Effects of Natural Factors and Human Activities on the Spatio-Temporal Distribution of Net Primary Productivity in an Inland River Basin
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Data
2.2.1. Soil Data
2.2.2. Vegetation Biomass Data
2.2.3. Satellite-Derived Datasets
2.2.4. Meteorological Data
2.3. Methods
2.3.1. Land Use Intensity and Landscape Stability
2.3.2. CASA Model
2.3.3. Geodetector
3. Results
3.1. Land Use Change and Landscape Stability Change
3.1.1. Change in Land Use Structure
3.1.2. Change in Land Use Intensity
3.1.3. Changes in Landscape Stability
3.2. Spatial and Temporal Distribution Pattern of NPP
3.2.1. The Spatial Distribution Characteristics of NPP
3.2.2. Temporal Change Trend of NPP
3.2.3. Annual Mean Values and Changing NPP Trends for Different Land Use Types
3.3. Relationship Between Soil Factors, Climate Factors, and NPP
3.3.1. Soil Factors
3.3.2. Climate Factors
3.4. Influencing Factors of the NPP Distribution Pattern
4. Discussion
4.1. Disturbance of Landscape Patterns by Human Activities
4.2. Additional Evidence of the Impact of Human Activities on NPP
4.3. Driving Factors of NPP Distribution
4.4. Limitations and Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morel, A.C.; Adu Sasu, M.; Adu-Bredu, S.; Quaye, M.; Moore, C.; Ashley Asare, R.; Mason, J.; Hirons, M.; McDermott, C.L.; Robinson, E.J.Z.; et al. Carbon Dynamics, Net Primary Productivity and Human-Appropriated Net Primary Productivity across a Forest–Cocoa Farm Landscape in West Africa. Glob. Chang. Biol. 2019, 25, 2661–2677. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhong, X.; Deng, S.; Xu, H. Assessment of the Impact of LUCC on NPP and Its Influencing Factors in the Yangtze River Basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Fu, Y.; Lu, X.; Zhao, Y.; Zeng, X.; Xia, L. Assessment Impacts of Weather and Land Use/Land Cover (LULC) Change on Urban Vegetation Net Primary Productivity (NPP): A Case Study in Guangzhou, China. Remote Sens. 2013, 5, 4125–4144. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Wu, Q.; Soomro, S.; Jian, S. Response of LUCC on Runoff Generation Process in Middle Yellow River Basin: The Gushanchuan Basin. Water 2020, 12, 1237. [Google Scholar] [CrossRef]
- Ebermayer, E. Die Gesammte Lehre Der Waldstreu Mit Rücksicht Auf Die Chemische Statik Des Waldbaues. Unter Zugrundlegung Der in Den Königl. Staatsforsten Bayerns Angestellten Untersuchungen; Springer: Berlin/Heidelberg, Germany, 1876; Available online: https://link.springer.com/book/10.1007/978-3-642-91491-1 (accessed on 14 June 2023).
- Wang, X.; Du, G.; Dai, R.; Wang, G. The establishment of grassland productive assessment model and the determination of precipitation resource distribution pattern of Gannan tibetan autonomous prefecture based on RS and GIS. Acta Pratacult. Sin. 2001, 10, 95–102. [Google Scholar]
- Alexandrov, G.; Oikawa, T.; Yamagata, Y. The scheme for globalization of a process-based model explaining gradations in terrestrial NPP and its application. Ecol. Model. 2002, 148, 293–306. [Google Scholar] [CrossRef]
- Kicklighter, W.; Bondeau, A.; Schloss, L.; Kaduk; McGuire, D. Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biomes. Glob. Chang. Biol. 1999, 5, 16–24. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J. Terrestrial net primary production and its spatio-temporal patterns in Qinghai-Xizang Plateau, China. Nat. Resour. J. 2002, 17, 373–380. [Google Scholar]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of net primary productivity of chinese terrestrial vegetation based on remote sensing. Chin. J. Ecol. 2007, 31, 413–424. [Google Scholar]
- Huang, K.; Zheng, Z.; Cheddadi, R.; Laurent, M.; Franois, L. Research advance and application of terrestrial carbon cycle model CARAIB. Trop. Geogrophy 2007, 27, 483–488. [Google Scholar]
- Potter, S.; Klooster, A. Global model estimates of carbon and nitrogen storage in litter and soil pools: Response to changes in vegetation quality and biomass allocation. Tellus B 1997, 49, 1–17. [Google Scholar] [CrossRef]
- Pan, J.; Huang, K.; Li, Z. Spatio-temporal variation in vegetation net primary productivity and its relationship with climatic factors in the Shule River basin from 2001 to 2010. Acta Ecol. Sin. 2017, 37, 1888–1899. [Google Scholar] [CrossRef]
- Piao, S.; Luyssaert, S.; Ciais, P.; Janssens, I.; Chen, A.; Cao, C.; Fang, J.; Friedlingsteinm, P.; Luo, Y.; Wang, S. Forest annual carbon cost: A global-scale analysis of autotrophic respiration. Ecology 2010, 91, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Piao, S.; Fang, J. Npp and its spatio-temporal patterns in the yangtze river watershed. Acta Phytoecol. Sin. 2003, 27, 764–770. [Google Scholar]
- Yang, Y.; Li, L.; Wang, B.; Song, X.; Liu, A.; Wang, M. Simulation of net primary productivity by a satellite data-driven improved CASA model in Xilingol grassland. Chin. J. Ecol. 2015, 34, 2344–2352. [Google Scholar]
- Yang, H.; Mu, S.; Li, J.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, W.; Liang, T. Research progress on spatial-temporal dynamic simulation model of net primary productivity of terrestrial ecosystems. Pratacult. Sci. 2010, 27, 77–88. [Google Scholar]
- Li, R.; Han, R.; Yu, Q.; Qi, S.; Guo, L. Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: A Case of the Ningxia Hui Autonomous Region, China. Sustainability 2020, 12, 4401. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Ogaya, R.; Fernández-Martínez, M.; Thomas, P.; Josep, P. Increasing climatic sensitivity of global grassland vegetation biomass and species diversity correlates with water availability. New Phytol. 2021, 230, 1761–1771. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, W.; Wang, Y.; Wang, Y.; Wang, H.; Wang, Y.; Zhu, L.; Yang, R. Spatial-temporal changes in NPP and its relationship with climate factors based on sensitivity analysis in the Shiyang River Basin. J. Earth Syst. Sci. 2020, 129, 24. [Google Scholar] [CrossRef]
- Lu, L.; Li, X.; Veroustraete, F.; Kang, E.; Wang, J. Analysing the forcing mechanisms for net primary productivity changes in the Heihe River Basin, north-west China. Int. J. Remote Sens. 2009, 30, 793–816. [Google Scholar] [CrossRef]
- Song, Z.; Gao, Z.; Yang, X.; Ge, Y. Distinguishing the Impacts of Human Activities and Climate Change on the Livelihood Environment of Pastoralists in the Qinghai Lake Basin. Sustainability 2022, 14, 8402. [Google Scholar] [CrossRef]
- Mao, S.; Shangguan, Z. Evolution of Spatiotemporal Patterns in Vegetation Net Primary Productivity and the Driving Forces on the Loess Plateau. Front. Environ. Sci. 2023, 11, 1134917. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Acta Hortic. 2017, 3, 30. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.-K.; Shabala, S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innov. J. 2020, 1, 100017. [Google Scholar] [CrossRef]
- Zheng, Y.R.; Xie, Z.X.; Robert, C.; Jiang, L.H.; Shimizu, H. Did Climate Drive Ecosystem Change and Induce Desertification in Otindag Sandy Land, China over the Past 40 Years? J. Arid Environ. 2006, 64, 523–541. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What Drives the Vegetation Restoration in Yangtze River Basin, China: Climate Change or Anthropogenic Factors? Ecol. Indic. 2018, 90, 438–450. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Pei, F.; Li, X.; Du, G. Non-Uniform Time-Lag Effects of Terrestrial Vegetation Responses to Asymmetric Warming. Agric. For. Meteorol. 2018, 252, 130–143. [Google Scholar] [CrossRef]
- Chen, B.; Feng, W.; Jing, X.; Wang, Y. Dryland Agricultural Expansion Leads to Lower Content and Higher Variability of Soil Inorganic Carbon in Topsoil. Agric. Ecosyst. Environ. 2023, 356, 108620. [Google Scholar] [CrossRef]
- Jia, L.; Wang, Y.; Ma, X.; Lu, Y.; Sheng, J.; Cheng, H. A Simulation Study of Effects of Above-Ground Drip Irrigation and Below-Ground Drip Irrigation on Growth and Biomass Allocation of Maize. J. Xinjiang Agric. Univ. 2021, 44, 235–240. (In Chinese) [Google Scholar]
- Li, Z.; Zhang, R.; Lai, D.; Yan, Z.; Jiang, L.; Tian, C. Effects of drip irrigation with plastic mulching on the net primary productivity, soil heterotrophic respiration, and net CO2 exchange flux of cotton field ecosystem in Xinjiang, Northwest China. Chin. J. Appl. Ecol. 2012, 23, 1018–1024. (In Chinese) [Google Scholar] [CrossRef]
- Ma, A.; Yu, G.; He, N.; Wang, Q.; Peng, S. Above and below ground biomass relationships in China‘s grassland vegetation. Quat. Sci. Rev. 2014, 34, 769–776. (In Chinese) [Google Scholar]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, D.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. (In Chinese) [Google Scholar] [CrossRef]
- He, Q.; Xie, Y. Research on the climatological calculation method of solar radiation in China. J. Nat. Resour. 2010, 25, 308–319. (In Chinese) [Google Scholar]
- Zeng, Z.; Yang, H.; Ning, Q.; Tang, H. Temporal and spatial evolution of land use intensity and its impact on ecosystem services in Dongting lake zone. J. Econ. Geogr. 2022, 42, 176–185. (In Chinese) [Google Scholar] [CrossRef]
- Zhuang, D.; Liu, J. Study on the model of regional differentiation of land use degree in China. J. Nat. Resour. 1997, 12, 10–16. (In Chinese) [Google Scholar]
- Li, H.; Wang, Q.; Wang, J.; Song, S.; Xu, D. Landscape stability dynamics and their driving forces in core area of Ejina oasis from 2013 to 2020. Bull. Soil Water Conserv. 2022, 42, 268–276. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z. Evaluation and characteristic analysis of urban landscape stability in karst mountainous cities in the central Guizhou Province. Acta Ecol. Sin. 2022, 42, 5243–5254. (In Chinese) [Google Scholar]
- Zhang, J.; Liu, Y.; Zhang, E.; Chen, J.; Tan, Q. Dynamics and driving mechanisms of cultivated land at county level in China. Acta Geogr. Sin. 2023, 78, 2105–2127. (In Chinese) [Google Scholar]
- Zhang, X.; Wang, X.; Zhou, Z.; Li, M.; Jing, C. Spatial Quantitative Model of Human Activity Disturbance Intensity and Land Use Intensity Based on GF-6 Image, Empirical Study in Southwest Mountainous County, China. Remote Sens. 2022, 14, 4574. [Google Scholar] [CrossRef]
- Claire, L.; Christoph, P.; Karl-Heinz, E.; Maud, M. Linking the human appropriation of net primary productivity-based indicators, input cost and high nature value to the dimensions of land-use intensity across french agricultural landscapes. Agric. Ecosyst. Environ. 2019, 283, 106565. [Google Scholar] [CrossRef]
- Mattias, G.; Vassilis, A.; Giuseppe, C.; Elisa, A. Land use intensification rather than land cover change affects regulating services in the mountainous Adige river basin (Italy). Ecosyst. Serv. 2020, 45, 101158. [Google Scholar] [CrossRef]
- Laura, R.; Brendan, C.; Adrian, M.; Ole, M.; Unai, P.; Esteve, C.; Neil, D.; Janet, F.; Phil, F.; Casey, R. Social-ecological outcomes of agricultural intensification. Nat. Sustain. 2018, 1, 275–282. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, B.; Zhang, J.; Jin, S.; Ma, Z. Ecological benefit of land use/cover change in endorheic drainage—A case study on the middle and lower reacher of Shule River. J. Arid. Land 2013, 27, 80–85. (In Chinese) [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Yu, E.; Yang, J.; Wang, S.; Ma, J. Spatiotemporal pattern and coordinating development characteristics of carbon emission performance and land use intensity in the Yangtze river delta urban agglomeration. Trans. Chin. Soc. Agric. Eng. 2023, 39, 208–218. (In Chinese) [Google Scholar] [CrossRef]
- Ma, L.; Cheng, W.; Bo, J.; Li, X.; Gu, Y. Spatio-Temporal Variation of Land-Use Intensity from a Multi-Perspective—Taking the Middle and Lower Reaches of Shule River Basin in China as an Example. Sustainability 2018, 10, 771. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.; Cao, G.; Hall, B. Alterations to groundwater recharge due to anthropogenic landscape change. J. Hydrol. 2017, 554, 545–557. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.; Shi, H.; Wang, Z. Ecological risk assessment of geohazards in natural world heritage sites: An empirical analysis of Bogda, Tianshan. Open Geosci. 2019, 11, 327–340. [Google Scholar] [CrossRef]
- Monica, T.; William, R.; Robert, G.; Robert, V.; O’Neill; Timothy, K. A revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes. Landsc. Ecolog. 1993, 8, 213–227. [Google Scholar] [CrossRef]
- Lin, X.; Zhen, S.; Zhao, Q.; Hu, X. A New Paradigm for Assessing Detailed Dynamics of Forest Landscape Fragmentation. Forests 2024, 15, 1212. [Google Scholar] [CrossRef]
- Liu, F.; Cao, L.; Jia, J.; Gong, H.; Qi, X.; Xu, X. Effects of land use changes on the nonlinear trends of net primary productivity in arid and semiarid areas, China. Land Degrad. Dev. 2021, 32, 2183–2196. [Google Scholar] [CrossRef]
- Xiao, X.; Li, X.; Jiang, T.; Tan, M.; Hu, M.; Liu, Y.; Zeng, W. Response of net primary production to land use and climate changes in the middle-reaches of the heihe river basin. Ecol. Evol. 2019, 9, 4651–4666. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.; Zeng, L.; Hu, W.; Wang, P.; Yan, Z.; He, W.; Huang, Z.; Xiao, W. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. 2020, 714, 136691. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, J.; Peng, Q.; Guan, Y.; Zhang, Y.; Zhang, R. The effects of climate factors and human activities on net primary productivity in Xinjiang. Int. J. Biometeorol. 2020, 64, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pan, J. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012. Front. Earth Sci. 2018, 12, 108–124. [Google Scholar] [CrossRef]
- Bao, G.; Bao, Y.; Qin, Z.; Xin, X.; Bao, Y.; Bayarsaikan, S.; Zhou, Y.; Chuntai, B. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 84–93. [Google Scholar] [CrossRef]
- Sun, B.; Li, Z.; Gao, Z.; Gao, W.; Zhang, Y.; Ding, X.; Li, C. NPP estimation using time-series GF-1 data in sparse vegetation area. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3979–3982. [Google Scholar] [CrossRef]
- Sun, F.; Wang, Y.; Sun, J.; Li, S.; Chen, B. Spatial⁃temporal variation and influencing factors of vegetation carbon use efficiency in mountain ecosystem on the northern slope of Tianshan Mountain. Chin. J. Ecol. 2024, 43, 2923–2931. (In Chinese) [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Thomas, K.; Sarah, M.; Matthew, F.; Simone, G.; Helmut, H.; Thomas, H.; Fridolin, K.; Gitta, L.; Maria, N.; Chistoph, P.; et al. Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Glob. Chang. Biol. 2022, 28, 307–322. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Jiang, Q.; Wang, Z. Sensitivity of gross primary production to precipitation and the driving factors in China’s agricultural ecosystems. Sci. Total Environ. 2024, 948, 174938. [Google Scholar] [CrossRef]
- Nattasit, S.; Warong, W.; Janjira, S. Smart Urban Forest Initiative: Nature-Based Solution and People-Centered Approach for Tree Management in Chiang Mai, Thailand. Sustainability 2024, 16, 11078. [Google Scholar] [CrossRef]
- Marco, F.; Desirée, M.; Federico, R.; Mirko, F.; Beatrice, C.; Alessia, G.; Chiara, P.; Luigia, R.; Fabio, O. CO2 Emission Compensation by Tree Species in Some Urban Green Areas. Sustainability 2024, 16, 3515. [Google Scholar] [CrossRef]
- Dan, X.; He, M.; Meng, L.; He, X.; Wang, X.; Chen, S.; Cai, Z.; Zhang, J.; Zhu, B.; Christoph, M. Strong rhizosphere priming effects on N dynamics in soils with higher soil N supply capacity: The ‘Matthew effect’ in plant-soil systems. Soil Biol. Biochem. 2023, 178, 108949. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Furtak, K. Soil–Plant–Microbe Interactions Determine Soil Biological Fertility by Altering Rhizospheric Nutrient Cycling and Biocrust Formation. Sustainability 2023, 15, 625. [Google Scholar] [CrossRef]
Factor Type | Driving Factor | Unit |
---|---|---|
Human activity factors | Land use intensity (LUI) | % |
Landscape stability (LS) | / | |
Climate factors | Annual average temperature (TMP) | °C |
Annual average precipitation (PRE) | mm | |
Soil environmental factors | Total soil salt (TS) | kg·m−1 |
Soil organic matter (OM) | kg·m−1 | |
Soil pH (pH) | / |
Area | Contribution of Driving Factors (%) | ||||||
---|---|---|---|---|---|---|---|
LUI | LS | TMP | PRE | TS | OM | pH | |
a | 25.85 | 32.26 | 31.02 | 23.19 | 8.46 | 2.4 | 4.11 |
b | 31.44 | 18.36 | / | / | 30.36 | 3.92 | 3.6 |
c | 40.17 | 51.9 | 71.27 | 52 | / | / | 6.46 |
d | 21.65 | 18.95 | / | / | 32.48 | 2.83 | 2.04 |
e | 5.72 | / | / | / | 3.49 | 8.6 | 13.36 |
f | 5.65 | / | 57.19 | 19.86 | / | / | / |
g | 3.41 | 1.06 | 14.62 | 12.45 | / | 8.21 | 5.27 |
h | 7.76 | / | 10.44 | 23.04 | / | / | / |
Land Use Type | NDVImax | NDVImin | SRmax | SRmin |
---|---|---|---|---|
Cropland | 0.92 | 0.09 | 27.57 | 1.19 |
Forest | 0.93 | 0.09 | 24.00 | 1.20 |
Grassland | 0.65 | 0.04 | 4.71 | 1.07 |
Urban land | 0.71 | 0.02 | 5.90 | 1.05 |
Water area | 0.54 | 0.06 | 3.35 | 1.12 |
Unuse land | 0.41 | 0.02 | 2.39 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, F.; Chen, B.; Xiao, J.; Li, F.; Sun, J.; Wang, Y. Effects of Natural Factors and Human Activities on the Spatio-Temporal Distribution of Net Primary Productivity in an Inland River Basin. Land 2025, 14, 650. https://doi.org/10.3390/land14030650
Sun F, Chen B, Xiao J, Li F, Sun J, Wang Y. Effects of Natural Factors and Human Activities on the Spatio-Temporal Distribution of Net Primary Productivity in an Inland River Basin. Land. 2025; 14(3):650. https://doi.org/10.3390/land14030650
Chicago/Turabian StyleSun, Fenghua, Bingming Chen, Jianhua Xiao, Fujie Li, Jinjin Sun, and Yugang Wang. 2025. "Effects of Natural Factors and Human Activities on the Spatio-Temporal Distribution of Net Primary Productivity in an Inland River Basin" Land 14, no. 3: 650. https://doi.org/10.3390/land14030650
APA StyleSun, F., Chen, B., Xiao, J., Li, F., Sun, J., & Wang, Y. (2025). Effects of Natural Factors and Human Activities on the Spatio-Temporal Distribution of Net Primary Productivity in an Inland River Basin. Land, 14(3), 650. https://doi.org/10.3390/land14030650