Agricultural Social Services and Land Transfer: A Multidimensional Analysis of Impacts on Land Allocation
Abstract
:1. Introduction
1.1. Research Background
1.2. Theoretical Analysis
1.2.1. Farmer Behavior Theory
1.2.2. Cost Theory
2. Materials and Methods
2.1. Data Description
2.1.1. Selection of Variables
2.1.2. Descriptive Statistical Analysis
2.1.3. Mean Difference
2.2. Model Construction
2.2.1. Endogenous Transformation Model
- (1)
- Impact on land transfer participation
- (2)
- Impact on the scale of land transfers
- (3)
- Impact on future intention to transfer land
2.2.2. Average Treatment Effect Estimates
3. Results
3.1. Analysis of Factors Influencing the Adoption of ASSs
3.2. Analysis of Factors Influencing Land Transfer Decisions
3.3. Average Treatment Effect Estimation Results
3.4. Robustness Tests
3.5. Further Analysis
4. Discussions
4.1. Key Findings
4.2. Policy Recommendations
4.3. Research Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, D.; Deng, X.; Guo, S.; Liu, S. Labor migration and farmland abandonment in rural China: Empirical results and policy implications. J. Environ. Manag. 2019, 232, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Deininger, K.; Jin, S.; Xia, F.; Huang, J. Moving Off the Farm: Land Institutions to Facilitate Structural Transformation and Agricultural Productivity Growth in China. World Dev. 2014, 59, 505–520. [Google Scholar] [CrossRef]
- Feng, X.L.; Ma, W.L.; Liu, M.Y.; Qiu, H.U. Impact of grassland transfer on technical efficiency of livestock production in Northern China. Appl. Econ. 2021, 54, 702–718. [Google Scholar] [CrossRef]
- Fei, R.; Lin, Z.; Chunga, J. How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy 2021, 103, 105300. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Y.; Jiang, P.; Tian, Y.; Zou, Y. A novel framework for rural homestead land transfer under collective ownership in China. Land Use Policy 2018, 78, 138–146. [Google Scholar] [CrossRef]
- Huang, K.; Deng, X.; Liu, Y.; Yong, Z.; Xu, D. Does off-Farm Migration of Female Laborers Inhibit Land Transfer? Evidence from Sichuan Province, China. Land 2020, 9, 14. [Google Scholar] [CrossRef]
- Grubbström, A.; Eriksson, C. Retired Farmers and New Land Users: How Relations to Land and People Influence Farmers’ Land Transfer Decisions. Sociol. Rural. 2018, 58, 707–725. [Google Scholar] [CrossRef]
- Sheng, Y.; Chancellor, W. Exploring the relationship between farm size and productivity: Evidence from the Australian grains industry. Food Policy 2019, 84, 196–204. [Google Scholar] [CrossRef]
- Gao, J.; Song, G.; Sun, X. Does labor migration affect rural land transfer? Evidence from China. Land Use Policy 2020, 99, 105096. [Google Scholar] [CrossRef]
- Yu, X.; Schweikert, K.; Li, Y.; Ma, J.; Doluschitz, R. Farm size, farmers’ perceptions and chemical fertilizer overuse in grain production: Evidence from maize farmers in northern China. J. Environ. Manag. 2023, 325, 116347. [Google Scholar] [CrossRef]
- Li, R.; Chen, J.; Xu, D. The Impact of Agricultural Socialized Service on Grain Production: Evidence from Rural China. Agriculture 2024, 14, 785. [Google Scholar] [CrossRef]
- Huan, M.; Li, Y.; Chi, L.; Zhan, S. The Effects of Agricultural Socialized Services on Sustainable Agricultural Practice Adoption among Smallholder Farmers in China. Agronomy 2022, 12, 2198. [Google Scholar] [CrossRef]
- Chen, T.; Rizwan, M.; Abbas, A. Exploring the Role of Agricultural Services in Production Efficiency in Chinese Agriculture: A Case of the Socialized Agricultural Service System. Land 2022, 11, 347. [Google Scholar] [CrossRef]
- Wu, A.; Elahi, E.; Cao, F.; Yusuf, M.; Abro, M.I. Sustainable grain production growth of farmland-A role of agricultural socialized services. Heliyon 2024, 10, e26755. [Google Scholar] [CrossRef]
- Schultz, T.W. Transforming Traditional Agriculture; Yale University Press: New Haven, CT, USA, 1964. [Google Scholar]
- Aryal, J.P.; Rahut, D.B.; Maharjan, S.; Erenstein, O. Understanding factors associated with agricultural mechanization: A Bangladesh case. World Dev. Perspect. 2019, 13, 1–9. [Google Scholar] [CrossRef]
- Jiang, M.; Hu, X.; Chunga, J.; Lin, Z.; Fei, R. Does the popularization of agricultural mechanization improve energy-environment performance in China’s agricultural sector? J. Clean. Prod. 2020, 276, 124210. [Google Scholar] [CrossRef]
- Li, Q.; Li, K. Rice farmers’ demands for productive services: Evidence from Chinese farmers. Int. Food Agribus. Manag. Rev. 2020, 23, 339–354. [Google Scholar] [CrossRef]
- Birner, R.; Davis, K.; Pender, J.; Nkonya, E.; Anandajayasekeram, P.; Ekboir, J.; Mbabu, A.; Spielman, D.J.; Horna, D.; Benin, S.; et al. From Best Practice to Best Fit: A Framework for Designing and Analyzing Pluralistic Agricultural Advisory Services Worldwide. J. Agric. Educ. Ext. 2009, 15, 341–355. [Google Scholar] [CrossRef]
- Fielke, S.; Taylor, B.; Jakku, E. Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review. Agric. Syst. 2020, 180, 11. [Google Scholar] [CrossRef]
- Smith, A. An Inquiry into the Nature and Causes of the Wealth of Nations; W. Strahan & T. Cadell: London, UK, 1776. [Google Scholar]
- Daum, T.; Birner, R. Agricultural mechanization in Africa: Myths, realities and an emerging research agenda. Glob. Food Secur. 2020, 26, 100393. [Google Scholar] [CrossRef]
- Qing, Y.; Chen, M.; Sheng, Y.; Huang, J. Mechanization services, farm productivity and institutional innovation in China. China Agric. Econ. Rev. 2019, 11, 536–554. [Google Scholar] [CrossRef]
- Rząsa, K.; Ogryzek, M.; Źróbek, R. The Land Transfer from The State Treasury to Local Government Units as a Factor of Social Development of Rural Areas in Poland. Land 2019, 8, 170. [Google Scholar] [CrossRef]
- Yu, X.; Abdulai, A.; Li, D. Accessing the effect of smartphone agricultural applications on land transfer: Evidence from Sichuan province in China. China Agric. Econ. Rev. 2024, 16, 181–204. [Google Scholar] [CrossRef]
- Xu, D.; Yong, Z.; Deng, X.; Zhuang, L.; Qing, C. Rural-Urban Migration and its Effect on Land Transfer in Rural China. Land 2020, 9, 81. [Google Scholar] [CrossRef]
- Ma, W.; Abdulai, A. Does cooperative membership improve household welfare? Evidence from apple farmers in China. Food Policy 2016, 58, 94–102. [Google Scholar] [CrossRef]
- Bratti, M.; Miranda, A. Endogenous treatment effects for count data models with endogenous participation or sample selection. Health Econ. 2011, 20, 1090–1109. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Maximum Likelihood Estimation of Endogenous Switching Regression Models. Stata J. Promot. Commun. Stat. Stata 2004, 4, 282–289. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Impact of Interventions on Discrete Outcomes: Maximum Likelihood Estimation of the Binary Choice Models with Binary Endogenous Regressors. Stata J. Promot. Commun. Stat. Stata 2011, 11, 368–385. [Google Scholar] [CrossRef]
- Sampson, G.S.; Perry, E.D. The Role of Peer Effects in Natural Resource Appropriation–The Case of Groundwater. Am. J. Agric. Econ. 2018, 101, 154–171. [Google Scholar] [CrossRef]
- Kousar, R.; Abdulai, A. Off-farm work, land tenancy contracts and investment in soil conservation measures in rural Pakistan. Aust. J. Agric. Resour. Econ. 2016, 60, 307–325. [Google Scholar] [CrossRef]
- Abdallah, A.-H. Agricultural credit and technical efficiency in Ghana: Is there a nexus? Agric. Financ. Rev. 2016, 76, 309–324. [Google Scholar] [CrossRef]
- Cerulli, G.; Ventura, M. A dose–response approach to evaluate the effects of different levels of partial credit guarantees. Appl. Econ. 2020, 53, 1418–1434. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Zhu, P. Can Specialized Agricultural Services Promote Small Farmers to Be Involved in Modern Agriculture? J. Agrotech. Econ. 2019, 9, 16–26. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, S.; Cao, Z.L.; Liu, H. Impact and Comparative Analysis of Agricultural Socialized Services on Moderate-Scale Agricultural Operations: Empirical Evidence from CHIP Microdata. J. Agrotech. Econ. 2016, 11, 4–13. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, W.; Sousa-Poza, A.; Leng, C. The effect of internet usage on perceptions of social fairness: Evidence from rural China. China Econ. Rev. 2020, 62, 101508. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does outsourcing affect agricultural productivity of farmer households? Evidence from China. China Agric. Econ. Rev. 2020, 12, 673–688. [Google Scholar] [CrossRef]
Variable | Definition | Mean. | St. Dev. | Min | Max |
---|---|---|---|---|---|
LTP | Whether farmer has transferred land in 2019. Yes = 1, no = 0 | 0.864 | 0.343 | 0 | 1 |
LTA | Area of land transferred (mu) | 205.54 | 282.42 | 0.800 | 1440 |
LTW | Farmer’s willingness to transfer in the future. Yes = 1, no = 0 | 0.801 | 0.400 | 0.588 | 7.273 |
ASS | Whether farmer adopt ASS. Yes = 1, no = 0 | 0.843 | 0.364 | 0 | 1 |
Gender | Male = 1, female = 0 | 0.852 | 0.355 | 0 | 1 |
Age | Age of respondent (years) | 48.93 | 10.27 | 19 | 78 |
Age squre | Natural log of age squared | 7.733 | 0.451 | 5.889 | 8.713 |
Education | Respondents’ years of education (years) | 8.783 | 3.433 | 0 | 16 |
Family size | Total number of respondents’ households | 4.653 | 1.651 | 1 | 63 |
Off-farm | Number of family members working outside the home (person) | 1.186 | 0.978 | 1 | 16 |
Agr- experience | The respondents have worked in agriculture for years (years) | 16.85 | 13.06 | 0 | 6 |
Own vehicles | Ownership of motor vehicles. Owned = 1, not owned = 0 | 0.773 | 0.419 | 0 | 1 |
Wi-Fi | Years with home Wi-Fi (for the respondent) | 6.477 | 4.410 | 0 | 22 |
Distance | Distance from respondent’s residence to township center (km) | 3.822 | 2.816 | 0 | 1 |
Soil quality | Good = 1, normal = 0 | 0.555 | 0.497 | 0.0488 | 2.708 |
Terrain | Whether farmer lives in hilly or mountainous area. Yes = 1, no = 0 | 0.554 | 0.497 | 0 | 1 |
Obs. | 858 |
Variable | ASS Adopter | ASS Non-Adopters | Mean. | St. Dev. | t-Value |
---|---|---|---|---|---|
LTP | 0.931 | 0.504 | 0.427 *** | 0.029 | 14.9 |
LTA | 245.049 | 17.173 | 227.875 *** | 25.303 | 9 |
LTW | 0.876 | 0.4 | 0.476 *** | 0.034 | 14.05 |
Gender | 0.862 | 0.8 | 0.062 * | 0.034 | 1.85 |
Age | 48.17 | 53.015 | −4.845 *** | 0.95 | −5.1 |
Age squre | 7.704 | 7.886 | −0.182 *** | 0.419 | −4.35 |
Education | 9.145 | 6.841 | 2.304 *** | 0.313 | 7.4 |
Family size | 4.606 | 4.904 | −0.298 * | 0.154 | −1.95 |
Off-farm | 1.137 | 1.452 | −0.315 *** | 0.091 | −3.45 |
Agr-experience | 15.506 | 24.074 | −8.568 *** | 1.19 | −7.2 |
Own vehicles | 3.766 | 4.12 | −0.353 | 0.264 | −1.35 |
Wi-Fi | 6.857 | 4.437 | −2.421 *** | ||
Distance | 0.583 | 0.408 | 0.175 *** | 0.046 | 3.8 |
Soil quality | 0.812 | 0.563 | 0.249 *** | 0.038 | 6.5 |
Terrain | 0.499 | 0.845 | −0.345 *** | 0.045 | −7.65 |
Obs. | 723 | 135 |
Variable | Selection Equation | LTP | LTA | LTW | |||
---|---|---|---|---|---|---|---|
(1) ASS | (2) Adopter | (3) Non-Adopter | (4) Adopter | (5) Non-Adopter | (6) Adopter | (7) Non-Adopter | |
Gender | 0.331 ** (0.165) | 0.571 *** (0.213) | −0.179 (0.404) | −0.003 (0.198) | −0.126 (0.378) | 0.279 (0.212) | 0.309 (0.323) |
Age | −0.033 (0.032) | −0.008 (0.072) | −0.038 (0.096) | −0.052 (0.045) | −0.037 (0.074) | −0.209 *** (0.047) | −0.371 *** (0.102) |
Age squre | 1.076 (0.705) | −0.495 (1.765) | 0.791 (2.698) | 1.022 (0.968) | 0.483 (1.726) | 3.409 *** (1.042) | 7.217 *** (2.023) |
Education | 0.071 *** (0.021) | −0.060 * (0.033) | −0.031 (0.061) | −0.040 (0.025) | −0.057 (0.063) | 0.006 (0.024) | 0.034 (0.052) |
Family size | −0.010 * (0.006) | −0.015 ** (0.007) | 0.008 (0.022) | −0.021 *** (0.007) | −0.002 (0.017) | 0.002 (0.006) | −0.032 ** (0.013) |
Off-farm | −0.006 (0.034) | −0.027 (0.042) | −0.030 (0.061) | 0.054 (0.044) | −0.005 (0.063) | −0.008 (0.043) | 0.003 (0.073) |
Agri- experience | 0.006 (0.076) | −0.086 (0.101) | 0.055 (0.121) | −0.231 *** (0.073) | 0.210 (0.207) | 0.089 (0.091) | 0.038 (0.155) |
Own vehicles | 0.372 *** (0.128) | 0.258 (0.184) | 0.185 (0.861) | −0.098 (0.167) | 0.292 (0.380) | −0.159 (0.157) | 0.799 ** (0.323) |
Wi-Fi | 0.027 (0.018) | 0.026 (0.026) | −0.005 (0.036) | 0.026 * (0.015) | −0.012 (0.042) | 0.027 (0.018) | 0.027 (0.040) |
Distance | 0.131 (0.124) | −0.199 (0.172) | −0.612 (0.559) | 0.494 *** (0.140) | −0.377 (0.320) | 0.475 *** (0.153) | 0.219 (0.297) |
Soil quality | 0.096 (0.105) | 0.148 (0.138) | 0.078 (0.468) | −0.017 (0.113) | 0.265 (0.409) | −0.099 (0.122) | 0.794 *** (0.299) |
Terrain | −0.358 ** (0.175) | −0.778 *** (0.254) | −0.081 (0.996) | −0.580 *** (0.215) | −0.770 (0.480) | −0.727 *** (0.178) | −1.129 ** (0.542) |
Region | control | control | control | control | control | control | control |
IV | 2.255 *** (0.566) | ||||||
Constant | −8.575 ** (4.149) | 6.971 (10.244) | 0.740 (0.815) | 0.119 (5.393) | −1.025 (9.900) | −14.641 ** (5.863) | −37.076 *** (11.194) |
−0.902 *** (0.298) | −1.305 *** (0.368) | −12.260 *** (1.262) | |||||
−1.221 (3.280) | −0.869 (0.635) | 0.577 (0.758) | |||||
0.502 *** (0.050) | |||||||
0.532 ** (0.247) | |||||||
Good. Of fit test | 146.30 *** | 131.14 *** | 171.46 *** | ||||
Wald Test for Eq. Indep. | 5.41 ** | 12.99 *** | 8.95 ** | ||||
Obs. | 858 |
Items | ASS Adopters | ASS Non-Adopters | Treatment Effect | t-Value |
---|---|---|---|---|
LTP | 0.931 (0.004) | 0.082 (0.003) | 0.849 (0.004) *** | 190.761 |
LTA | 4.444 (0.039) | 1.920 (0.035) | 3.182 (0.042) *** | 47.812 |
LTW | 0.872 (0.008) | 0.854 (0.009) | 0.018 (0.007) *** | 2.692 |
Items | Nearest Neighbor Match | Z-Value | Kernel Match | Z-Value |
---|---|---|---|---|
LTP | 0.235 (0.0) *** | 4.46 | 0.257 (0.050) *** | 5.125 |
LTA | 2.891 (0.278) *** | 10.40 | 2.835 (0.214) *** | 13.882 |
LTW | 0.257 (0.073) *** | 3.51 | 0.257 (0.056) *** | 4.563 |
Variables | Category | Adopters | Non-Adopters | ATT | t-Value |
---|---|---|---|---|---|
AMS | LTP | 0.925 (0.005) | 0.852 (0.009) | 0.073 (0.008) *** | 9.402 |
LTA | 4.494 (0.039) | 2.593 (0.065) | 3.543 (0.048) *** | 24.870 | |
LTW | 0.966 (0.004) | 0.855 (0.008) | 0.111 (0.008) *** | 13.666 | |
ACS | LTP | 0.976 (0.005) | 0.355 (0.014) | 0.622 (0.011) *** | 47.147 |
LTA | 5.114 (0.045) | 2.092 (0.070) | 3.022 (0.083) *** | 36.255 | |
LTW | 0.889 (0.008) | 0.095 (0.009) | 0.793 (0.010) *** | 81.642 | |
ATS | LTP | 0.953 (0.004) | 0.907 (0.006) | 0.046 (0.006) *** | 7.214 |
LTA | 4.454 (0.055) | 3.740 (0.052) | 1.428 (0.076) *** | 18.836 | |
LTW | 0.880 (0.008) | 0.771 (0.011) | 0.109 (0.005) *** | 24.197 | |
AMA | LTP | 0.975 (0.002) | 0.877 (0.008) | 0.098 (0.007) *** | 13.537 |
LTA | 4.357 (0.036) | 3.627 (0.073) | 3.992 (0.042) *** | 8.932 | |
LTW | 0.858 (0.009) | 0.621 (0.011) | 0.237 (0.011) *** | 21.405 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Ali, W.; Li, D. Agricultural Social Services and Land Transfer: A Multidimensional Analysis of Impacts on Land Allocation. Land 2025, 14, 855. https://doi.org/10.3390/land14040855
Yu X, Ali W, Li D. Agricultural Social Services and Land Transfer: A Multidimensional Analysis of Impacts on Land Allocation. Land. 2025; 14(4):855. https://doi.org/10.3390/land14040855
Chicago/Turabian StyleYu, Xi, Walliams Ali, and Dongmei Li. 2025. "Agricultural Social Services and Land Transfer: A Multidimensional Analysis of Impacts on Land Allocation" Land 14, no. 4: 855. https://doi.org/10.3390/land14040855
APA StyleYu, X., Ali, W., & Li, D. (2025). Agricultural Social Services and Land Transfer: A Multidimensional Analysis of Impacts on Land Allocation. Land, 14(4), 855. https://doi.org/10.3390/land14040855