Spatiotemporal Change of Crop Yield and Its Response to Planting Structural Shifts in Northeast China from 2001 to 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Research Methods and Workflow
2.3.2. Crop Yield Estimation Model
2.3.3. Temporal Trend Detection Using Theil–Sen Median and Mann–Kendall Approaches
2.3.4. Accuracy Validation
3. Results
3.1. Accuracy Validation of Yield Estimation Results
3.2. Temporal Analysis of Crop Yield Estimation Results
3.3. Spatiotemporal Characteristics of Crop Yields
3.3.1. Spatiotemporal Differentiation of Average Overall Yield per Unit Area in Northeast China
3.3.2. Spatiotemporal Differentiation of Average Maize Yield in Northeast China
3.3.3. Spatiotemporal Differentiation of Average Rice Yield in Northeast China
3.3.4. Spatiotemporal Differentiation of Average Soybean Yield in Northeast China
3.4. Impacts of Crop Type Shifts on Production
3.4.1. Crop Distribution and Cultivation Area Dynamics
3.4.2. Impacts of Crop Type Conversions on Yield Dynamics
4. Discussion
4.1. Accuracy and Applicability of the Yield Estimation Model
4.2. Drivers of Spatial–Temporal Changes in Crop Yields in the Northeast Region
4.3. Recommendations for Cropping Patterns
4.4. Limitations and Future Research
5. Conclusions
- (1)
- Validation against prefecture-level statistical data demonstrated high accuracy of the yield estimation model, with R2 values of 0.76, 0.69, and 0.81 for maize, rice, and soybean, respectively. These results highlight the reliability and practical utility of remote sensing data for crop yield estimation at regional scales.
- (2)
- The average yield changes of maize, rice, and soybean were classified into five categories. Maize yield growth primarily occurred in southeastern regions, with significantly increased areas accounting for 31.3%. For rice, 30.1% of regions showed significant yield increases, concentrated in northern riverine zones. Soybean yields remained stable in 61.6% of regions, while significant growth areas (11.7%) were predominantly located in north/central Heilongjiang Province.
- (3)
- From 2001 to 2021, the total average yield of maize, rice, and soybean in Northeast China increased from 7885.9 to 10,046.2 kg·ha−1, representing a 27.39% growth. The annual change rates for these crops were 1.33, 1.20, and 1.68% per year, respectively. Maize yields increased by 852.8 kg·ha−1 (27.31%), exhibiting a northwest-to-southeast increasing gradient. Rice yields rose by 745.2 kg·ha−1 (25.12%), with high-yield areas aligned along river systems. Soybean yields demonstrated the most substantial growth at 562.3 kg·ha−1 (31.25%), following a distinct north-high-south-low spatial pattern.
- (4)
- Crop type transitions contributed 62.40% to the total yield increment. Soybean-to-maize conversion emerged as the dominant driver, contributing 29.0131 million tons (50.41%) to yield gains. Conversely, maize-to-soybean transitions caused the largest yield reduction (−1.5034 million tons, −2.61%). Notably, soybean-to-maize shifts constituted the primary growth mechanism across the study period, except during 2001–2006 when maize-to-soybean conversions predominantly drove yield declines.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Yang, G. Understanding Recent Challenges and New Food Policy in China. Glob. Food Secur. 2017, 12, 119–126. [Google Scholar] [CrossRef]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland Transition and Its Influences on Grain Production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Yu, H.; Liu, K.; Bai, Y.; Luo, Y.; Wang, T.; Zhong, J.; Liu, S.; Bai, Z. The Agricultural Planting Structure Adjustment Based on Water Footprint and Multi-Objective Optimisation Models in China. J. Clean. Prod. 2021, 297, 126646. [Google Scholar] [CrossRef]
- Han, Y.; Tan, Q.; Zhang, T.; Wang, S.; Zhang, T.; Zhang, S. Development of an Assessment-Based Planting Structure Optimization Model for Mitigating Agricultural Greenhouse Gas Emissions. J. Environ. Manag. 2024, 349, 119322. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.Y.; Xing, H.G.; Chen, X.M. Effect of chemical fertilizer application on grain yield in Qitai County, Xinjiang Uygur Autonomous Region. Chin. J. Eco-Agric. 2009, 17, 75–78. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, G.; Jiang, S.; Cheng, J.; Meng, Y.; Li, B.; Xu, G.; Han, J. Winter Wheat Yield Estimation Based on High and Moderate Resolution Remote Sensing Data at County Level. Trans. Chin. Soc. Agric. Eng. 2009, 25, 118–123. [Google Scholar]
- Yu, Q.; Wu, W.; Chen, Y.; Yang, P.; Meng, C.; Zhou, Q.; Tang, H. Model Application of an Agent-Based Model for Simulating Crop Pattern Dynamics at Regional Scale Based on MATLAB. Trans. Chin. Soc. Agric. Eng. 2014, 30, 105–114. [Google Scholar]
- Mokhtari, A.; Noory, H.; Vazifedoust, M. Improving Crop Yield Estimation by Assimilating LAI and Inputting Satellite-Based Surface Incoming Solar Radiation into SWAP Model. Agric. For. Meteorol. 2018, 250–251, 159–170. [Google Scholar] [CrossRef]
- Zhiqiang, C.; Jihua, M. Research advances and perspectives on crop yield estimation models. Chin. J. Eco-Agric. 2015, 23, 402–415. [Google Scholar] [CrossRef]
- Mu, H.; Zhou, L.; Dang, X.; Yuan, B. Winter Wheat Yield Estimation from Multitemporal Remote Sensing Images Based on Convolutional Neural Networks. In Proceedings of the 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Shanghai, China, 5–7 August 2019; pp. 1–4. [Google Scholar]
- Peng, D.; Huang, J.; Li, C.; Liu, L.; Huang, W.; Wang, F.; Yang, X. Modelling Paddy Rice Yield Using MODIS Data. Agric. For. Meteorol. 2014, 184, 107–116. [Google Scholar] [CrossRef]
- Lu, J.; Fu, H.; Tang, X.; Liu, Z.; Huang, J.; Zou, W.; Chen, H.; Sun, Y.; Ning, X.; Li, J. GOA-Optimized Deep Learning for Soybean Yield Estimation Using Multi-Source Remote Sensing Data. Sci. Rep. 2024, 14, 7097. [Google Scholar] [CrossRef] [PubMed]
- Nolasco, M.; Paccioretti, P.; Escobares, C.; Frank Buss, E.; Rubio, J.; Scavuzzo, M. Development of a Crop Extension Product in Argentina Using MODIS Data at 250m and NDVI Thresholds Estimated from Phenological Metrics. In Proceedings of the 2023 XX Workshop on Information Processing and Control (RPIC), Oberá, Argentina, 1–3 November 2023; pp. 1–8. [Google Scholar]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, P.; Fan, L.; Yang, P.; Wu, W. Spatio-Temporal Changes of Cropping Types in Northeast China During 1980–2010. Sci. Agric. Sin. 2016, 49, 4107–4119. [Google Scholar] [CrossRef]
- Liu, D.; Liu, S.; Wen, X. Spatial-Temporal Evolution of Grain Production Structure in Northeast China. Econ. Geogr. 2019, 39, 163–170. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y. Research on Spatial-temporal Pattern and Influencing Factors of Agricultural Modernization in Northeast China Region. J. Anhui Agric. Sci. 2023, 51, 230–237. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Y.; Shen, S.; Li, Z. Study on Maize Yield Estimation and Accuracy Assessment Based on PyWOFOST Crop Model in Northeast China. Sci. Agric. Sin. 2013, 46, 2880–2893. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, L.; Xu, X.; Zhang, X.; Yuan, L.; Zhang, X. Temporal and Spatial Variations of Chinese Maize Production Potential on the Background of Climate Change during 1960–2010. J. Nat. Resour. 2015, 30, 784–795. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Yang, X.; Zhang, T.; Liu, Z.; Guo, E.; Liu, Z.; Qu, H.; Chen, X.; Wang, L.; et al. Rice Yield Potential, Gaps and Constraints during the Past Three Decades in a Climate-Changing Northeast China. Agric. For. Meteorol. 2018, 259, 173–183. [Google Scholar] [CrossRef]
- Ubilava, D. Modeling Nonlinearities in the U.S. Soybean-to-Corn Price Ratio: A Smooth Transition Autoregression Approach. Agribusiness 2012, 28, 29–41. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, P.; Marley, B.; Liu, W. The Factors Affecting Farmers’ Soybean Planting Behavior in Heilongjiang Province, China. Agriculture 2019, 9, 188. [Google Scholar] [CrossRef]
- Song, G.; Zhang, H. Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China. Land 2021, 10, 107. [Google Scholar] [CrossRef]
- Liu, Z.; Ying, H.; Chen, M.; Bai, J.; Xue, Y.; Yin, Y.; Batchelor, W.D.; Yang, Y.; Bai, Z.; Du, M.; et al. Optimization of China’s Maize and Soy Production Can Ensure Feed Sufficiency at Lower Nitrogen and Carbon Footprints. Nat. Food 2021, 2, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Guo, C.; Li, H.; Qiu, H.; Li, H.; Jong, C.; Yu, G.; Zhang, Y.; Hu, L.; Wu, X.; et al. Natural Variation in Fatty Acid 9 Is a Determinant of Fatty Acid and Protein Content. Plant Biotechnol. J. 2024, 22, 759–773. [Google Scholar] [CrossRef]
- Li, H.; Sun, J.; Zhang, Y.; Wang, N.; Li, T.; Dong, H.; Yang, M.; Xu, C.; Hu, L.; Liu, C.; et al. Soybean Oil and Protein: Biosynthesis, Regulation and Strategies for Genetic Improvement. Plant Cell Environ. 2024. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, Z.; Huang, F.; Yang, X.; Liu, Z.; Wan, W.; Wang, J.; Xu, Y.; Li, Z.; Ren, T. Ensuring National Food Security by Strengthening High-Productivity Black Soil Granary in Northeast China. Bull. Chin. Acad. Sci. 2021, 36, 1184–1193. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Revealing Annual Crop Type Distribution and Spatiotemporal Changes in Northeast China Based on Google Earth Engine. Remote Sens. 2022, 14, 4056. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Shi, X.; Chen, L.; Zhao, Y.; Yu, D. Spatial patterns of net primary productivity of crops in China. Acta Ecol. Sin. 2016, 36, 6318–6327. [Google Scholar] [CrossRef]
- Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the Estimation of Terrestrial Net Primary Production from Remotely Sensed Data. J. Geophys. Res. Atmos. 1994, 99, 5263–5283. [Google Scholar] [CrossRef]
- Liu, Y.; Song, W. Modelling Crop Yield, Water Consumption, and Water Use Efficiency for Sustainable Agroecosystem Management. J. Clean. Prod. 2020, 253, 119940. [Google Scholar] [CrossRef]
- Guanghui, X. Harvest Index and Residue Factor of Non-Cereal Crops in China. J. China Agric. Univ. 2011, 6, 97. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s Rho Tests for Detecting Monotonic Trends in Hydrological Series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping Paddy Rice Planting Area in Northeastern Asia with Landsat 8 Images, Phenology-Based Algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef]
- Battisti, D.S.; Naylor, R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Roberts, M.J.; Schlenker, W.; Braun, N.; Little, B.B.; Rejesus, R.M.; Hammer, G.L. Greater Sensitivity to Drought Accompanies Maize Yield Increase in the U.S. Midwest. Science 2014, 344, 516–519. [Google Scholar] [CrossRef]
- Alessio, S.; Taricco, C.; Rubinetti, S.; Vivaldo, G.; Mancuso, S. Temperature and Precipitation in Northeast China during the Last 150 Years: Relationship to Large-Scale Climatic Variability. Ann. Geophys. 2014, 32, 749–760. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Wang, W.; Wei, L. Impacts of Agricultural Price Support Policies on Price Variability and Welfare: Evidence from China’s Soybean Market; Center for Agricultural and Rural Development (CARD) Publications: Ames, IA, USA, 2019. [Google Scholar]
- Yu, W.; Jensen, H.G. China’s Agricultural Policy Transition: Impacts of Recent Reforms and Future Scenarios. J. Agric. Econ. 2010, 61, 343–368. [Google Scholar] [CrossRef]
- Wang, M.; Liu, D.; Wang, Z.; Li, Y. Structural Evolution of Global Soybean Trade Network and the Implications to China. Foods 2023, 12, 1550. [Google Scholar] [CrossRef]
- Dou, X.; He, P.; Zhu, P.; Zhou, W. Soil Organic Carbon Dynamics under Long-Term Fertilization in a Black Soil of China: Evidence from Stable C Isotopes. Sci. Rep. 2016, 6, 21488. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Xing, B.; Herbert, S.J.; Meng, K.; Han, X.; Zhang, X. Effects of Long-Term Continuous Cropping, Tillage, and Fertilization on Soil Organic Carbon and Nitrogen of Black Soils in China. Commun. Soil Sci. Plant Anal. 2005, 36, 1229–1239. [Google Scholar] [CrossRef]
- Yang, X.M.; Zhang, X.P.; Fang, H.J.; Zhu, P.; Ren, J.; Wang, L.C. Long-Term Effects of Fertilization on Soil Organic Carbon Changes in Continuous Corn of Northeast China: RothC Model Simulations. Environ. Manag. 2003, 32, 459–465. [Google Scholar] [CrossRef]
- Qian, H.; Zhu, X.; Huang, S.; Linquist, B.; Kuzyakov, Y.; Wassmann, R.; Minamikawa, K.; Martinez-Eixarch, M.; Yan, X.; Zhou, F.; et al. Greenhouse Gas Emissions and Mitigation in Rice Agriculture. Nat. Rev. Earth Environ. 2023, 4, 716–732. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, C.; Wang, J.; Meng, Q.; Yuan, Y.; Ma, X.; Liu, X.; Zhu, Y.; Ding, G.; Zhang, J.; et al. Soil Aggregates Stability and Storage of Soil Organic Carbon Respond to Cropping Systems on Black Soils of Northeast China. Sci. Rep. 2020, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, G.; Wang, L.; Li, D.; Li, H.; Gao, C.; Zhuang, M.; Zhuang, J.; Zhou, H.; Xu, S.; et al. Predicting Maize Yield in Northeast China by a Hybrid Approach Combining Biophysical Modelling and Machine Learning. Field Crop. Res. 2023, 302, 109102. [Google Scholar] [CrossRef]
- Ha, T.T.V.; Fan, H.; Shuang, L. Climate Change Impact Assessment on Northeast China’s Grain Production. Environ. Sci. Pollut. Res. 2021, 28, 14508–14520. [Google Scholar] [CrossRef]
Attribute | RMSE (kg·ha−1) | NRMSE (%) | MAPE (%) | R2 |
---|---|---|---|---|
Maize | 533.28 | 9.83 | 10.9 | 0.76 |
Rice | 450.71 | 10.36 | 11.63 | 0.69 |
Soybean | 284.65 | 9.74 | 9.64 | 0.81 |
Total | 485.08 | 9.92 | 11.12 | 0.75 |
Conversion Type | 2001–2021 | |
---|---|---|
Change Amount (104t) | Contribution Rate (%) | |
Maize to Rice | −22.47 | −0.39 |
Maize to Soybean | −150.34 | −2.61 |
Maize to Others | −2.45 | −0.04 |
Rice to Maize | 152.88 | 2.66 |
Rice to Soybean | 0.18 | 0.00 |
Rice to Others | −0.10 | 0.00 |
Soybean to Maize | 2901.31 | 50.41 |
Soybean to Rice | −4.38 | −0.08 |
Soybean to Others | −30.96 | −0.54 |
Others to Maize | 704.27 | 12.24 |
Others to Rice | 12.71 | 0.22 |
Others to Soybean | 31.12 | 0.54 |
Total | 3591.77 | 62.40 |
Type | 2001–2006 | 2006–2011 | 2011–2016 | 2016–2021 | ||||
---|---|---|---|---|---|---|---|---|
Change Amount (104t) | Contribution Rate (%) | Change Amount (104t) | Contribution Rate (%) | Change Amount (104t) | Contribution Rate (%) | Change Amount (104t) | Contribution Rate (%) | |
Maize to Rice | −57.49 | −2.25 | −200.25 | −32.37 | −160.83 | −16.95 | −202.03 | −12.34 |
Maize to Soybean | −4.31 | −0.17 | −267.59 | −43.26 | −215.59 | −22.72 | −379.57 | −23.18 |
Maize to Others | −8.19 | −0.32 | −41.19 | −6.66 | −75.11 | −7.92 | −30.18 | −1.84 |
Rice to Maize | 91.07 | 3.57 | 148.35 | 23.98 | 85.44 | 9.00 | 149.79 | 9.15 |
Rice to Soybean | 1.51 | 0.06 | 1.56 | 0.25 | −0.09 | −0.01 | −1.11 | −0.07 |
Rice to Others | −0.18 | −0.01 | −0.71 | −0.11 | −0.37 | −0.04 | −0.77 | −0.05 |
Soybean to Maize | 1075.42 | 42.16 | 584.05 | 94.41 | 792.90 | 83.55 | 1127.43 | 68.85 |
Soybean to Rice | −72.04 | −2.82 | −14.04 | −2.27 | −1.81 | −0.19 | 2.28 | 0.14 |
Soybean to Others | −106.35 | −4.17 | −41.71 | −6.74 | −66.00 | −6.96 | −10.06 | −0.61 |
Others to Maize | 199.16 | 7.81 | 106.05 | 17.14 | 83.08 | 8.76 | 261.08 | 15.94 |
Others to Rice | 1.72 | 0.07 | 1.14 | 0.18 | 0.34 | 0.04 | 2.36 | 0.14 |
Others to Soybean | 133.24 | 5.22 | 47.43 | 7.67 | 25.30 | 2.67 | 36.37 | 2.22 |
Total | 1253.54 | 49.14 | 323.09 | 52.23 | 467.25 | 49.24 | 955.59 | 58.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Liu, Y.; Wang, J. Spatiotemporal Change of Crop Yield and Its Response to Planting Structural Shifts in Northeast China from 2001 to 2021. Land 2025, 14, 640. https://doi.org/10.3390/land14030640
Lin X, Liu Y, Wang J. Spatiotemporal Change of Crop Yield and Its Response to Planting Structural Shifts in Northeast China from 2001 to 2021. Land. 2025; 14(3):640. https://doi.org/10.3390/land14030640
Chicago/Turabian StyleLin, Xu, Yaqun Liu, and Jieyong Wang. 2025. "Spatiotemporal Change of Crop Yield and Its Response to Planting Structural Shifts in Northeast China from 2001 to 2021" Land 14, no. 3: 640. https://doi.org/10.3390/land14030640
APA StyleLin, X., Liu, Y., & Wang, J. (2025). Spatiotemporal Change of Crop Yield and Its Response to Planting Structural Shifts in Northeast China from 2001 to 2021. Land, 14(3), 640. https://doi.org/10.3390/land14030640