patch area (ha) | 3.40 | 180.20 | - | 30.10 | 37.50 | 31.40 |
Mean Euclidean nearest neighbor distance (m) | 129.40 | 615.60 | - | 133.90 | 152.0 | 127.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duran-Llacer, I.; Salazar, A.A.; Mondaca, P.; Rodríguez-López, L.; Martínez-Retureta, R.; Zambrano, F.; Llanos, F.; Frappart, F. Influence of Avocado Plantations as Driver of Land Use and Land Cover Change in Chile’s Aconcagua Basin. Land 2025, 14, 750. https://doi.org/10.3390/land14040750
Duran-Llacer I, Salazar AA, Mondaca P, Rodríguez-López L, Martínez-Retureta R, Zambrano F, Llanos F, Frappart F. Influence of Avocado Plantations as Driver of Land Use and Land Cover Change in Chile’s Aconcagua Basin. Land. 2025; 14(4):750. https://doi.org/10.3390/land14040750
Chicago/Turabian StyleDuran-Llacer, Iongel, Andrés A. Salazar, Pedro Mondaca, Lien Rodríguez-López, Rebeca Martínez-Retureta, Francisco Zambrano, Fabian Llanos, and Frederic Frappart. 2025. "Influence of Avocado Plantations as Driver of Land Use and Land Cover Change in Chile’s Aconcagua Basin" Land 14, no. 4: 750. https://doi.org/10.3390/land14040750
APA StyleDuran-Llacer, I., Salazar, A. A., Mondaca, P., Rodríguez-López, L., Martínez-Retureta, R., Zambrano, F., Llanos, F., & Frappart, F. (2025). Influence of Avocado Plantations as Driver of Land Use and Land Cover Change in Chile’s Aconcagua Basin. Land, 14(4), 750. https://doi.org/10.3390/land14040750