Spatiotemporal Patterns and Determinants of Cropland Abandonment in Mountainous Regions of China: A Case Study of Sichuan Province
Abstract
:1. Introduction
- What are the spatiotemporal patterns of CA in Sichuan Province, China?
- What are the determinants of CA, and what are their contributions at different spatial scales?
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Cropland Abandonment Identification and Mapping
2.3.2. Kernel Density Estimation
2.3.3. Global and Local Spatial Autocorrelation
2.3.4. Hierarchical Linear Model
- Null model
- Level-1
- Level-2
- 2.
- Random effect regression model
- Level-1
- Level-2
- 3.
- Full model
- Level-1
- Level-2
2.4. Explanatory Variables
3. Results
3.1. Spatiotemporal Patterns of Cropland Abandonment in Sichuan Province
3.2. Determinants of Cropland Abandonment in Sichuan Province
3.2.1. Estimated Results of Null Model
3.2.2. Estimated Results of Random Effect Regression Model
3.2.3. Estimated Results of Full Model
- Level-1
- Level-2
4. Discussion
4.1. Comparison with Existing Studies
4.2. Determinants of Cropland Abandonment
4.3. Policy Implications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN. Transforming our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 2 December 2024).
- UN. The Sustainable Development Goals Report 2024. 2024. Available online: https://unstats.un.org/sdgs/report/2024/The-Sustainable-Development-Goals-Report-2024.pdf (accessed on 2 December 2024).
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping Farmland Abandonment and Recultivation across Europe Using MODIS NDVI Time Series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Næss, J.S.; Cavalett, O.; Cherubini, F. The Land–Energy–Water Nexus of Global Bioenergy Potentials from Abandoned Cropland. Nat. Sustain. 2021, 4, 525–536. [Google Scholar] [CrossRef]
- Huang, W.; Hashimoto, S.; Yoshida, T.; Saito, O.; Meraj, G. Understanding Japan’s Land-Use Dynamics between 1987 and 2050 Using Land Accounting and Scenario Analysis. Sustain. Sci. 2024, 19, 1561–1577. [Google Scholar] [CrossRef]
- Xie, Y.; Spawn-Lee, S.A.; Radeloff, V.C.; Yin, H.; Robertson, G.P.; Lark, T.J. Cropland Abandonment between 1986 and 2018 across the United States: Spatiotemporal Patterns and Current Land Uses. Environ. Res. Lett. 2024, 19, 044009. [Google Scholar] [CrossRef]
- Zheng, Q.; Ha, T.; Prishchepov, A.V.; Zeng, Y.; Yin, H.; Koh, L.P. The Neglected Role of Abandoned Cropland in Supporting Both Food Security and Climate Change Mitigation. Nat. Commun. 2023, 14, 6083. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Styles, D.; Pullin, A.S. Evidence on the Environmental Impacts of Farm Land Abandonment in High Altitude/Mountain Regions: A Systematic Map. Environ. Evid. 2014, 3, 17. [Google Scholar] [CrossRef]
- Ojha, R.B.; Atreya, K.; Kristiansen, P.; Devkota, D.; Wilson, B. A Systematic Review and Gap Analysis of Drivers, Impacts, and Restoration Options for Abandoned Croplands in Nepal. Land Use Policy 2022, 120, 106237. [Google Scholar] [CrossRef]
- Queiroz, C.; Beilin, R.; Folke, C.; Lindborg, R. Farmland Abandonment: Threat or Opportunity for Biodiversity Conservation? A Global Review. Front. Ecol. Environ. 2014, 12, 288–296. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Sala, G.; Galati, A.; Crescimanno, M.; Cerda, A.; Badalamenti, E.; La Mantia, T. Agricultural Land Abandonment in Mediterranean Environment Provides Ecosystem Services via Soil Carbon Sequestration. Sci. Total Environ. 2017, 576, 420–429. [Google Scholar] [CrossRef]
- Crawford, C.L.; Yin, H.; Radeloff, V.C.; Wilcove, D.S. Rural Land Abandonment Is Too Ephemeral to Provide Major Benefits for Biodiversity and Climate. Sci. Adv. 2022, 8, eabm8999. [Google Scholar] [CrossRef]
- Chen, H.; Tan, Y.; Xiao, W.; He, T.; Xu, S.; Meng, F.; Li, X.; Xiong, W. Assessment of Continuity and Efficiency of Complemented Cropland Use in China for the Past 20 Years: A Perspective of Cropland Abandonment. J. Clean. Prod. 2023, 388, 135987. [Google Scholar] [CrossRef]
- Guo, A.; Yue, W.; Yang, J.; Xue, B.; Xiao, W.; Li, M.; He, T.; Zhang, M.; Jin, X.; Zhou, Q. Cropland Abandonment in China: Patterns, Drivers, and Implications for Food Security. J. Clean. Prod. 2023, 418, 138154. [Google Scholar] [CrossRef]
- Li, S.; Xiao, J.; Lei, X.; Wang, Y. Farmland Abandonment in the Mountainous Areas from an Ecological Restoration Perspective: A Case Study of Chongqing, China. Ecol. Indic. 2023, 153, 110412. [Google Scholar] [CrossRef]
- Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Vaclavik, T. Global Impacts of Future Cropland Expansion and Intensification on Agricultural Markets and Biodiversity. Nat. Commun. 2019, 10, 2844. [Google Scholar] [CrossRef] [PubMed]
- Lark, T.J.; Spawn, S.A.; Bougie, M.; Gibbs, H.K. Cropland Expansion in the United States Produces Marginal Yields at High Costs to Wildlife. Nat. Commun. 2020, 11, 4295. [Google Scholar] [CrossRef]
- Foucher, A.; Tassano, M.; Chaboche, P.-A.; Chalar, G.; Cabrera, M.; Gonzalez, J.; Cabral, P.; Simon, A.-C.; Agelou, M.; Ramon, R.; et al. Inexorable Land Degradation Due to Agriculture Expansion in South American Pampa. Nat. Sustain. 2023, 6, 662–670. [Google Scholar] [CrossRef]
- Jayne, T.S.; Sanchez, P.A. Agricultural Productivity Must Improve in Sub-Saharan Africa. Science 2021, 372, 1045–1047. [Google Scholar] [CrossRef]
- Subedi, Y.R.; Kristiansen, P.; Cacho, O. Drivers and Consequences of Agricultural Land Abandonment and Its Reutilisation Pathways: A Systematic Review. Environ. Dev. 2022, 42, 100681. [Google Scholar] [CrossRef]
- Gvein, M.H.; Hu, X.; Næss, J.S.; Watanabe, M.D.B.; Cavalett, O.; Malbranque, M.; Kindermann, G.; Cherubini, F. Potential of Land-Based Climate Change Mitigation Strategies on Abandoned Cropland. Commun Earth Environ. 2023, 4, 39. [Google Scholar] [CrossRef]
- Deininger, K.; Savastano, S.; Carletto, C. Land Fragmentation, Cropland Abandonment, and Land Market Operation in Albania. World Dev. 2012, 40, 2108–2122. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Fang, X.; Li, G.; Cao, Y. Does Land Tenure Fragmentation Aggravate Farmland Abandonment? Evidence from Big Survey Data in Rural China. J. Rural Stud. 2022, 91, 126–135. [Google Scholar] [CrossRef]
- Zheng, L.; Su, L.; Jin, S. Reducing Land Fragmentation to Curb Cropland Abandonment: Evidence from Rural China. Can. J. Agric. Econ./Rev. Can. D’Agroecon. 2023, 71, 355–373. [Google Scholar] [CrossRef]
- Löw, F.; Prishchepov, A.V.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J.P.A. Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sens. 2018, 10, 159. [Google Scholar] [CrossRef]
- Zhu, X.; Xiao, G.; Zhang, D.; Guo, L. Mapping Abandoned Farmland in China Using Time Series MODIS NDVI. Sci. Total Environ. 2021, 755, 142651. [Google Scholar] [CrossRef]
- Wang, J.; Guan, Y.; Wang, H.; Zhou, W. Identifying and Monitoring of Abandoned Farmland in Key Agricultural Production Areas on the Qinghai-Tibet Plateau: A Case Study of the Huangshui Basin. J. Environ. Manag. 2024, 354, 120380. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Song, W.; Thai, L. Land Abandonment under Rural Restructuring in China Explained from a Cost-Benefit Perspective. J. Rural Stud. 2016, 47, 524–532. [Google Scholar] [CrossRef]
- He, Y.; Xie, H.; Peng, C. Analyzing the Behavioural Mechanism of Farmland Abandonment in the Hilly Mountainous Areas in China from the Perspective of Farming Household Diversity. Land Use Pol. 2020, 99, 104826. [Google Scholar] [CrossRef]
- Gorgan, M.; Bavorova, M.; Ullah, A.; Prishchepov, A. The Role of Land Market in Shaping Farmland Abandonment in Post-Soviet Armenia. Land Use Pol. 2024, 146, 107308. [Google Scholar] [CrossRef]
- Chen, H.; Tan, Y.; Xiao, W.; Xu, S.; Xia, H.; Ding, G.; Xia, H.; Prishchepov, A.V. Spatiotemporal Variation in Determinants of Cropland Abandonment across Yangtze River Economic Belt, China. Catena 2024, 245, 108326. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Baumann, M.; Bragina, E.V.; Griffiths, P.; Hostert, P.; Knorn, J.; Mueller, D.; Prishchepov, A.V.; Schierhorn, F.; et al. Mapping the Extent of Abandoned Farmland in Central and Eastern Europe Using MODIS Time Series Satellite Data. Environ. Res. Lett. 2013, 8, 035035. [Google Scholar] [CrossRef]
- Dara, A.; Baumann, M.; Kuemmerle, T.; Pflugmacher, D.; Rabe, A.; Griffiths, P.; Hoelzel, N.; Kamp, J.; Freitag, M.; Hostert, P. Mapping the Timing of Cropland Abandonment and Recultivation in Northern Kazakhstan Using Annual Landsat Time Series. Remote Sens. Environ. 2018, 213, 49–60. [Google Scholar] [CrossRef]
- Li, L.; Pan, Y.; Zheng, R.; Liu, X. Understanding the Spatiotemporal Patterns of Seasonal, Annual, and Consecutive Farmland Abandonment in China with Time-Series MODIS Images during the Period 2005–2019. Land Degrad. Dev. 2022, 33, 1608–1625. [Google Scholar] [CrossRef]
- Zhang, M.; Li, G.; He, T.; Zhai, G.; Guo, A.; Chen, H.; Wu, C. Reveal the Severe Spatial and Temporal Patterns of Abandoned Cropland in China over the Past 30 Years. Sci. Total Environ. 2023, 857, 159591. [Google Scholar] [CrossRef]
- Zeng, J.; Luo, T.; Chen, W.; Gu, T. Assessing and Mapping Cropland Abandonment Risk in China. Land Degrad. Dev. 2024, 35, 2738–2753. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Sun, L.; Cao, G.; Fischer, G.; Tramberend, S. An Estimation of the Extent of Cropland Abandonment in Mountainous Regions of China. Land Degrad. Dev. 2018, 29, 1327–1342. [Google Scholar] [CrossRef]
- Song, W.; Yang, D.; Wang, Y. Integrating an Abandoned Farmland Simulation Model (AFSM) Using System Dynamics and CLUE-S for Sustainable Agriculture. Agric. Syst. 2024, 219, 104063. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Schierhorn, F.; Prishchepov, A.V.; Mueller, D.; Kuemmerle, T. Drivers, Constraints and Trade-Offs Associated with Recultivating Abandoned Cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Change-Hum. Policy Dimens. 2016, 37, 1–15. [Google Scholar] [CrossRef]
- Movahedi, R.; Jawanmardi, S.; Azadi, H.; Goli, I.; Viira, A.-H.; Witlox, F. Why Do Farmers Abandon Agricultural Lands? The Case of Western Iran. Land Use Pol. 2021, 108, 105588. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, J.; Sun, M.; Wang, J.; Yang, K. Evolution of Farmland Abandonment Research from 1993 to 2023 Using CiteSpace-Based Scientometric Analysis. J. Geovis. Spat. Anal. 2024, 8, 20. [Google Scholar] [CrossRef]
- Xu, D.; Deng, X.; Guo, S.; Liu, S. Labor Migration and Farmland Abandonment in Rural China: Empirical Results and Policy Implications. J. Environ. Manag. 2019, 232, 738–750. [Google Scholar] [CrossRef]
- Qiu, B.; Yang, X.; Tang, Z.; Chen, C.; Li, H.; Berry, J. Urban Expansion or Poor Productivity: Explaining Regional Differences in Cropland Abandonment in China during the Early 21st Century. Land Degrad. Dev. 2020, 31, 2540–2551. [Google Scholar] [CrossRef]
- Hou, D.; Meng, F.; Prishchepov, A.V. How Is Urbanization Shaping Agricultural Land-Use? Unraveling the Nexus between Farmland Abandonment and Urbanization in China. Landsc. Urban Plan. 2021, 214, 104170. [Google Scholar] [CrossRef]
- Ding, G.; Ding, M.; Xie, K.; Li, J. Driving Mechanisms of Cropland Abandonment from the Perspectives of Household and Topography in the Poyang Lake Region, China. Land 2022, 11, 939. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, D. Study on the Causes of Differences in Cropland Abandonment Levels among Farming Households Based on Hierarchical Linear Model-13,120 Farming Households in 26 Provinces of China as an Example. Land 2023, 12, 1791. [Google Scholar] [CrossRef]
- Long, M.; Zhao, Y.; Zhou, C.; Li, X.; Su, L.; Zou, Y. Analysis of Factors Influencing Terrace Abandonment Based on Unmanned Aerial Photography and Farmer Surveys: A Case Study in Jianhe, Guizhou. Land Degrad. Dev. 2024, 35, 757–771. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Song, W. Determinants of Cropland Abandonment at the Parcel, Household and Village Levels in Mountain Areas of China: A Multi-Level Analysis. Land Use Pol. 2014, 41, 186–192. [Google Scholar] [CrossRef]
- Zhou, T.; Koomen, E.; Ke, X. Determinants of Farmland Abandonment on the Urban-Rural Fringe. Environ. Manag. 2020, 65, 369–384. [Google Scholar] [CrossRef]
- Hong, C.; Prishchepov, A.; Bavorova, M. Cropland Abandonment in Mountainous China: Patterns and Determinants at Multiple Scales and Policy Implications. Land Use Pol. 2024, 145, 107292. [Google Scholar] [CrossRef]
- Müller, D.; Kuemmerle, T.; Rusu, M.; Griffiths, P. Lost in Transition: Determinants of Post-Socialist Cropland Abandonment in Romania. J. Land Use Sci. 2009, 4, 109–129. [Google Scholar] [CrossRef]
- Terres, J.-M.; Scacchiafichi, L.N.; Wania, A.; Ambar, M.; Anguiano, E.; Buckwell, A.; Coppola, A.; Gocht, A.; Kallstrom, H.N.; Pointereau, P.; et al. Farmland Abandonment in Europe: Identification of Drivers and Indicators, and Development of a Composite Indicator of Risk. Land Use Pol. 2015, 49, 20–34. [Google Scholar] [CrossRef]
- Ho, N.; Hoelzel, N.; Voelker, A.; Kamp, J. Patterns and Determinants of Post-Soviet Cropland Abandonment in the Western Siberian Grain Belt. Remote Sens. 2018, 10, 1973. [Google Scholar] [CrossRef]
- Yan, J.; Yang, Z.; Li, Z.; Li, X.; Xing, L.; Sun, L. Drivers of Cropland Abandonment in Mountainous Areas: A Household Decision Model on Farming Scale in Southwest China. Land Use Pol. 2016, 57, 459–469. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Xiong, J.; Sun, M.; Ma, Y. Spatial-Temporal Characterization of Cropland Abandonment and Its Driving Mechanisms in the Karst Plateau in Eastern Yunnan, China, 2001-2020. PLoS ONE 2024, 19, e0307148. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wen, J.; Zhou, Q.; Zhang, Y.; Dong, G. Mapping Cropland Abandonment in the Cloudy Hilly Regions Surrounding the Southwest Basin of China. Land 2024, 13, 586. [Google Scholar] [CrossRef]
- Scholes, R.J.; Reyers, B.; Biggs, R.; Spierenburg, M.J.; Duriappah, A. Multi-Scale and Cross-Scale Assessments of Social-Ecological Systems and Their Ecosystem Services. Curr. Opin. Environ. Sustain. 2013, 5, 16–25. [Google Scholar] [CrossRef]
- Calafat-Marzal, C.; Sanchez-Garcia, M.; Gallego-Salguero, A.; Pineiro, V. Drivers of Winegrowers’ Decision on Land Use Abandonment Based on Exploratory Spatial Data Analysis and Multilevel Models. Land Use Pol. 2023, 132, 106807. [Google Scholar] [CrossRef]
- Jiang, C.; Song, W. Degree of Abandoned Cropland and Socioeconomic Impact Factors in China: Multi-Level Analysis Model Based on the Farmer and District/County Levels. Land 2022, 11, 8. [Google Scholar] [CrossRef]
- Kong, X. China Must Protect High-Quality Arable Land. Nature 2014, 506, 7. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, H.; Xiao, W.; Meng, F.; He, T. Influence of Farmland Marginalization in Mountainous and Hilly Areas on Land Use Changes at the County Level. Sci. Total Environ. 2021, 794, 149576. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, J.; Zhou, H.; Dai, A.; Gao, B.; Tang, K.; Tan, D. Abandoned Cropland Mapping with Phenology-Enhanced Change Vector Analysis and Semi-Supervised Learning in Different Cropping Intensity Areas. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4404515. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 9992–10002. [Google Scholar]
- Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-Attention Mask Transformer for Universal Image Segmentation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 1280–1289. [Google Scholar]
- Moran, P. The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B-Stat. Methodol. 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association-Lisa. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Sroka, W.; Poelling, B.; Wojewodzic, T.; Strus, M.; Stolarczyk, P.; Podlinska, O. Determinants of Farmland Abandonment in Selected Metropolitan Areas of Poland: A Spatial Analysis on the Basis of Regression Trees and Interviews with Experts. Sustainability 2019, 11, 3071. [Google Scholar] [CrossRef]
- Liu, Y.; Song, W.; Deng, X. Changes in Crop Type Distribution in Zhangye City of the Heihe River Basin, China. Appl. Geogr. 2016, 76, 22–36. [Google Scholar] [CrossRef]
- Jin, X.; Shao, Y.; Zhang, Z.; Resler, L.M.; Campbell, J.B.; Chen, G.; Zhou, Y. The Evaluation of Land Consolidation Policy in Improving Agricultural Productivity in China. Sci. Rep. 2017, 7, 2792. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Estes, L.; Ziegler, A.D.; Chen, A.; Searchinger, T.; Hua, F.; Guan, K.; Jintrawet, A.; Wood, E.F. Highland Cropland Expansion and Forest Loss in Southeast Asia in the Twenty-First Century. Nat. Geosci. 2018, 11, 556–562. [Google Scholar] [CrossRef]
- Han, Z.; Song, W. Spatiotemporal Variations in Cropland Abandonment in the Guizhou–Guangxi Karst Mountain Area, China. J. Clean. Prod. 2019, 238, 117888. [Google Scholar] [CrossRef]
- Tang, H.; Yun, W.; Liu, W.; Sang, L. Structural Changes Changes in the Development of China’s Farmland Consolidation in 1998-2017: Changing Ideas and Future Framework. Land Use Pol. 2019, 89, 104212. [Google Scholar] [CrossRef]
- Chen, L.; Meadows, M.E.; Liu, Y.; Lin, Y. Examining Pathways Linking Rural Labour Outflows to the Abandonment of Arable Land in China. Popul. Space Place 2022, 28, e2519. [Google Scholar] [CrossRef]
- Overmars, K.P.; Verburg, P.H. Multilevel Modelling of Land Use from Field to Village Level in the Philippines. Agric. Syst. 2006, 89, 435–456. [Google Scholar] [CrossRef]
- Bista, R.; Zhang, Q.; Parajuli, R.; Karki, R.; Chhetri, B.B.K.; Song, C. Cropland Abandonment in the Community-Forestry Landscape in the Middle Hills of Nepal. Earth Interact. 2021, 25, 136–150. [Google Scholar] [CrossRef]
- Subedi, Y.R.; Kristiansen, P.; Cacho, O.; Ojha, R.B. Agricultural Land Abandonment in the Hill Agro-Ecological Region of Nepal: Analysis of Extent, Drivers and Impact of Change. Environ. Manag. 2021, 67, 1100–1118. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, R.; Guo, S.; Xu, D. Why Do Aging Households in Agriculture Prefer Land Abandonment to Transfer? Evidence from Hill Plots in Sichuan, China. Land Degrad. Dev. 2024, 35, 4985–4996. [Google Scholar] [CrossRef]
- Song, H.; Li, X.; Xin, L.; Wang, X. Do Farmland Transfers Mitigate Farmland Abandonment?—A Case Study of China’s Mountainous Areas. Habitat Int. 2024, 146, 103023. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.; Zhao, J.; Cai, B. Unveiling the Effect of Land Transfer and Land Acquisition on Farmland Abandonment: Proximity/Distance to the City Matters. Appl. Geogr. 2024, 163, 103181. [Google Scholar] [CrossRef]
- Zheng, L. Big Hands Holding Small Hands: The Role of New Agricultural Operating Entities in Farmland Abandonment. Food Policy 2024, 123, 102605. [Google Scholar] [CrossRef]
- Du, J.; Zeng, M.; Xie, Z.; Wang, S. Power of Agricultural Credit in Farmland Abandonment: Evidence from Rural China. Land 2019, 8, 184. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, Y.; Pu, C. Do Agricultural Productive Services Alleviate Farmland Abandonment? Evidence from China Rural Household Panel Survey Data. Front. Environ. Sci. 2023, 11, 1072005. [Google Scholar] [CrossRef]
Data | Time | Data Type and Resolution | Source |
---|---|---|---|
Land cover | 2017–2023 | raster: 10 m | https://dataspace.copernicus.eu/, accessed on 15 August 2024 |
DEM | 2009 | raster: 30 m | https://www.gscloud.cn/sources/details/310?pid=302, accessed on 18 August 2024 |
Roads and river networks | 2019 | vector | https://www.webmap.cn/commres.do?method=result100W, accessed on 18 August 2024 |
Demographic data | 2021 | csv | China Statistical Yearbook (County-level) Sichuan Statistical Yearbook and Sichuan Provincial Bureau of Statistics (https://tjj.sc.gov.cn/scstjj/c105855/nj.shtml, accessed on 27 August 2024) Statistical yearbooks of the 21 prefecture-level cities (or autonomous prefectures) in Sichuan Province |
Socio-economic data | 2021 | csv |
Categories | Variable | Description | Level | Mean | SD |
---|---|---|---|---|---|
Natural factors | DEM (m) | Mean elevation per county | county | 1424.00 | 1303.17 |
SLO (°) | Mean slope per county | county | 16.45 | 7.07 | |
AI (-) | Agglomeration index of cropland per county, calculated using Fragstats 4.2 software | county | 77.55 | 7.77 | |
FRA (-) | Fragmentation index of cropland per county, calculated using Fragstats 4.2 software | county | 1.02 | 0.83 | |
Socio-economic factors | GDP (104 yuan) | Gross domestic product of per administrative unit | county city | 2942666/25167052 | 3910610/40686250 |
PSTI (%) | Proportion of secondary and tertiary industries per administrative unit | county city | 82.43/84.04 | 8.96/5.75 | |
UR (%) | Urbanization rate, the ratio of urban population, divided by the total population in each administrative unit | county city | 48.46/51.66 | 18.46/10.14 | |
RP (104) | Rural population per county | county | 19.30 | 14.70 | |
PNAE (%) | Proportion of non-agricultural employment per city | city | 61.91 | 11.35 | |
TAMP (104 kw) | Total agricultural machinery power per county | county | 26.41 | 19.01 | |
Location factors | DisT (m) | Average distance from cropland to township administrative center per county | county | 3208.40 | 1201.56 |
DisC (m) | Average distance from cropland to county administrative center per county | county | 17121.97 | 9101.50 | |
DisR (m) | Average distance from cropland to major roads per county | county | 522.12 | 763.38 | |
DisW (m) | Average distance from cropland to Water sources per county | county | 1340.30 | 709.39 |
Year | Municipal-Level | County-Level | ||||
---|---|---|---|---|---|---|
Moran’s I | z-Value | p-Value | Moran’s I | z-Value | p-Value | |
2019 | 0.213 | 2.1349 | 0.0328 | 0.568 | 13.0149 | 0.0000 |
2021 | 0.199 | 1.9129 | 0.0556 | 0.410 | 9.4432 | 0.0000 |
2023 | 0.330 | 3.1224 | 0.0018 | 0.399 | 9.2641 | 0.0000 |
Fixed Effect | Random Effect | ||||||
---|---|---|---|---|---|---|---|
Parameter | Coefficient | SD | t-Ratio | Parameter | SD | Variance Component | Chi-Square |
γ00 | 8.8827 *** | 1.2464 | 7.127 | μ0 | 5.3030 | 28.1214 *** | 154.2635 |
r | 6.6652 | 44.4254 |
Parameter/Variable | Fixed Effect | Random Effect | ||
---|---|---|---|---|
Coefficient | t-Ratio | Variance Component | Chi-Square | |
γ00 | 8.7958 *** | 7.235 | / | / |
μ0 | / | / | 30.5020 *** | 19.9309 |
r | / | / | 15.3523 | / |
DEM | 0.0023 * | 1.836 | 0.0000 | 0.0577 |
SLO | 0.1297 | 1.245 | 0.0199 | 0.3021 |
AI | −0.3681 *** | −4.594 | 0.0846 *** | 8.6485 |
FRA | 0.0180 | 0.022 | 4.3127 | 2.0609 |
PSTI | 0.0854 | 1.281 | 0.0067 | 0.5384 |
UR | 0.0552 | 1.455 | 0.0067 | 0.7886 |
RP | −0.0381 | −1.214 | 0.0088 | 0.2779 |
TAMP | −0.0099 | −0.299 | 0.0104 | 0.3296 |
DisT | 0.0001 | 0.067 | / | / |
DisC | 0.0001 | −0.052 | / | / |
DisR | 0.0028 ** | 2.225 | / | / |
DisW | 0.0005 | 0.580 | / | / |
Fixed Effect | Random Effect | ||||
---|---|---|---|---|---|
Parameter | Coefficient | t-Ratio | Parameter | Variance Component | Chi-Square |
γ00 | 8.2692 *** | 3.547 | μ0 | 13.1717 *** | 107.8076 |
γ01 | 0.1055 | 0.816 | μ2 | 0.0313 | 18.3134 |
γ02 | 0.4501 *** | 3.195 | r | 18.8155 | |
γ03 | 0.6441 *** | 6.312 | |||
γ10 | 0.0040 *** | 3.624 | |||
γ20 | −1.5669 * | −1.791 | |||
γ21 | 0.0040 | 0.321 | |||
γ22 | 0.0083 | 0.689 | |||
γ23 | 0.0194 ** | 2.598 | |||
γ30 | 0.0031 *** | 30.203 |
Land Cover | User’s Accuracy (%) | Producer’s Accuracy (%) |
---|---|---|
Waters | 92.5 | 90.8 |
Trees | 87.2 | 88.4 |
Grass | 83.6 | 81.9 |
Crops | 91.2 | 90.8 |
Built Area | 86.3 | 85.1 |
Bare Ground | 82.9 | 83.4 |
Snow/Ice | 95.6 | 93.7 |
Overall accuracy (%) | 85.3 | |
Kappa coefficient | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, B.; Wang, J.; Xiao, J.; Yuan, Q.; Ren, P. Spatiotemporal Patterns and Determinants of Cropland Abandonment in Mountainous Regions of China: A Case Study of Sichuan Province. Land 2025, 14, 647. https://doi.org/10.3390/land14030647
Hong B, Wang J, Xiao J, Yuan Q, Ren P. Spatiotemporal Patterns and Determinants of Cropland Abandonment in Mountainous Regions of China: A Case Study of Sichuan Province. Land. 2025; 14(3):647. https://doi.org/10.3390/land14030647
Chicago/Turabian StyleHong, Buting, Jicheng Wang, Jiangtao Xiao, Quanzhi Yuan, and Ping Ren. 2025. "Spatiotemporal Patterns and Determinants of Cropland Abandonment in Mountainous Regions of China: A Case Study of Sichuan Province" Land 14, no. 3: 647. https://doi.org/10.3390/land14030647
APA StyleHong, B., Wang, J., Xiao, J., Yuan, Q., & Ren, P. (2025). Spatiotemporal Patterns and Determinants of Cropland Abandonment in Mountainous Regions of China: A Case Study of Sichuan Province. Land, 14(3), 647. https://doi.org/10.3390/land14030647