Driving Factors of Rural Land-Use Change from a Multi-Scale Perspective: A Case Study of the Loess Plateau in China
Abstract
:1. Introduction
2. Theoretical Framework
3. Materials and Methods
3.1. Study Area
3.2. Data Sources and Processing
3.3. Methods
3.3.1. Land-Use Change Dynamic Degree (LUDD)
3.3.2. GeoDetector Model
4. Results
4.1. Land-Use/Cover Change in the Loess Plateau
4.2. Land-Use Change Dynamic Degree in the Loess Plateau
4.3. Impact Factors Detection of Land-Use Change in Different Spatial Scale
4.4. Multi-Scale Differences in Driving Factors of Major Land-Use Types Change
5. Discussion
5.1. Main Characterization of Multi-Scale Differences in Driving Forces of Land-Use Change
5.2. Mechanism Analysis of Multi-Scale Differences in Driving Forces of Land-Use Change
5.3. Implications for Rural Land Management in the Loess Plateau
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Li, X.; Liu, Y. Land use change and driving factors in rural China during the period 1995–2015. Land Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X. Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Reg. Environ. Chang. 2018, 18, 247–249. [Google Scholar] [CrossRef]
- Kong, X.; Li, Y.; Han, M.; Tian, L.; Zhu, J.; Niu, X. Analysis of Land Use/Cover Change and Landscape Pattern in the Yellow River Delta During 1986-2016. J. Southwest For. Univ. 2020, 40, 122–131. [Google Scholar]
- Froese, R.; Schilling, J. The Nexus of Climate Change, Land Use, and Conflicts. Curr. Clim. Chang. Rep. 2019, 5, 24–35. [Google Scholar] [CrossRef]
- Gao, X.; Huang, X.; Lo, K.; Dang, Q.; Wen, R. Vegetation responses to climate change in the Qilian Mountain Nature Reserve, Northwest China. Glob. Ecol. Conserv. 2021, 28, e016998. [Google Scholar] [CrossRef]
- Zou, C.; Li, H.; Chen, D.H.; Fan, J.; Liu, Z.; Xu, X.; Li, J.; Wang, Z. Spatial-temporal changes of carbon source/sink in terrestrial vegetation ecosystem and response to meteorological factors in Yangtze River Delta Region (China). Sustainability 2022, 14, 10051. [Google Scholar] [CrossRef]
- Hunag, B.; Huang, J.; Pontius, R.G., Jr.; Tu, Z. Comparison of Intensity Analysis and the land use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai, China. Ecol. Indic. 2018, 89, 336–347. [Google Scholar] [CrossRef]
- Williams, T.G.; Trush, S.A.; Sullivan, J.A.; Liao, C.; Chesterman, N.; Agrawal, A.; Guikema, S.D.; Brown, D.G. Land-use changes associated with large-scale land transactions in Ethiopia. Ecol. Soc. 2021, 26, 34. [Google Scholar] [CrossRef]
- Juknelienė, D.; Kazanavičiūtė, V.; Valčiukienė, J.; Atkocevičienė, V.; Mozgeris, G. Spatiotemporal Patterns of Land-Use Changes in Lithuania. Land 2021, 10, 619. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, D.D.; Cao, L. Evolution and Prediction of the Coupling Coordination Degree of Production–Living–Ecological Space Based on Land Use Dynamics in the Daqing River Basin, China. Sustainability 2022, 14, 10864. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use Changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Lin, W.; Sun, Y.; Nijhuis, S.; Wang, Z. Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study. Sci. Total Environ. 2020, 739, 139899. [Google Scholar] [CrossRef]
- Kucsicsa, G.; Popovici, E.A.; Bălteanu, D.; Grigorescu, I.; Dumitraşcu, M.; Mitrică, B. Future land use/cover changes in Romania: Regional simulations based on CLUE-S model and CORINE land cover database. Landsc. Ecol. Eng. 2019, 15, 75–90. [Google Scholar] [CrossRef]
- Chen, X.; He, X.; Wang, S. Simulated Validation and Prediction of Land Use under Multiple Scenarios in Daxing District, Beijing, China, Based on GeoSOS-FLUS Model. Sustainability 2022, 14, 11428. [Google Scholar] [CrossRef]
- Yang, C.; Fu, M.; Feng, D.; Sun, Y.; Zhai, G. Spatiotemporal Changes in Vegetation Cover and Its Influencing Factors in the Loess Plateau of China Based on the Geographically Weighted Regression Model. Forests 2021, 12, 673. [Google Scholar] [CrossRef]
- Long, X.; Lin, H.; An, X.; Chen, S.; Qi, S.; Zhang, M. Evaluation and analysis of ecosystem service value based on land use/cover change in Dongting Lake wetland. Ecol. Indic. 2022, 136, 108619. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, Y.; Qian, M.; Zeng, Z. Land Use Transition and Driving Forces in Chinese Loess Plateau: A Case Study from Pu County, Shanxi Province. Land 2021, 10, 67. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Li, X.; Chen, G.Z.; Liu, X.P.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1040–1059. [Google Scholar] [CrossRef]
- Vengatesan, K.; Rajesh, M.; Kumar, E.S. Analysis of Changes and Influence Using Remote Sensing and Geodetectors on How Human Activity Affects Ulansuhai Lake Basin Ecology. Remote Sens. Earth Syst. Sci. 2024, 7, 55–65. [Google Scholar] [CrossRef]
- Yu, T.H.; Jia, S.S.; Cui, X.F. From efficiency to resilience: Unraveling the dynamic coupling of land use economic efficiency and urban ecological resilience in Yellow River Basin. Nature 2024, 14, 16518. [Google Scholar] [CrossRef]
- Xia, L.; Bi, R.T.; Song, X.Y.; Lv, C. Dynamic changes in soil erosion risk and its driving mechanism: A case study in the Loess Plateau of China. Eur. J. Soil Sci. 2021, 72, 1312–1331. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Wang, L.; Wei, W. Characteristics and driving factors of ecosystem services changes in a typical county of the Loess Plateau. Ecol. Environ. Sci. 2023, 32, 1140–1148. [Google Scholar]
- Serra, P.; Pons, X.; Saurí, D. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Chang. Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Liu, Y.; Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the Yanhe watershed. Land Use Policy 2018, 72, 303–312. [Google Scholar] [CrossRef]
- Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the world’s countryside. Nature 2018, 548, 275–277. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhou, Y. Efficiency of construction land allocation in China: An econometric analysis of panel data. Land Use Policy 2018, 74, 261–272. [Google Scholar] [CrossRef]
- Nozdrovická, J.; Dostál, I.; Petrovič, F.; Jakab, I.; Havlíček, M.; Skokanová, H.; Falťan, V.; Mederly, P. Land-Use Dynamics in Transport-Impacted Urban Fabric: A Case Study of Martin–Vrútky, Slovakia. Land 2020, 9, 273. [Google Scholar] [CrossRef]
- Long, H.; Li, Y.; Liu, Y.; Woods, M.; Zou, J. Accelerated restructuring in rural China fueled by ‘increasing vs. decreasing balance’ land-use policy for dealing with hollowed villages. Land Use Policy 2012, 29, 11–22. [Google Scholar] [CrossRef]
- Dang, A.N.; Kawasaki, A. Integrating biophysical and socio-economic factors for land-use and land-cover change projection in agricultural economic regions. Ecol. Model. 2017, 344, 29–37. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Lu, Z.; Li, Y. The Expansion Mechanism of Rural Residential Land and Implications for Sustainable Regional Development: Evidence from the Baota District in China’s Loess Plateau. Land 2021, 10, 172. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Liu, Z.; Chen, Z. Impacts of climatic warming on cropping system borders of China and potential adaptation strategies for regional agriculture development. Sci. Total Environ. 2021, 755, 142415. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Liu, Z.; Wang, J.; Liu, X. Impacts of Different Rural Settlement Expansion Patterns on Eco-Environment and Implications in the Loess Hilly and Gully Region, China. Front. Environ. Sci. 2022, 10, 857776. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Y. Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China. Land 2021, 10, 982. [Google Scholar] [CrossRef]
- Song, L.; Cao, Y.; Zhou, W.; Su, R.; Qiu, M. Scale effects and countermeasures of cultivated land changes based on hierarchical linear model. Environ. Monit. Assess. 2020, 192, 346. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Santos, D.; Nascimento, W.R.; Souza-Filho, P.W.M.; Sánchez, L.E. Investigating Changes Driving Cumulative Impacts on Native Vegetation in Mining Regions in the Northeastern Brazilian Amazon. Environ. Manag. 2022, 69, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Husain, A.; Singh, R.B.; Kumar, M. Impact of land cover change on land surface temperature: A case study of Spiti Valley. J. Mt. Sci. 2018, 15, 1658–1670. [Google Scholar] [CrossRef]
- Claessens, L.; Schoorl, J.M.; Verburg, P.H.; Geraedts, L.; Veldkamp, A. Modelling interactions and feedback mechanisms between land use change and landscape processes. Agric. Ecosyst. Environ. 2009, 129, 157–170. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J. Multi-scale analysis of the spatial structure of China’s major function zoning. J. Geogr. Sci. 2020, 30, 197–211. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Cao, Z.; Liu, Z.; Lu, Z.; Liu, Y. Towards the progress of ecological restoration and economic development in China’s Loess Plateau and strategy for more sustainable development. Sci. Total Environ. 2021, 756, 143676. [Google Scholar] [CrossRef]
- Lyu, J.; Yang, Y.; Yin, S.; Yang, Z.; Zhou, Z.; Wang, Y.; Luo, P.; Jiao, M.; Huo, A. Effects of Environmental Changes on Flood Patterns in the Jing River Basin: A Case Study from the Loess Plateau, China. Land 2024, 13, 2053. [Google Scholar] [CrossRef]
Datasets | Spatial Resolution | Year | Source | |
---|---|---|---|---|
Land use | 30 m | 2000, 2020 | RESDP | |
Administrative boundary | - | 2020 | NESSDC | |
Driving factors | DEM | 90 m | - | RESDP |
Slope | 90 m | - | RESDP | |
Topographic relief | 90 m | - | RESDP | |
Precipitation | 1 km | 2000, 2020 | RESDP | |
Temperature | 1 km | 2000, 2020 | RESDP | |
Population | 1 km | 2000, 2020 | RESDP | |
Population Density | 1 km | 2000, 2020 | RESDP | |
GDP | 1 km | 2000, 2020 | RESDP | |
Per capita GDP | 1 km | 2000, 2020 | RESDP | |
Road density | 1 km | - | OSM | |
Grain for Green | 1 km | 2000, 2020 | RESDP | |
Per rural settlement area | 1 km | 2000, 2020 | RESDP |
Land-Use Types | 2020 | ||||||
---|---|---|---|---|---|---|---|
Cropland | Woodland | Grassland | Waterbody | Built-Up Land | Unused Land | ||
2000 | Cropland | 0.000 | 3.608 | 11.410 | 0.930 | 8.097 | 0.533 |
Woodland | 1.234 | 0.000 | 2.273 | 0.134 | 0.663 | 0.128 | |
Grassland | 7.448 | 4.063 | 0.000 | 0.532 | 3.389 | 2.395 | |
Waterbody | 0.592 | 0.083 | 0.381 | 0.000 | 0.246 | 0.331 | |
Built-up land | 1.169 | 0.076 | 0.176 | 0.042 | 0.000 | 0.015 | |
Unused land | 0.714 | 0.383 | 2.943 | 0.312 | 0.700 | 0.000 |
Administrative Scales | Classification Standard | Rane | Numbers |
---|---|---|---|
Township scale | [0, Act) | <0.60 | 2361 |
[Act, Act + Sdct) | [0.60, 1.28) | 740 | |
[Act + Sdct, Act + 2Sdct) | [1.28, 1.96) | 211 | |
≥Act + 2Sdct | ≥1.96 | 178 | |
Prefecture-level scale | [0, Acp) | <0.47 | 28 |
[Acp, Acp + Sdcp) | [0.47, 0.71) | 11 | |
[Acp + Sdcp, Acp + 2Sdcp) | [0.71, 0.96) | 4 | |
≥Acp + 2Sdcp | ≥0.96 | 2 |
Variables | Units | Township Scale q-Value | Prefecture-Level Scale q-Value |
---|---|---|---|
DEM | meter | 0.101 ** | - |
Slope | degree | 0.144 ** | - |
Topographic relief | meter | 0.128 ** | 0.262 * |
Precipitation | mm | 0.035 ** | 0.599 ** |
Temperature | °C | 0.07 ** | - |
Population | person | 0.054 ** | - |
Population Density | person/km2 | 0.197 ** | - |
GDP | RMB | 0.102 ** | 0.447 ** |
Per capita GDP | RMB/person | 0.117 ** | 0.658 ** |
Road density | km/km2 | 0.271 ** | 0.476 ** |
Grain for Green | km2 | 0.215 ** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Ni, Q.; Chen, Z.; Liu, X.; Liu, P.; Yuan, Z. Driving Factors of Rural Land-Use Change from a Multi-Scale Perspective: A Case Study of the Loess Plateau in China. Land 2025, 14, 617. https://doi.org/10.3390/land14030617
Hu B, Ni Q, Chen Z, Liu X, Liu P, Yuan Z. Driving Factors of Rural Land-Use Change from a Multi-Scale Perspective: A Case Study of the Loess Plateau in China. Land. 2025; 14(3):617. https://doi.org/10.3390/land14030617
Chicago/Turabian StyleHu, Bo, Qingsong Ni, Zongfeng Chen, Xueqi Liu, Pingan Liu, and Ziyi Yuan. 2025. "Driving Factors of Rural Land-Use Change from a Multi-Scale Perspective: A Case Study of the Loess Plateau in China" Land 14, no. 3: 617. https://doi.org/10.3390/land14030617
APA StyleHu, B., Ni, Q., Chen, Z., Liu, X., Liu, P., & Yuan, Z. (2025). Driving Factors of Rural Land-Use Change from a Multi-Scale Perspective: A Case Study of the Loess Plateau in China. Land, 14(3), 617. https://doi.org/10.3390/land14030617