Distribution Characteristics of Soil Organic Carbon and Active Carbon Components in the Peat Swamp Wetlands of the Altai Mountains, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sample Collection
2.3. Measurement and Methodology of Soil Indicators
2.4. Statistical Analysis
3. Result
3.1. Distribution Characteristics of SOC, POC, and DOC in Soil Profiles at Different Depths
3.2. Distribution Characteristics of Soil Physicochemical Properties at Different Depths
3.3. Impact of Soil Physicochemical Properties on SOC, POC, and DOC in Soils at Different Depths
4. Discussion
4.1. Vertical Distribution of Soil Organic Carbon and Its Active Carbon Fractions in Peat Bog Wetlands
4.2. Relations of Soil Organic Carbon and Its Active Carbon Fractions in Different Soil Horizons to Various Environmental Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Zhang, Y.; Chen, X.; Chen, Z.; Tong, Y. Change of Organic Carbon Composition in Peat Profiles over the Permafrost Areas of Xinjiang Altai Mountains in China and Its Influence Mechanism. Mt. Res. 2024, 42, 300–311. [Google Scholar]
- Li, M.L.; Mu, C.C.; Sun, Z.Q.; Wang, T.; Wang, W.J. Variation of carbon source/sink of subalpine coniferous forested wetland along water environmental gradient in Changbai Mountains of China. Acta Ecologica Sinica. Acta Ecol. Sin. 2024, 44, 2256–2269. [Google Scholar]
- Liu, Q.; Tang, J. Vertical distribution and correlation analysis of soil active organic carbon components in saline-alkali reed wetland. Sci. Technol. Eng. 2020, 20, 1760–1766. [Google Scholar]
- Cui, D.; Yan, J.-j.; Liu, H.-j.; Chen, C. Soil labile organic carbon fractions and the differences of their concentrations in different types of wetlands in Yili valley. Chin. J. Ecol. 2019, 38, 2087–2093. [Google Scholar]
- Liu, X.; Shao, X.; Jiang, X.; Tao, J.; Ji, B.; Xu, D.; Yang, H.; Wu, M.; Sheng, X. Distribution Characteristic of Contents of Soil Organic Carbon in Jingning Wangdongyang Mountain Wetland Nature Reserve. Wetl. Sci. 2020, 18, 183–190. [Google Scholar]
- Xiao, Y.; Huang, Z.; Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 2015, 82, 381–389. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Y.; An, J.; Yue, Y.; Ding, Y.; Gao, J. Response of Contents of Dissolved Organic Carbon in Soil of Bog in Zoigê Plain to Precipitation Changes. Wetl. Sci. 2018, 16, 546–551. [Google Scholar]
- Chen, L.; Huang, X.; Xue, D.; Chen, H.; Lin, B.; Liang, D. Distribution characteristics of soil organic carbon and its influencing factors in the peatlands of Western Sichuan Plateau, China. Chin. J. Appl. Environ. Biol. 2022, 28, 267–275. [Google Scholar]
- Ma, W.; Liu, Q.; Li, G.; Chang, W. Temporal Dynamics and Content of Soil Particulate Organic of Gahai Wetland in Gansu Province During Vegetation Degradation Succession. Acta Pedol. Sin. 2025. [Google Scholar] [CrossRef]
- Ma, W.; Wang, H.; Li, G.; Shi, W. Temporal Dynamics of Soil Organic Carbon Content of Gahai Wetland in South Gansu at Different Stages of Vegetation Degradation. J. Soil. Water Conserv. 2015, 29, 254–259. [Google Scholar]
- Packalen, M.S.; Finkelstein, S.A.; McLaughlin, J.W. Climate and peat type in relation to spatial variation of the peatland carbon mass in the Hudson Bay Lowlands, Canada. J. Geophys. Res. Biogeosci. 2016, 121, 1104–1117. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Zhang, C. Opposite relationships between soil organic carbon and elevation in the midlands and mountainous areas in Ireland related to different types of peat. Appl. Geochem. 2024, 170, 106096. [Google Scholar] [CrossRef]
- Heller, C.; Zeitz, J. Stability of soil organic matter in two northeastern German fen soils: The influence of site and soil development. J. Soils Sediments 2012, 12, 1231–1240. [Google Scholar] [CrossRef]
- Ricardo, S.-M.; Paola, G.-A.; Rolando, S.-G.; Germain, E.-H.; Roy, P.-S.; María, P. Exploring Dissolved Organic Carbon Variations in a High Elevation Tropical Peatland Ecosystem: Cerro de la Muerte, Costa Rica. Front. Water 2022, 3, 742780. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Wu, Z.; Yang, Y.; Chen, Z.; Liu, Y. Estimation of Organic Carbon Stocks and Their Influence Factors in the Permafrost Peatlands of the Altai Mountains. Wetl. Sci. 2023, 21, 876–886. [Google Scholar]
- Chen, H.; Wu, N.; Wang, Y.; Yang, G.; Ju, P.; Zhu, D.; He, Y.; Zhu, Q.; Gao, Y.; Liu, X. A historical overview about basic issues and studies of mires. Sci. Sin. Terrae 2021, 51, 15–26. (In Chinese) [Google Scholar]
- Clark, J.D.; Plante, A.F.; Johnson, A.H. Soil Organic Matter Quality in Chronosequences Of Secondary Northern Hardwood Forests In Western New England. Soil. Sci. Soc. Am. J. 2012, 76, 684–693. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.L.; Liu, L.X.; Li, T.; Dou, Y.X.; Qiao, J.B.; Wang, Y.Q.; An, S.S.; Chang, S.X. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis. Glob. Change Biol. 2022, 28, 6446–6461. [Google Scholar] [CrossRef]
- Lucas, M.; Santiago, J.P.; Chen, J.Y.; Guber, A.; Kravchenko, A. The soil pore structure encountered by roots affects plant-derived carbon inputs and fate. New Phytol. 2023, 240, 515–528. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Ma, C.; Gao, H.-J. Investigation of soil organic carbon mineralization and microbial community structure evolution of north east paddy black soil in waterlogged and aerobic conditions. J. Agro-Environ. Sci. 2017, 36, 1160–1166. [Google Scholar]
- Loisel, J.; Gallego-Sala, A.V.; Amesbury, M.J.; Magnan, G.; Anshari, G.; Beilman, D.W.; Benavides, J.C.; Blewett, J.; Camill, P.; Charman, D.J.; et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 2020, 11, 70–77. [Google Scholar] [CrossRef]
- Lin, X.; Tfaily, M.M.; Steinweg, J.M.; Chanton, P.; Esson, K.; Yang, Z.K.; Chanton, J.P.; Cooper, W.; Schadt, C.W.; Kostka, J.E. Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA. Appl. Environ. Microbiol. 2014, 80, 3518–3530. [Google Scholar] [CrossRef] [PubMed]
- Hermansen, C.; Norgaard, T.; Wollesen de Jonge, L.; Moldrup, P.; Müller, K.; Knadel, M. Predicting glyphosate sorption across New Zealand pastoral soils using basic soil properties or Vis–NIR spectroscopy. Geoderma 2020, 360, 114009. [Google Scholar] [CrossRef]
- Hu, X.; Yin, P.; Liu, Z.; Huang, J.; Peng, Y.; Fan, J. Effect of short-term carbon input on the number and activity of soil microbes in alpine meadow soil in winter. J. Jinan Univ. (Nat. Sci. Med. Ed.) 2021, 42, 325–331. [Google Scholar]
- Luo, Q.; He, Q.; Wu, H.; Kou, L.; Fang, X.; Zhang, X.; Li, Y.; Chai, Y.; Zhang, R.; Dai, W. Characteristics of Soil Organic Carbon Fractions in Liao River Estuary Wetland and Their Influencing Factors. Ecol. Environ. Sci. 2024, 33, 333–340. [Google Scholar]
- Leifeld, J.; Müller, M.; Fuhrer, J. Peatland subsidence and carbon loss from drained temperate fens. Soil. Use Manag. 2011, 27, 170–176. [Google Scholar] [CrossRef]
- Feng, J.G.; He, K.Y.; Zhang, Q.F.; Han, M.G.; Zhu, B. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Glob. Change Biol. 2022, 28, 3426–3440. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Wang, S. Concentrations of Active Organic Carbon Components in Soils in Baijianghe Natural and Drained Peat Bogs and Their Influencing Factors. Wetl. Sci. 2021, 19, 691–701. [Google Scholar]
- Shen, H.; Cao, Z.; Hu, Z. Characteristics and Ecological Effects of the Active Organic Carbon in Soil. Chin. J. Ecol. 1999, 18, 32–38. [Google Scholar]
- Zhuang, Q.L.; Yuan, H.Y.; Qi, J.Q.; Sun, Z.R.; Tao, B.X.; Zhang, B.H. Phosphorus fertiliser application mitigates the negative effects of microplastic on soil microbes and rice growth. J. Hazard. Mater. 2024, 465, 133278. [Google Scholar] [CrossRef]
- Li, N.; Xin, H.; Lai, N.; Li, Y.; Lyu, C. Effects of different land-use methods on the organic carbon composition and soil microbial biomass carbon of farmland soil. Arid. Zone Res. 2024, 41, 1789–1796. [Google Scholar]
- Finn, D.; Kopittke, P.M.; Dennis, P.G.; Dalal, R.C. Microbial energy and matter transformation in agricultural soils. Soil. Biol. Biochem. 2017, 111, 176–192. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil. Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef]
- Dong, Y.; Li, H.; He, H.; Wang, S. Holocene peatland development, carbon accumulation and its response to climate forcing and local conditions in Laolike peatland, northeast China. Quat. Sci. Rev. 2021, 268, 107124. [Google Scholar] [CrossRef]
- Zhao, Q.; Thompson, A.M.; Callister, S.J.; Tfaily, M.M.; Bell, S.L.; Hobbie, S.E.; Hofmockel, K.S. Dynamics of organic matter molecular composition under aerobic decomposition and their response to the nitrogen addition in grassland soils. Sci. Total Environ. 2022, 806, 150514. [Google Scholar] [CrossRef]
- Malik, A.A.; Martiny, J.B.H.; Brodie, E.L.; Martiny, A.C.; Treseder, K.K.; Allison, S.D. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020, 14, 1–9. [Google Scholar] [CrossRef]
Soil Depth (cm) | 0–10 | 10–20 | 20–40 | 40–60 | 60–80 |
---|---|---|---|---|---|
Physicochemical Property | |||||
ST (°C) | 5.5 ± 0.36 | 7.28 ± 0.25 | 6.9 ± 0.32 | 8.05 ± 0.21 | 7.48 ± 0.28 |
SM (%) | 28.1 ± 0.08 | 27.83 ± 0.22 | 27.63 ± 0.24 | 21.13 ± 0.25 | 24.33 ± 0.30 |
pH | 4.38 ± 0.01 | 4.77 ± 0.01 | 4.54 ± 0.02 | 4.24 ± 0.04 | 4.06 ± 0.02 |
TN (g·kg−1) | 12.34 ± 0.13 | 15.00 ± 0.03 | 15.41 ± 0.05 | 16.16 ± 0.08 | 17.59 ± 0.35 |
TP (g·kg−1) | 0.92 ± 0.01 | 1.88 ± 0.95 | 1.92 ± 0.01 | 1.04 ± 0.04 | 1.58 ± 0.01 |
NO3−-N (mg·kg−1) | 388.53 ± 0.51 | 386.92 ± 1.06 | 261.67 ± 0.28 | 166.58 ± 0.28 | 172.47 ± 0.28 |
NH4+-N (mg·kg−1) | 1054.87 ± 1.53 | 926.00 ± 3.11 | 950.83 ± 1.51 | 1172.01 ± 4.08 | 1076.12 ± 3.18 |
AP (mg·kg−1) | 25.39 ± 0.09 | 7.88 ± 0.15 | 3.24 ± 0.09 | 3.74 ± 0.15 | 4.52 ± 0.09 |
Soil Depth | Physicochemical Property | Order of Importance | Interpreted Quantity/% | F | p |
---|---|---|---|---|---|
0–10 cm | AP | 1 | 39.8 | 6.6 | 0.002 |
pH | 2 | 33.7 | 35.5 | 0.002 | |
NO3−-N | 3 | 18.9 | 4.1 | 0.068 | |
10–20 cm | SM | 1 | 45.3 | 8.3 | 0.002 |
NH4+-N | 2 | 43.1 | 33.3 | 0.002 | |
AP | 3 | 8.4 | 21.0 | 0.002 | |
20–40 cm | NH4+-N | 1 | 83.4 | 50.2 | 0.008 |
AP | 2 | 14.7 | 68.5 | 0.002 | |
TN | 3 | 0.8 | 5.7 | 0.01 | |
40–60 cm | TP | 1 | 65.5 | 19.0 | 0.008 |
NO3−-N | 2 | 21.4 | 14.8 | 0.002 | |
TN | 3 | 10.9 | 42.5 | 0.002 | |
60–80 cm | TN | 1 | 77.5 | 34.3 | 0.002 |
SM | 2 | 16.9 | 26.8 | 0.002 | |
AP | 3 | 3.9 | 18 | 0.002 |
Wetland Type | Vegetative Habitat | Soil Depth (cm) | SOC (g/kg) | Literature Sources |
---|---|---|---|---|
The drained Witzwil peatland in Switzerland | Molinietum caeruleae, Sphagnetum | 0–10 | 265.2 ± 13.3 | [26] |
10–20 | 253.5 ± 14.7 | |||
20–30 | 440.6 ± 41.3 | |||
30–50 | 382.5 ± 37.2 | |||
50–65 | 329.6 ± 47.2 | |||
Tussock-type peatlands in northeastern Germany | Carex | 0–15 | 25.7 | [13] |
15–30 | 18.3 | |||
30–55 | 15.6 | |||
60–75 | 12.6 | |||
Peat bog wetlands in the Altai Mountains, China | Carex lasiocarpa, Herba sphagni | 0–10 | 317.27 ± 62.64 | This study |
10–20 | 321.38 ± 7.02 | |||
20–40 | 397.64 ± 27.83 | |||
40–60 | 386.00 ± 24.72 | |||
60–80 | 379.18 ± 30.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, G.; Li, Y.; Shi, C. Distribution Characteristics of Soil Organic Carbon and Active Carbon Components in the Peat Swamp Wetlands of the Altai Mountains, China. Land 2025, 14, 670. https://doi.org/10.3390/land14040670
Miao G, Li Y, Shi C. Distribution Characteristics of Soil Organic Carbon and Active Carbon Components in the Peat Swamp Wetlands of the Altai Mountains, China. Land. 2025; 14(4):670. https://doi.org/10.3390/land14040670
Chicago/Turabian StyleMiao, Guanghua, Yanhong Li, and Chongru Shi. 2025. "Distribution Characteristics of Soil Organic Carbon and Active Carbon Components in the Peat Swamp Wetlands of the Altai Mountains, China" Land 14, no. 4: 670. https://doi.org/10.3390/land14040670
APA StyleMiao, G., Li, Y., & Shi, C. (2025). Distribution Characteristics of Soil Organic Carbon and Active Carbon Components in the Peat Swamp Wetlands of the Altai Mountains, China. Land, 14(4), 670. https://doi.org/10.3390/land14040670